THE ROLE OF AGGREGATION FUNCTIONS ON AUCTIONS

BEATRIZ LÓPEZ

AGOP 2017

9th International Summer School on Aggregation Operators

University of Skövde, Sweden

June, 19-22

WHAT IS AN AUCTION

June 19-22, 2017 - AGOP, Skövde, Sweden

_

WHAT IS AN AUCTION

AUCTIONS

Buyers and sellers find easy to understand

• Eliminate the necessity to set an exact price

Resource supply

Existing demand

Leyton-Brown, K., Shoham, Y.: Mechanism design and auctions. In: Weiss, G. (ed.) Multiagent Systems, Chap. 7, 2nd edn., pp. 285–32. The MIT Press (2013)

EXAMPLES

- Fish market
- Christie's Art Auctions
- Grid Computing Services (GCS)
- Electricity market
- Internet advertisement

June 19-22, 2017 - AGOP, Skövde, Sweden

beatriz.lopez@udg.edu

Vickrey–Clarke–Groves

The winner pays the price of the second-highest bid.

EXIT Universitat bea

beatriz.lopez@udg.edu

AGENTS' GOALS

- Bidders
 - Maximize revenue
- Auctioneers
 - Maximize revenue
 - Keep agents interested in the market

K bidders K-1 bidders

June 19-22, 2017 - AGOP, Skövde, Sweden

Murillo, J., Munoz, V., López, B., & Busquets, D. (2008). A fair mechanism for recurrent multi-unit auctions. MATES (LNS Vol. 5244, pp. 147–158).

v(x) value function: Aggregation functions

MAXIMIZING REVENUES: UTILITIES

outcome of the auction

v(x) = evaluate the value of x different for every agent

21/10/2015

15

KEEPING AGENTS IN THE MARKET

Social welfare measures: Aggregation functions

MECHANISM DESIGN

• Bidders

• Bidding policies: how each agent decides the bid amount (and other attributes)

Auctioneers

- Winner determination problem: how the auctioneer selects the winner(s)
- Pricing mechanism: how the auctioneer decides the price to be paid by the winners

While pursuing

- Truthful bidding
- A given social welfare measure

And conditioned by the type of good

TYPE OF GOOD

OVERVIEW

What is an auction

- 1. The value function
- 2. Social welfare measures
- 3. Parameter adaptation

Summary and conclusions

THE ROLE OF AGGREGATION FUNCTIONS ON

THE VALUE FUNCTION

June 19-22, 2017 - AGOP, Skövde, Sweden

beatriz.lopez@udg.edu

20

CONTEXT

- Multi-attribute auctions
 - Each Bid *B* is composed by its cost *b* and a set of attributes B=(b,AT) $AT=(at^1,...,at^n)$.
 - WDP: Find the optimal Bid according to cost b and attributes AT argmax(V(b_i,AT_i))
- VCG-based payment: best bid, second price
 - Winner bid: b1
 - b1⁻: remove ec of b1,
 - b1': add p to b1⁻
 - Second best: b2

$$V(b1')=V(b2) \rightarrow p = V^{-1}(V(b2), b1^{-})$$

June 19-22, 2017 - AGOP, Skövde, Sweden

Pla, A., López, B., Murillo, J., Maudet, N.: Multi-attribute auctions with different types of attributes: enacting properties in multi-attribute auctions. Expert Syst. Appl. 41(10),4829–4843 (2014)

V(b,AT) REQUIREMENTS

- Real Valued Function
- Monotonicity
- Bijection

Pla, A., Lopez, B., Murillo, J.: Multi criteria operators for multi-attribute auctions. In:Torra, V., Narukawa, Y., López, B., Villaret M. (eds.) MDAI 2012. LNCS, vol 7647.Springer, Heidelberg (2012)

REAL-VALUED FUNCTION

- V(b,AT) must return a real number evaluation for each bid
 - The payment mechanism involves the score obtained by the second best bid.
- Discards multi-criteria methods which result in ranked lists or orders without a score.
 - If there is not a score or evaluation, the payment cannot be computed.

MONOTONICITY

If an attribute is improved, the score of the evaluation must also improve.

