Chapter 6 From the weighted mean to fuzzy integrals

Vicenç Torra

April 25, 2007

Vicenç Torra, Yasuo Narukawa (2007) Modeling Decisions: Information Fusion and Aggregation Operators, Springer. http://www.springer.com/3-540-68789-0; http://www.mdai.cat/ifao

• Operators

- Weighting vector (dimension N): $v = (v_1...v_N)$ iff $v_i \in [0, 1]$ and $\sum_i v_i = 1$

- Arithmetic mean (AM : $\mathbb{R}^N \to \mathbb{R}$): $AM(a_1, ..., a_N) = (1/N) \sum_{i=1}^N a_i$ - Weighted mean (WM: $\mathbb{R}^N \to \mathbb{R}$): $WM_p(a_1, ..., a_N) = \sum_{i=1}^N p_i a_i$
- Weighted mean (WM: $\mathbb{R}^N \to \mathbb{R}$): $WM_p(a_1, ..., a_N) = \sum_{i=1}^N p_i a_i$ (p a weighting vector of dimension N)
- Ordered Weighting Averaging operator (OWA: $\mathbb{R}^N \to \mathbb{R}$):

$$OWA_{\mathbf{w}}(a_1, ..., a_N) = \sum_{i=1}^N w_i a_{\sigma(i)},$$

where $\{\sigma(1), ..., \sigma(N)\}$ is a permutation of $\{1, ..., N\}$ s. t. $a_{\sigma(i-1)} \ge a_{\sigma(i)}$, and w a weighting vector.

• Examples

- Exam with three exercises.
 - Different exercises with different weights:
 - 1st exercise 0.5, 2nd 0.25, 3rd 0.25
 - \rightarrow situation modeled with a WM with $\mathbf{p}=(0.5,\ 0.25,\ 0.25).$
- Five judges in Olympic Games. Average of the rates of the judges disregarding extremes \rightarrow modeled with OWA with $\mathbf{w} = (0, 1/3, 1/3, 1/3, 0)$

- Properties
 - $-OWA_{(0, 0, \dots, 0, 1)}(a_1, \dots, a_N) = \min(a_1, \dots, a_N)$
 - $-OWA_{(1, 0, \dots, 0, 0)}(a_1, \dots, a_N) = \max(a_1, \dots, a_N)$
 - Dictatorship: $WM_{\mathbf{p}}(a_1, \dots, a_N) = a_i$ when $p_i = 1$ and $p_j = 0$ for all $j \neq i$
 - OWA generalizes: order statistics (OS), median, kth minimum, kth maximum, AM, α -trimmed, (α, β) -trimmed means, α -winsorized, (α, β) -winsorized means

• Median (M: $\mathbb{R}^N \to \mathbb{R}$):

$$M(a_1, \dots, a_N) = \begin{cases} \frac{a_{\sigma(N/2)} + a_{\sigma(N/2+1)}}{2} & \text{when } N \text{ is even} \\ a_{\sigma(\frac{N+1}{2})} & \text{when } N \text{ is odd.} \end{cases}$$

- When N is odd, $M = OS_{(N+1)/2}$.

• (r, s)-trimmed mean: AM after removing lowest/highest values

$$(a_{\sigma(r+1)} + \dots + a_{\sigma(N-s)})/(N-r-s)$$

• (r, s)-winsorized means: AM where omitted values are replaced by the nearest ones

$$\frac{r \cdot a_{\sigma(r+1)} + a_{\sigma(r+1)} + \dots + a_{\sigma(N-s)} + s \cdot x_{\sigma(N-s)}}{N}$$

- Interpretation of weights in WM and OWA. Scenarios:
 - Multicriteria Decision Making
 Several criteria are used to evaluate several alternative
 - Fuzzy Constraint Satisfaction Problems
 Given a possible solution, constraints are evaluated in [0,1] (0: not satisfied at all, 1: completely satisfied, (0,1): partial satisfaction)
 - Robot Sensing (all data, same time instant)
 Sensors measuring the distance to the same object
 - Robot Sensing (all data, different time instants)
 Sensors measuring the distance to the same object

