Chapter 3 Introduction to Functional Equations

April 25, 2007

Vicenç Torra, Yasuo Narukawa (2007) Modeling Decisions: Information Fusion and Aggregation Operators, Springer. http://www.springer.com/3-540-68789-0; http://www.mdai.cat/ifao

Functional Equations:

- Equations where the unknowns are functions
- Example. Cauchy Equation:

$$\phi(x+y) = \phi(x) + \phi(y)$$

 ϕ is a solution of this equation if, for any two values x and y, the application of ϕ to x + y equals the addition of the application of ϕ to x and to y.

- The equation establishes conditions that functions ϕ have to satisfy.
- Example. Typical solutions of this equation are the functions

$$\phi(x) = \alpha x$$

for an arbitrary value for $\alpha.$

- Uses of functional equations in information fusion:
 - when an aggregation operator is needed, we know which basic properties it has to satisfy.
 - * First, conditions expressed as functional equations.
 - * Second, the operator is derived from the equations.
 - to study the properties of a methods.
 - * Because functional equations can characterize the operators.
 - A characterization consists of finding a minimum set of properties (a minimum set of equations) that uniquely implies the operator.
 - The set of properties that imply an operator is usually not unique.

Functional Equations: Introduction

- Example. (Theorem 3.1) Functional equations for aggregation:
 → WM with nonrestricted weights
 - The most general function ϕ satisfying (for all x, y, t, u)

$$\phi(x+t, y+t) = \phi(x, y) + t \tag{1}$$

and

$$\phi(xu, yu) = \phi(x, y)u \text{ for } u \neq 0$$
(2)

is

$$\phi(x,y) = (1-k)x + ky.$$
 (3)

Functional Equations: Introduction

- This theorem can be seen
 - as a way to construct the function from the properties, or
 - as a characterization of Equation 3.
- The characterizations are not unique.
- **Example.** (Theorem 3.2) Another characterization of ϕ .
 - The most general function ϕ satisfying (for all x_1, x_2, y_1, y_2, x)

$$\phi(x_1 + y_1, x_2 + y_2) = \phi(x_1, x_2) + \phi(y_1, y_2)$$

and

$$\phi(x,x) = x$$

is

$$\phi(x,y) = (1-k)x + ky.$$

• Some equations and their solutions:

- First Cauchy equation (a continuous function $\phi : \mathbb{R} \to \mathbb{R}$): $\phi(x+y) = \phi(x) + \phi(y)$ \rightarrow solution: (for a real constant α) $\phi(x) = \alpha x$ - Generalization of the Cauchy equation $\phi(x_1 + y_1, x_2 + y_2, \dots, x_N + y_N) =$ $\phi(x_1, x_2, \dots, x_N) + \phi(y_1, y_2, \dots, y_N)$ \rightarrow solution: (for an arbitrary real constant α_i) $\phi(x_1, x_2, \dots, x_N) = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_N x_N$

Functional Equations: Basic equations II

- More equations and their solutions:
 - Exponential equation

$$\phi(x+y) = \phi(x)\phi(y)$$

 \rightarrow solution: (for an arbitrary real constant α) $\phi(x) = e^{\alpha x}$.

- Logarithm equation (for all positive x and y)

$$\phi(x \cdot y) = \phi(x) + \phi(y)$$

 \rightarrow solution: $\phi(x) = \alpha \log(x)$.

- Equation (for all positive x, y)

$$\phi(xy) = \phi(x)\phi(y)$$

$$\rightarrow \text{ solution: } \phi(x) = x^c \quad \text{or} \quad \phi(x) = 0$$

Functional Equations: Basic equations III

- Still more equations and their solutions:
 - *N*-term Jensen equation $\phi(\frac{1}{N}\sum_{i=1}^{N}x_i) = \frac{1}{N}\sum_{i=1}^{N}\phi(x_i)$ $\rightarrow \text{ solution } (\alpha \text{ and } \beta \text{ arbitrary real constants}) \ \phi(x) = \alpha x + \beta$ - Equation $(\phi, \psi \text{ strictly monotone functions}):$ $\phi^{-1}(\frac{1}{N}\sum_{i=1}^{N}\phi(x_i)) = \psi^{-1}(\frac{1}{N}\sum_{i=1}^{N}\psi(x_i))$ $\rightarrow \text{ solution } (\alpha \text{ and } \beta \text{ arbitrary real constants s.t. } \alpha \neq 0): \ \phi(x) = \alpha\psi(x) + \beta$ - Equation

$$\phi(\frac{x_1+y_1}{2}, \frac{x_2+y_2}{2}) = \frac{\phi(x_1, x_2) + \phi(y_1, y_2)}{2}$$