Example:

 If an attribute can only take positive values (time duration), it can be evaluated using its square.

In order to calculate the payment, V(b,AT) must have a bijective behaviour regarding the price attribute.

- Given: V(b,AT) = x
- Its antifunction will be V⁻¹(x,AT) = b

June 19-22, 2017 - AGOP, Skövde, Sweden **Viniversitat** beatriz.lopez@udg.edu

EXAMPLE FUNCTIONS

PRODUCT

WEIGHTED SUM

$$V(b_i, AT_i) = b_i * \prod_{j=1}^{j=n} at_i^j$$

$$V(b_i, AT_i) = \mu_0 b_i + \sum_{j=1}^n \mu_j a t_i^j$$

EUCLIDEAN NORM

$$V(b_i, AT_i) = \sqrt[2]{b_i}^2 + \sum_{j=1}^n at_i^{j^2}$$

WEIGHTED SUM OF FUNCTIONS

$$V(b_i, AT_i) = \mu_0 f_0(b_i) + \sum_{j=1}^n \mu_j f_j(at_i^j)$$

June 19-22, 2017 - AGOP, Skövde, Sweden CEXIT Universitat beatriz.lopez@udg.edu

WORKFLOW SCHEDULING-EXAMPLE (i)

June 19-22, 2017 - AGOP, Skövde, Sweden

27

WORKFLOW SCHEDULING-EXAMPLE (ii)

- Auctioneer: resource allocation
 - 3 different business process (workflows)
 - 6 different tasks.
 - Each task has an estimated duration between 10 and 15 minutes and requires one resource of a certain type (A to D) to be executed.
- Bidders
 - There are 4 (A to D) types of resources provided by 8 Resource providers.
 - Each Resource Provider can perform 3 types of tasks with different qualifications (Type, time, error tolerance)

WORKFLOW SCHEDULING-EXAMPLE (iii)

Auctioneer revenues

Mean Service time

WORKFLOW SCHEDULING-EXAMPLE (iv)

Cexit Universitat beatriz.lopez@udg.edu

WORKFLOW SCHEDULING-EXAMPLE (v)

ABOUT ATTRIBUTES

26

EXAMPLE

ATTRIBUTES ROLES

- **Call-for-proposals:**
 - Initial attributes : verifiable attributes
- **Bidding**: ۲
 - Adding unverifiable attributes
- Winner determination problem: ۲
 - Adding auction attributes
 - Deciding with all the attributes together (aggregation)
- **Payment:** •
 - Playing all the attributes together

June 19-22, 2017 - AGOP, Skövde, Sweden

beatriz.lopez@udg.edu

BY EXAMPLE BIDDING

Economic price (ec)

BY EXAMPLE WINNER DETERMINATION

 $CFP = \langle S_0, (q, [1, 2]), (t, [60, 100]) \rangle$

Priority (w)

Agent a	(100, 1.2, 80, 0.80)
Agent b	(95, 1.2, 90, <mark>0.80</mark>)
Agent c	(99, 1.3, 85, <mark>0.85</mark>)

June 19-22, 2017 - AGOP, Skövde, Sweden

Verifiable attributes

ver

ifiable attributes

BY EXAMPLE WINNER DETERMINATION

 $CFP = \langle S_0, (q, [1, 2]), (t, [60, 100]) \rangle$

	Priority (w)	Evaluation function	
Agent a	(100, 1.2, 80, 0.80)	2,00	
Agent b	(95, 1.2, 90, 0.80)	2,85	
Agent c	(99, 1.3, 85, <mark>0.85</mark>)	2,06	

$$f_0(\langle ec_i, q_i, t_i, w_i \rangle) = ec_i * \frac{1}{q_i} * t_i * w_i$$

Product as aggregation
function

BY EXAMPLE HOW MUCH TO PAY? (i)

Vickrey:

The payment to the winner should equal the offer provided by the second best bid according to the auctioneers valuation

> Simple case: economic price Winner bid: b1 (100, 1.2, 80, 0.80) Second best: b2 (99, 1.3, 85, 0.85)

p = 99

How to manage more attributes?