- Interpretation of weights in WM and OWA (i.e., p and w)
 - Multicriteria Decision Making.
 - *p*: importance of criteria,
 - w: degree of compensation
 - Fuzzy Constraint Satisfaction Problems.
 p: importance of the constraints,
 w: degree of compensation
 - Robot Sensing (all data, same time instant).
 p: reliability of each sensor,
 w: importance of small values/outliers
 - Robot Sensing (all data, different time instants).
 p: more importance to recent data than old one,
 w: importance of small values/outliers

Example. A and B teaching a tutorial+training course w/ constraints

- The total number of sessions is six.
- Professor A will give the tutorial, which should consist of about three sessions; three is the optimal number of sessions; a difference in the number of sessions greater than two is unacceptable.
- Professor *B* will give the training part, consisting of about two sessions.
- Both professors should give more or less the same number of sessions.
 A difference of one or two is half acceptable; a difference of three is unacceptable.

Example. Formalization

- Variables
 - x_A : Number of sessions taught by Professor A
 - x_B : Number of sessions taught by Professor B
- Constraints
 - the constraints are translated into
 - * C_1 : $x_A + x_B$ should be about 6
 - * C_2 : x_A should be about 3
 - * C_3 : x_B should be about 2
 - * C_4 : $|x_A x_B|$ should be about 0
 - using fuzzy sets, the constraints are described ...

Example. Formalization

- Constraints
 - if fuzzy set μ_6 expresses "about 6," then, we evaluate " $x_A + x_B$ should be about 6" by $\mu_6(x_A + x_B)$. \rightarrow given μ_6 , μ_3 , μ_2 , μ_0 ,
 - Then, given a solution pair (x_A, x_B) , the degrees of satisfaction: * $\mu_6(x_A + x_B)$ * $\mu_3(x_A)$ * $\mu_2(x_B)$
 - $* \ \mu_0(|x_A x_B|)$

Example. Formalization

• Membership functions for constraints

alternative	Satisfaction degrees	Satisfaction degrees			
(x_A, x_B)	$(\mu_6(x_A+x_B),\ \mu_3(x_A),$	C_1	C_2	C_3	C_4
	$\mu_2(x_B)$, $\mu_0(x_A-x_B)$)				
(2,2)	$(\mu_6(4),\ \mu_3(2),\ \mu_2(2),\ \mu_0(0))$	0	0.5	1	1
(2,3)	$(\mu_6(5),\ \mu_3(2),\ \mu_2(3),\ \mu_0(1))$	0.5	0.5	0.5	0.5
(2,4)	($\mu_6(6)$, $\mu_3(2)$, $\mu_2(4)$, $\mu_0(2)$)	1	0.5	0	0.5
(3.5, 2.5)	($\mu_6(6)$, $\mu_3(3.5)$, $\mu_2(2.5)$, $\mu_0(1)$)	1	0.5	0.5	0.5
(3,2)	$(\mu_6(5),\ \mu_3(3),\ \mu_2(2),\ \mu_0(1))$	0.5	1	1	0.5
(3,3)	($\mu_6(6)$, $\mu_3(3)$, $\mu_2(3)$, $\mu_0(0)$)	1	1	0.5	1

- Let us consider the following situation:
 - Professor ${\cal A}$ is more important than Professor ${\cal B}$
 - The number of sessions equal to six is the most important constraint (not a *crisp* requirement)
 - The difference in the number of sessions taught by the two professors is the least important constraint

WM with $\mathbf{p} = (p_1, p_2, p_3, p_4) = (0.5, 0.3, 0.15, 0.05).$

• WM with $\mathbf{p} = (p_1, p_2, p_3, p_4) = (0.5, 0.3, 0.15, 0.05).$

alternative	Aggregation of the Satisfaction degrees	WM
(x_A, x_B)	$WM_{\mathbf{p}}(C_1, C_2, C_3, C_4)$	
(2,2)	$WM_{\mathbf{p}}(0, 0.5, 1, 1)$	0.35
(2,3)	$WM_{f p}(0.5, 0.5, 0.5, 0.5)$	0.5
(2,4)	$WM_{\mathbf{p}}(1, 0.5, 0, 0.5)$	0.675
(3.5, 2.5)	$WM_{\mathbf{p}}(1, 0.5, 0.5, 0.5)$	0.75
(3,2)	$WM_{\mathbf{p}}(0.5, 1, 1, 0.5)$	0.725
(3,3)	$WM_{f p}(1,1,0.5,1)$	0.925