 \rightarrow solution: $\phi(x, y) = \alpha x + \beta y + c.$

Functional Equations: Basic equations IV

- **Example.** Area of a rectangle $\phi(side_1, side_2)$
 - The most general positive solution of the system of equations $\begin{aligned} \phi(x_1+x_2,y) &= \phi(x_1,y) + \phi(x_2,y) \\ \phi(x,y_1+y_2) &= \phi(x,y_1) + \phi(x,y_2) \end{aligned}$

is

Functional Equations: Basic equations IV

- Example (proof). Area of a rectangle $\phi(side_1, side_2)$
 - a) ϕ constant on y in Equation 1 and define $\psi(x) = \phi(x, y)$ Eq. (1) $\rightarrow \psi(x_1 + x_2) = \psi(x_1) + \psi(x_2)$ By, first Cauchy equation $\psi(x) = \alpha x$. Therefore, $\phi(x, y) = \alpha(y) \cdot x$ (because α depends on y).
 - (b₁) similarly, ... assume ϕ constant on x in second eq. Therefore, $\phi(x, y) = \beta(x) \cdot y$.
 - Thus, $\phi(x,y) = \alpha(y) \cdot x = \beta(x) \cdot y$.
 - Dividing by the product $x \cdot y$, we obtain $\frac{\phi(x,y)}{x \cdot y} = \frac{\alpha(y)}{y} = \frac{\beta(x)}{x}.$
 - The only way that α(y)/y is equal to β(x)/x (for all x and y) is with both quotients always equal to a constant (k):

 ^{φ(x,y)}/_{xy} = ^{α(y)}/_y = ^{β(x)}/_x = k.

 Therefore, φ(x,y) = kxy.

Functional Equations: Information Fusion

s euro	s to m	projects by N		human experts.		
	Proj 1	Proj 2	•••	Proj j	•••	Proj m
E_1	x_1^1	x_{2}^{1}	• • •	x_i^1	•••	x_m^1
E_2	x_1^2	x_{2}^{2}	•••	x_{j}^{2}	•••	x_m^2
	:	:		:		:
E_i	x_1^i	x_2^i	•••	x_j^i	•••	x_m^i
	:	:		:		:
E_N	x_1^N	x_2^N	•••	x_j^N	•••	x_m^N
\overline{DM}	$f_1(\mathbf{x_1})$	$f_2(\mathbf{x_2})$	•••	$f_j(\mathbf{x_j})$	•••	$f_m(\mathbf{x_m})$

Functional Equations: Information Fusion

• The general solution of the system (Proposition 3.11)

$$f_j: [0,s]^N \to \mathbb{R}^+ \text{ for } j = \{1,\cdots,m\}$$
(4)

$$\sum_{j=1}^{m} \mathbf{x}_j = \mathbf{s} \text{ implies that } \sum_{j=1}^{m} f_j(\mathbf{x}_j) = s$$
 (5)

$$f_j(\mathbf{0}) = 0 \text{ for } j = 1, \cdots, m$$
 (6)

for a given m>2 is given by

$$f_1(\mathbf{x}) = f_2(\mathbf{x}) = \dots = f_m(\mathbf{x}) = f((x_1, x_2, \dots, x_N)) = \sum_{i=1}^N \alpha_i x_i,$$

where $\alpha_1, \dots, \alpha_N$ are nonnegative constants satisfying $\sum_{i=1}^N \alpha_i = 1$, but are otherwise arbitrary.

Functional Equations: Solving Functional Equations

- Main techniques commonly used to solve functional equations
 - Variables by values (replace x by d_0)
 - Function transformation (replace a function by another)
 - Variable transformation (e.g. $x = e^u$)
 - Considering a more general equation
 - Variables as constants (e.g. $\psi(x) = \phi(x, y)$)
 - Separation of variables (e.g. as in the area of the rectangle)