BY EXAMPLE HOW MUCH TO PAY? (ii)

Vickrey and Google inspired:

Adding the remainder attributes

Winner bid: b1 (100, 1.2, 80, 0.80) b1⁻: remove ec of b1 (1.2, 80, 0.80) b1⁻: add p to b1⁻ (p, 1.2, 80, 0.80) (99, 1.3, 85, 0.85) Second best: b2 $f_0(b1')=f_0(b2) \rightarrow p = f_0^{-1}(f_0(b2), b1^{-})$ p = 103, 16

June 19-22, 2017 - AGOP, Skövde, Sweden

How to manage cheaters?

40

BY EXAMPLE HOW MUCH TO PAY? (iii)

VMA2: two case scenario

p =85.19

Verifiable attributes

OTHER WORKS (i)

- Che, Y.-K. (1993). Design competition through multidimensional auctions. The RAND Journal of Economics, 24(4), 668–680
 - Payment: not necessarily with the same combination of attributes
- David, E., Azoulay-Schwartz, R., & Kraus, S. (2002). Protocols and strategies for automated multi-attribute auctions. In AAMAS '02 (pp. 77–85).
 - First-price, sealed-bid
- Parkes, D. C., & Kalagnanam, J. (2005). Iterative multiattribute vickrey auctions. Management Science, 51, 435–451.
 - Iterative schema

OTHER WORKS (ii)

- Bellosta, M.-J., Kornman, S., & Vanderpooten, D. (2011). Preferencebased english reverse auctions. Artificial Intelligence, 175(7–8), 1449– 1467
 - Non-linear multi-criteria preference schema
- Mahr, T., & de Weerdt, M. M. (2006). Multi-attribute vickrey auctions when utility functions are unknown. In BNAIC, (pp. 221–227).
 - Multi-attribute auctions with preference orders
- Harrenstein, B. P., de Weerdt, M. M., & Conitzer, V. (2009). A qualitative vickrey auction. In EC '09 (pp. 197–206).
 - Qualitative Vickrey Auctions
- Suyama, T., & Yokoo, M. (2004). Strategy/false-name proof protocols for combinatorial multi-attribute procurement auction. Proceedings of the third international joint conference on autonomous agents and multiagent systems. AAMAS '04 (Vol. 1, pp. 160–167).
 - Attributes vary depending on the resource boundle assignted to tasks

APPLICATION: MANAGING ELECTRICITY

- Demand-response (smart consumers): bring consumption near to generation
- Distributed Generation (DG) management (smart producers): bring generation to consumption
- DG planning (smart planning)

June 19-22, 2017 - AGOP, Skövde, Sweden

to Universitat beatriz.lopez@udg.edu

F. Torrent-Fontbona. Optimisation methods meet the smart grid. New methods for solving location and allocation problems under the smart grid paradigm. PhD Manuscript, Universitat de Girona, 2015.

ENERGY-AWARE PROJECT SCHEDULING

Workflow managers are concerned about multiple attributes besides energy consumption: multi-attribute scheduling

June 19-22, 2017 - AGOP, Skövde, Sweden

Torrent-Fontbona, F., Pla, B., López, A.: Using multi-attribute combinatorial auctions for resource allocation. In: Müller, J.P., Weyrich, M., Bazzan, A.L.C. (eds.) MATES 2014. LNCS, vol. 8732, pp. 57–71. Springer, Heidelberg (2014)

ENERGY THE PROBLEM

ENERGY CALL-FOR-PROPOSALS

- An auctioneer A_0 needs to allocate a set of tasks $T = \{T_1, \dots, T_N\}$ with a set of attributes a_1, \dots, a_n
- It Sends a call for proposals (CFP) to all the bidders
 - Specifies the tasks
 - Specifies the attributes to evaluate
 - Specifies the evaluation function

Auctioneer
$$CFP = (T, \langle a_1, ..., a_m \rangle, V(\cdot))$$
 Bidder 1 Bidder 2
Bidder i

ENERGY BIDDING

Combinatorial, multi-attribute

Bidders evaluate the CFP and submit the bids with the corresponding attributes

 $B_{i,j,k} = \langle T_i @s_{i,j,k} : (\mu_{i,j,k}, \varepsilon_i, \delta_i), M_{i,j,k}, E_{i,j,k}, \Delta_{i,j,k} \rangle$

June 19-22, 2017 - AGOP, Skövde, Sweden

López, Ghose, Savarimuthu, Nowostawski, Winikoff and Cranefield. Towards Energy-Aware Optimisation of Business Processes Smartgreens 2014 (3rd International Conference on Smart Grids and Green IT Systems), Barcelona, 2014, 68-75.