- Compensation: how many values can have a bad evaluation
- One bad value does not matter: OWA with $\mathbf{w} = (1/3, 1/3, 1/3, 0)$ (lowest value discarded)

alternative	Aggregation of the Satisfaction degrees	OWA
(x_A, x_B)	$OWA_{\mathbf{w}}(C_1, C_2, C_3, C_4)$	
(2,2)	$OWA_{\mathbf{w}}(0,0.5,1,1)$	0.8333
(2,3)	$OWA_{\mathbf{w}}(0.5, 0.5, 0.5, 0.5)$	0.5
(2,4)	$OWA_{\mathbf{w}}(1, 0.5, 0, 0.5)$	0.6666
(3.5, 2.5)	$OWA_{\mathbf{w}}(1, 0.5, 0.5, 0.5)$	0.6666
(3,2)	$OWA_{\mathbf{w}}(0.5, 1, 1, 0.5)$	0.8333
(3,3)	$OWA_{\mathbf{w}}(1,1,0.5,1)$	1.0

 Weighted Ordered Weighted Averaging WOWA operator (WOWA : ℝ^N → ℝ):

$$WOWA_{\mathbf{p},\mathbf{w}}(a_1,...,a_N) = \sum_{i=1}^N \omega_i a_{\sigma(i)}$$

where

$$\omega_i = w^* (\sum_{j \le i} p_{\sigma(j)}) - w^* (\sum_{j < i} p_{\sigma(j)}),$$

with σ a permutation of $\{1, ..., N\}$ s. t. $a_{\sigma(i-1)} \ge a_{\sigma(i)}$, and w^* a nondecreasing function that interpolates the points

$$\{(i/N, \sum_{j \le i} w_j)\}_{i=1,...,N} \cup \{(0,0)\}.$$

 w^{\ast} is required to be a straight line when the points can be interpolated in this way.

• Construction of the w^* quantifier

- Rationale for new weights (ω_i , for each value a_i) in terms of \mathbf{p} and \mathbf{w} .
 - If a_i is small, and small values have more importance than larger ones, increase p_i for a_i (i.e., $\omega_i \ge p_{\sigma(i)}$).

(the same holds if the value a_i is large and importance is given to large values)

- If a_i is small, and importance is for large values, $\omega_i < p_{\sigma(i)}$ (the same holds if a_i is large and importance is given to small values).

- The shape of the function w^* gives importance
 - (a) to large values
 - (b) to medium values
 - (c) to small values
 - (d) equal importance to all values

- Importance for constraints as given above: $\mathbf{p} = (0.5, 0.3, 0.15, 0.05)$
- Compensation as given above: $\mathbf{w} = (1/3, 1/3, 1/3, 0)$ (lowest value discarded)
 - \rightarrow WOWA with p and w.

alternative	ve Aggregation of the Satisfaction degrees	
(x_A, x_B)	$WOWA_{\mathbf{p},\mathbf{w}}(C_1, C_2, C_3, C_4)$	
(2, 2)	$WOWA_{\mathbf{p},\mathbf{w}}(0,0.5,1,1)$	0.4666
(2,3)	$WOWA_{\mathbf{p},\mathbf{w}}(0.5, 0.5, 0.5, 0.5)$	0.5
(2,4)	$WOWA_{p,w}(1, 0.5, 0, 0.5)$	0.8333
(3.5, 2.5)	$WOWA_{\mathbf{p},\mathbf{w}}(1, 0.5, 0.5, 0.5)$	0.8333
(3,2)	$WOWA_{p,w}(0.5, 1, 1, 0.5)$	0.8
(3,3)	$WOWA_{p,w}(1, 1, 0.5, 1)$	1.0

- Properties
 - The WOWA operator generalizes the WM and the OWA operator. \circ When ${\bf p}=(1/N~\ldots~1/N),$ OWA

 $WOWA_{\mathbf{p},\mathbf{w}}(a_1,...,a_N) = OWA_{\mathbf{w}}(a_1,...,a_N)$ for all \mathbf{w} and a_i .

 \circ When $\mathbf{w}=(1/N\ ...\ 1/N)$, WM

 $WOWA_{\mathbf{p},\mathbf{w}}(a_1,...,a_N) = WM_{\mathbf{p}}(a_1,...,a_N)$ for all \mathbf{p} and a_i .

• When $\mathbf{w} = \mathbf{p} = (1/N \dots 1/N)$, AM

 $WOWA_{\mathbf{p},\mathbf{w}}(a_1,...,a_N) = AM(a_1,...,a_N)$

- In WM, we combine a_i w.r.t. weights p_i.
 → a_i is the value supplied by information source x_i.
 Formally
 - $$\begin{split} & X = \{x_1, \dots, x_N\} \text{ is the set of information sources} \\ & f: X \to \mathbb{R}^+ \text{ the values supplied by the sources} \\ \to & \text{then } a_i = f(x_i) \end{split}$$

Thus,

$$WM_{\mathbf{p}}(a_1, ..., a_N) = \sum_{i=1}^{N} p_i a_i = \sum_{i=1}^{N} p_i f(x_i) = WM_{\mathbf{p}}(f(x_1), ..., f(x_N))$$

In WM, a single weight for each element.
 That is, p_i = p(x_i) (where, x_i is the source supplying a_i)
 → when we consider a set A ⊂ X, weight of A???

... fuzzy measures $\mu(A)$

Formally,

- Fuzzy measure ($\mu : \wp(X) \to [0,1]$), a set function satisfying (i) $\mu(\emptyset) = 0$, $\mu(X) = 1$ (boundary conditions) (ii) $A \subseteq B$ implies $\mu(A) \le \mu(B)$ (monotonicity)

• Choquet integral of f w.r.t. μ (alternative notation, $CI_{\mu}(a_1, \ldots, a_N)/CI_{\mu}(f)$)

$$(C)\int fd\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})]\mu(A_{s(i)}),$$

where s in $f(x_{s(i)})$ is a permutation so that $f(x_{s(i-1)}) \leq f(x_{s(i)})$ for $i \geq 1$, $f(x_{s(0)}) = 0$, and $A_{s(k)} = \{x_{s(j)} | j \geq k\}$ and $A_{s(N+1)} = \emptyset$.

• Alternative expressions (Proposition 6.18):

$$(C) \int f d\mu = \sum_{i=1}^{N} f(x_{\sigma(i)}) [\mu(A_{\sigma(i)}) - \mu(A_{\sigma(i-1)})],$$

$$(C) \int f d\mu = \sum_{i=1}^{N} f(x_{s(i)}) [\mu(A_{s(i)}) - \mu(A_{s(i+1)})],$$

where σ is a permutation of $\{1, \ldots, N\}$ s.t. $f(x_{\sigma(i-1)}) \ge f(x_{\sigma(i)})$, where $A_{\sigma(k)} = \{x_{\sigma(j)} | j \le k\}$ for $k \ge 1$ and $A_{\sigma(0)} = \emptyset$

• Different equations point out different aspects of the CI

(6.1) (C) $\int f d\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})] \mu(A_{s(i)}),$

(6.2) (C) $\int f d\mu = \sum_{i=1}^{N} f(x_{\sigma(i)}) [\mu(A_{\sigma(i)}) - \mu(A_{\sigma(i-1)})],$

• $\int f d\mu =$

(for additive measures)

 $\begin{array}{l} \textbf{(6.5)} & \sum_{x \in X} f(x) \mu(\{x\}) \\ \textbf{(6.6)} & \sum_{i=1}^{R} b_{i} \mu(\{x | f(x) = b_{i}\}) \\ \textbf{(6.7)} & \sum_{i=1}^{N} (a_{i} - a_{i-1}) \mu(\{x | f(x) \geq a_{i}\}) \\ \textbf{(6.8)} & \sum_{i=1}^{N} (a_{i} - a_{i-1}) \left(1 - \mu(\{x | f(x) \leq a_{i-1}\})\right) \end{array}$

• Among (6.5), (6.6) and (6.7), only (6.7) satisfies internality.