ENERGY WINNER DETERMINATION AND PAYMENT

• WDP : weighted sum

$$V(b_{i,j,k}, t_{i,j,k}, e_{i,j,k}) = w_0 * b_{i,j,k} + w_1 * t_{i,j,k} + w_2 * e_{i,j,k}$$

subject to $\sum_k w_k = 1$, and $w_k \in (0,1] \forall k$

- Combinatorial optimisation problem \rightarrow GA
- VMA2 (as explained before)

OUTCOMES. **NO AGGREGATION**

	Scenario 1	Scenario 2	Scenario 3
	Energy	Money	Makespan
Max Cost _e	11.58	15.38	12.28
Min $Cost_e$	2.84	3.97	3.02
Max Cost∈	1760.00	1320.00	1760.00
Min Cost€	780.00	560.00	780.00
$Max Cost_t$	8.00	8.00	6.00
Min Cost _t	7.00	8.00	5.00

Energy wins

June 19-22, 2017 - AGOP, Skövde, Sweden beatriz.lopez@udg.edu Universitat de Girona **NeXiT** _

OUTCOME WITH AGGREGATION COMPARISON

THE ROLE OF AGGREGATION FUNCTIONS ON

SOCIAL WELFARE

June 19-22, 2017 - AGOP, Skövde, Sweden

beatriz.lopez@udg.edu

GOAL

- Given
 - n utilities, one per agent, and an auction outcome O

 $u_1(O), u_2(O), \dots u_n(O)$

• a social welfare measure sw(O)

Maximise: sw(O)

[sometimes minimize]

Collective utilities

APPROACHES

- Utilitarian social welfare: $sw_u(0) = \sum_{i=1}^n u_i(0)$
- Egalitarian social welfare:

$$sw_{e1}(0) = min_i u_i(0)$$

$$sw_{e2}(\mathbf{0}) = max_i u_i(\mathbf{0}) - min_i u_i(\mathbf{0})$$

$$sw_{e3}(\boldsymbol{0}) = \sum_{i=1}^{n} \left| \frac{\sum_{i=1}^{n} u_i(\boldsymbol{0})}{n} - u_i(\boldsymbol{0}) \right|$$

- Nash product: $sw_{nash}(0) = \prod_{i=1}^{n} u_i(0)$
- Elitist social welfare: $sw_{el}(0) = max_i u_i(0)$
- Rank dictator,....
- Envy-freeness (preferences), ...

June 19-22, 2017 - AGOP, Skövde, Sweden

Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaître, M., Maudet, N., Padget, J., Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource allocation. Informatica 30(1) (2006)

EGALITARIAN MECHANISM DESIGN

QUANTITATIVE

- Number of victories and ٠ defeats obtained
- Won auction coefficient

 $w_i = 1 - \frac{1 + won(a_i)}{1 + par(a_i)}$

Loss streak

$$w_i = 1 - \frac{max(0, ml - ls(a_i))}{ml}$$

ml: tolerance threshold ls: loss streak

OUALITATIVE

Use the information of the bids

• Fitness of the bid:
$$q_i = \frac{1}{N}$$

Bid-based won auction coefficient (BBWOC)

$$w_i = 1 - \frac{1 + won(a_i)}{1 + \sum_{j=0}^{c-1} q_i^j}$$

Bid-based loss streak (BBLS) ۲

$$w_i = 1 - \frac{max\left(0, ml - \sum_{j=c-ls(a_i)}^{c-1} q_i^j\right)}{ml}$$

LO

June 19-22, 2017 - AGOP, Skövde, Sweden beatriz.lopez@udg.edu

Universitat de Girona

Pla, A., López, B., Murillo, J.: Multi-dimensional fairness for auctionbased resource allocation. Knowl.-Based Syst. 73, 134–148 (2015)