- Properties of CI
 - Horizontal additive because $CI_{\mu}(f) = CI_{\mu}(f \wedge c) + CI_{\mu}(f_c^+)$ $(f = (f \wedge c) + f_c^+ \text{ is a horizontal additive decomposition of } f)$ where, f_c^+ is defined by (for $c \in [0, 1]$)

$$f_c^+ = \begin{cases} 0 & \text{if } f(x) \le c \\ f(x) - c & \text{if } f(x) > c. \end{cases}$$

• Definitions (X a reference set, f, g functions $f, g : X \rightarrow [0, 1]$)

- f < g when, for all x_i ,

- $f(x_i) < g(x_i)$ f and g are comonotonic if, for all $x_i, x_j \in X$, $f(x_i) < f(x_j) \text{ imply that } g(x_i) \le g(x_j)$ - \mathbb{C} is comonotonic monotone if and only if, for comonotonic f and g, $f \le g \text{ imply that } \mathbb{C}(f) \le \mathbb{C}(g)$ - \mathbb{C} is comonotonic additive if and only if, for comonotonic f and g, $\mathbb{C}(f+q) = \mathbb{C}(f) + \mathbb{C}(q)$
- \bullet Characterization. Let $\mathbb C$ satisfy the following properties
 - $\mathbb C$ is comonotonic monotone
 - $\mathbb C$ is comonotonic additive
 - $-\mathbb{C}(1,\ldots,1)=1$

Then, there exists μ s.t. $\mathbb{C}(f)$ is the CI of f w.r.t. μ .

- Properties
 - WM, OWA and WOWA are particular cases of CI.
 - * WM with weighting vector \mathbf{p} is a CI w.r.t. $\mu_{\mathbf{p}}(B) = \sum_{x_i \in B} p_i$
 - * OWA with weighting vector w is a CI w.r.t. $\mu_w(B) = \sum_{i=1}^{|B|} w_i$
 - * WOWA with w.v. **p** and **w** is a CI w.r.t. $\mu_{\mathbf{p},\mathbf{w}}(B) = w^*(\sum_{x_i \in B} p_i)$
 - Any symmetric CI is an OWA operator.
 - Any CI with a distorted probability is a WOWA operator.
 - Let A be a crisp subset of X; then, the Choquet integral of A with respect to μ is $\mu(A)$.

Here, the integral of A corresponds to the integral of its characteristic function, or, in other words, to the integral of the function f_A defined as $f_A(x) = 1$ if and only if $x \in A$.

Weighted Minimum and Weighted Maximum

- Possibilistic weighting vector (dimension N): $\mathbf{v} = (v_1...v_N)$ iff $v_i \in [0, 1]$ and $\max_i v_i = 1$.
- Weighted minimum (WMin: [0,1]^N → [0,1]): WMin_u(a₁,...,a_N) = min_i max(neg(u_i), a_i) (alternative definition can be given with v = (v₁,...,v_N) where v_i = neg(u_i))
- Weighted maximum (WMax: $[0,1]^N \rightarrow [0,1]$): $WMax_{\mathbf{u}}(a_1,...,a_N) = \max_i \min(u_i,a_i)$

Weighted Minimum and Weighted Maximum

Example 6.34. Application of WMin and WMax to the tutorial example \rightarrow possibilistic weights are given

Example 6.35. In a fuzzy inference R_i : **IF** x is A_i **THEN** y is B_i .

• with disjunctive rules, the (fuzzy) output for a particular y_0 is a WMax

 $\tilde{B}(y_0) = \bigvee_{i=1}^N \left(B_i(y_0) \wedge A_i(x_0) \right).$

• with conjunctive rules, and Kleene-Dienes implication $(\mathcal{I}(x, y) = \max(1 - x, y))$ the (fuzzy) output of the system for a particular y_0 is a WMin

 $\tilde{B}(y_0) = \bigwedge_{i=1}^N \left(\mathcal{I}(A_i(x_0), B_i(y_0)) \right) = \bigwedge_{i=1}^N \max(1 - A_i(x_0), B_i(y_0)).$

that with $\mathbf{u} = (A_1(x_0), \dots, A_N(x_0))$

$$\tilde{B}(y_0) = WMin_{\mathbf{u}}(B_1(y_0), \dots, B_N(y_0)).$$

Weighted Minimum and Weighted Maximum

- Only operators in ordinal scales (max, min, neg) are used in WMax and WMin.
- neg is completely determined in an ordinal scale

Proposition 6.36. Let $L = \{l_0, \ldots, l_r\}$ with $l_0 <_L l_1 <_L \cdots <_L l_r$; then, there exists only one function, $neg: L \to L$, satisfying

(N1) if $x <_L x'$ then $neg(x) >_L neg(x')$ for all x, x' in L. (N2) neg(neg(x)) = x for all x in L.

This function is defined by $neg(x_i) = x_{r-i}$ for all x_i in L

- Properties. For $\mathbf{u} = (1, \dots, 1)$
 - $-WMIN_{u} = min$
 - $-WMAX_{u} = max$

Sugeno integral

• Sugeno integral of f w.r.t. μ (alternative notation, $SI_{\mu}(a_1, \ldots, a_N)/SI_{\mu}(f)$)

$$(S) \int f d\mu = \max_{i=1,N} \min(f(x_{s(i)}), \mu(A_{s(i)})),$$

where s in $f(x_{s(i)})$ is a permutation so that $f(x_{s(i-1)}) \leq f(x_{s(i)})$ for $i \geq 2$, and $A_{s(k)} = \{x_{s(j)} | j \geq k\}$.

• Alternative expression (Proposition 6.38):

$$\max_{i} \min(f(x_{\sigma(i)}), \mu(A_{\sigma(i)})),$$

where σ is a permutation of $\{1, \ldots, N\}$ s.t. $f(x_{\sigma(i-1)}) \ge f(x_{\sigma(i)})$, where $A_{\sigma(k)} = \{x_{\sigma(j)} | j \le k\}$ for $k \ge 1$ • Graphical interpretation of Sugeno integrals

Sugeno integral

- Properties
 - WMin and WMax are particular cases of SI
 - * WMax with weighting vector **u** is a SI w.r.t. $\mu_{\mathbf{u}}^{wmax}(A) = \max_{a_i \in A} u_i.$
 - * WMin with weighting vector **u** is a SI w.r.t. $\mu_{\mathbf{u}}^{wmin}(A) = 1 - \max_{a_i \notin A} u_i.$

- Fuzzy integrals that generalize Choquet and Sugeno integrals
 - The fuzzy t-conorm integral
 - The twofold integral

- The fuzzy t-conorm integral
 - The space of values of integrands (F): The domain is denoted by D = [0, 1], and the function to integrate is such that $f : X \to D$. The corresponding t-conorm is denoted by Δ . So, $F = (D, \Delta)$.
 - The space of values of measures (M): The domain is denoted by T = [0, 1], thus, $\mu : \wp(X) \to T$. The corresponding t-conorm is \bot . Therefore, $M = (T, \bot)$.
 - The space of values of integrals (I): The domain is denoted by $\overline{T} = [0, 1]$, and the corresponding t-conorm is $\underline{\perp}$. Thus, $I = (\overline{T}, \underline{\perp})$.