OUTCOME BIDDERS WEALTH RANK

6

June 19-22, 2017 - AGOP, Skövde, Sweden beatriz.lopez@udg.edu **VeXiT** Universitat de Girona

CREATER

OUTCOME AUCTIONEER EXPENDITURE

June 19-22, 2017 - AGOP, Skövde, Sweden

OUTCOMES ACTIVE BIDDERS IN THE MARKET

June 19-22, 2017 - AGOP, Skövde, Sweden

beatriz.lopez@udg.edu

58

THE ROLE OF AGGREGATION FUNCTIONS ON

PARAMETER ADAPTATION

June 19-22, 2017 - AGOP, Skövde, Sweden

beatriz.lopez@udg.edu

59

MOTIVATION

Misdelivered tasks involve:

- Delays
- Budget problems
- Quality problems
- Loss of competitiveness
- ...

They are due:

- Cheating behaviors
- Involuntary errors
 - Bidders may not be able to accurately estimate their abilities

SOLUTIONS

Cheating agents:

• ...

- Incentive Compatible Mechanism
 - Vickrey Based Auction (VCG Payment rule)
- Multi-attribute auctions \rightarrow use of aggregation functions

Involuntary errors and misestimating the abilities

- Porter's auction \rightarrow uncertainty attribute for the WDP
- Ramchurn's auction → trust attribute for the WDP and payment
- ...

Can we tune attributes according to trust?

MULTI-ATTRIBUTE AUCTIONS AND TRUST

Trust :

- Trust values between 0 (worse) and 1 (best)
- Evaluation function V(.):
 - Trust as an auctioneer provided attribute
 - Trust for tuning / filtering the parameters of other attributes
- Learning / adaptation

$$B_i = \langle b_i, t_i, e_i \rangle$$

$$V\left(b_{i}, \frac{t_{i}}{\tau_{i,r}^{t}}, \frac{e_{i}}{\tau_{i,r}^{e}}\right)$$

$$\tau_{i,r+1}^{t} = \begin{cases} \tau_{i,r}^{t} + \alpha_t (1 - \tau_{i,r}^{t}) & \text{if } t_i' \leq t_i' \\ \tau_{i,r}^{t} - \beta_t \tau_{i,r}^{t} & \text{otherwise} \end{cases}$$

$$\tau_{i,r+1}^{e} = \begin{cases} \tau_{i,r}^{e} + \alpha_{e} \left(1 - \tau_{i,r}^{e}\right) & \text{if } e_{i}' \leq e_{i}' \\ \tau_{i,r}^{e} - \beta_{e} \tau_{i,r}^{e} & \text{otherwise} \end{cases}$$

 $\alpha_e, \beta_e \in [0,1]$

 $\alpha_t, \beta_t \in [0,1]$

Torrent-Fontbona, F., Pla, A., López, B.: New perspective of trust through multi-attribute auctions. In: Papers from the AAAI Workshop in Incentive, Trust in E-Communities, pp. 25–31 (2015)

Capitaper de Girona

OTHER ADAPTATION APPROACHES

Fuzzy filtering

Lopez, B., Innocenti, B., Busquets, D. A Multiagent System to Support Ambulance Coordination of Urgent Medical Transportation. IEEE Intelligent Systems vol. 23, no. 5, pp. 50-57, Sept/Oct, 2008.

REACHING THE END OF THE TALK:

SUMMARY AND CONCLUSIONS

June 19-22, 2017 - AGOP, Skövde, Sweden

beatriz.lopez@udg.edu

THE ROLE OF AGGREGATION FUNCTIONS ON AUCTIONS

• The evaluation function

- Bidders: deciding the bid
- Auctioneers: aggregating attributes of bids to decide the winner(s)

Social welfare measures

- Aggregation of utilities
- Qualifying history of bids in egalitarian approaches
- Parameter adaptation
 - Trust mechanisms

THANKS!

Javier Murillo Dídac Busquets Albert Pla Ferran Torrent-Fontbona