- The fuzzy t-conorm integral
 - $\mathcal{F} = (\Delta, \bot, \underline{\bot}, \otimes)$ is a *t*-conorm system for integration iff
 - 1. Δ, \perp , and \perp , are continuous t-conorms that are the maximum or Archimedean.
 - 2. \otimes : $([0,1],\Delta) \times ([0,1],\bot) \rightarrow ([0,1],\underline{\perp})$ is a product-like operation fulfilling
 - (a) \otimes is continuous on $(0,1]^2$
 - (b) $a \otimes x = 0$ if and only if a = 0 or x = 0
 - (c) when $x \perp y < 1$, $a \otimes (x \perp y) = (a \otimes x) \perp (a \otimes y)$ for all $a \in [0, 1]$
 - (d) when $a\Delta b < 1$, $(a\Delta b) \otimes x = (a \otimes x) \pm (b \otimes x)$ for all $x \in [0, 1]$.

- The fuzzy t-conorm integral
 - Given a t-conorm \perp , the substraction operator $-\perp$ (Definition 2.51) is defined by:

$$x - \perp y := \inf\{z | y \perp z \ge x\}.$$

Example (i) If \perp is an Archimedean t-conorm with generator g, then

$$x - y = g^{(-1)}(g(x) - g(y)).$$

(ii) If \perp is equal to the maximum, then

$$x -_{\max} y = \begin{cases} x & \text{if } x \ge y \\ 0 & \text{if } x < y. \end{cases}$$

• Fuzzy t-conorm integral of f based on $(\Delta, \bot, \bot, \boxtimes)$ w.r.t. μ

$$(\mathcal{F})\int f\otimes d\mu=\underline{\perp}_{i=1}^{N}(a_{i}-\Delta a_{i-1})\otimes \mu(A_{s(i)}),$$

where $a_i = f(x_{s(i)})$ with $f(x_{s(i)}) \le f(x_{s(i+1)})$ and $a_0 = f(x_{s(0)}) = 0$, and $A_{s(k)} = \{x_{s(j)} | j \ge k\}$.

- Properties
 - When the t-conorm system is $(\hat{+}^1, \hat{+}, \hat{+}, \cdot)$, we have CI.
 - When the t-conorm system is (\max, \max, \max, \min) , we have a SI.

 $^{^{1}}$ $^{+}$ denotes the bounded sum (Example 2.48)

- Twofold integral of f w.r.t. two fuzzy measures μ_C and μ_S
 - μ_S has a "fuzzy flavor", corresponds to the fuzzy measure of the SI μ_C has a "probabilistic flavor", corresponds to the one of the CI

$$TI_{\mu_S,\mu_C}(f) = \sum_{i=1}^N \left(\left(\bigvee_{j=1}^i f(x_{s(j)}) \land \mu_S(A_{s(j)}) \right) \left(\mu_C(A_{s(i)}) - \mu_C(A_{s(i+1)}) \right) \right)$$

where s in $f(x_{s(i)})$ is a permutation so that $f(x_{s(i-1)}) \leq f(x_{s(i)})$ for $i \geq 1$, and $A_{s(k)} = \{x_{s(j)} | j \geq k\}$ and $A_{s(N+1)} = \emptyset$.

- Properties
 - When $\mu_C = \mu^*$, the TI reduces to the SI: $TI_{\mu_S,\mu_C}(a_1,\ldots,a_n) = SI_{\mu_S}(a_1,\ldots,a_n)$
 - When $\mu_S = \mu^*$, the TI reduces to the CI: $TI_{\mu_S,\mu_C}(a_1,\ldots,a_n) = CI_{\mu_C}(a_1,\ldots,a_n)$
 - When $\mu_C = \mu_S = \mu^*$, the TI reduces to the maximum: $TI_{\mu_S,\mu_C}(a_1,\ldots,a_n) = \bigvee (a_1,\ldots,a_n)$

• Properties and graphical interpretation

• Hierarchical model

- Properties. The following conditions hold
 - (i) Every multistep Choquet integral is a monotone increasing, positively homogeneous, piecewise linear function.
 - (ii) Every monotone increasing, positively homogeneous, piecewise linear function on a full-dimensional convex set in \mathbb{R}^N is representable as a two-step Choquet integral such that the fuzzy measures of the first step are additive and the fuzzy measure of the second step is a 0-1 fuzzy measure.