83rd EWG-MCDA 2016

Choquet integral: distributions and decisions

Vicenç Torra
School of Informatics, University of Skövde
Skövde, Sweden

March 31-32, 2016
Overview

Basics and objectives:

• Distribution based on the Choquet integral (for non-additive measures)

Motivation:

• Theory: Mathematical properties
• Methodology: different ways to express interactions
• Application: Decision (MCDM), classification, statistical disclosure control (data privacy)
Outline

1. Preliminaries
2. Choquet integral based distribution
3. Choquet-Mahalanobis based distribution
4. Summary
Preliminaries
Aggregation operators and the Choquet integral in Decision
MCDM: Aggregation for (numerical) utility functions
Aggregation for (numerical) utility functions

- Decision, utility functions
Aggregation for (numerical) utility functions

- Decision, utility functions

Alternatives $\equiv \{ \text{Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane} \}$
Aggregation for (numerical) utility functions

- Decision, utility functions

Alternatives = \{ Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane \}

Criteria = \{ Seats, Security, Price, Comfort, trunk \}
Aggregation for (numerical) utility functions

- Decision, utility functions

Alternatives = \{ Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane \}
Criteria = \{ Seats, Security, Price, Comfort, trunk\}

Decision making process:
Aggregation for (numerical) utility functions

- Decision, utility functions

Alternatives = \{ Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane \}

Criteria = \{ Seats, Security, Price, Comfort, trunk\}

Decision making process:

Modelling=Criteria + Utilities, aggregation, selection

<table>
<thead>
<tr>
<th></th>
<th>Number of seats</th>
<th>Security</th>
<th>Price</th>
<th>Confort</th>
<th>trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford T</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Seat 600</td>
<td>60</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Simca 1000</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>VW Beetle</td>
<td>80</td>
<td>50</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Citroën Acadiane</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>
Aggregation for (numerical) utility functions

- Decision, utility functions
Aggregation for (numerical) utility functions

- Decision, utility functions

\[\text{Alternatives} = \{ \text{Ford T, Seat 600, Simca 1000, VW, Citr. Acadiane} \} \]
Aggregation for (numerical) utility functions

- Decision, utility functions

Alternatives = \{ Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane \}

Criteria = \{ Seats, Security, Price, Comfort, trunk\}
Aggregation for (numerical) utility functions

- Decision, utility functions

Alternatives = \{ Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane \}

Criteria = \{ Seats, Security, Price, Comfort, trunk \}

Decision making process:
Aggregation for (numerical) utility functions

- Decision, utility functions

Alternatives = \{ Ford T, Seat 600, Simca 1000, VW, Citr. Acadiane \}

Criteria = \{ Seats, Security, Price, Comfort, trunk \}

Decision making process:

Modelling, aggregation = \(C \), selection

<table>
<thead>
<tr>
<th></th>
<th>Seats</th>
<th>Security</th>
<th>Price</th>
<th>Comfort</th>
<th>trunk</th>
<th>(C = AM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford T</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Seat 600</td>
<td>60</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>Simca 1000</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>50</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>VW</td>
<td>80</td>
<td>50</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>66</td>
</tr>
<tr>
<td>Citr. Acadiane</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>32</td>
</tr>
</tbody>
</table>
Aggregation for (numerical) utility functions

- MCDM: Aggregation to deal with contradictory criteria
Aggregation for (numerical) utility functions

- MCDM: Aggregation to deal with contradictory criteria
- But there are occasions in which ordering is clear

when $a_i \leq b_i$ it is clear that $a \leq b$

E.g.,

<table>
<thead>
<tr>
<th></th>
<th>Seats</th>
<th>Security</th>
<th>Price</th>
<th>Comfort</th>
<th>trunk</th>
<th>$C = AM$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat 600</td>
<td>60</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>Simca 1000</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>50</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>
Aggregation for (numerical) utility functions

- MCDM: Aggregation to deal with contradictory criteria
- But there are occasions in which ordering is clear

 when $a_i \leq b_i$ it is clear that $a \leq b$

E.g.,

<table>
<thead>
<tr>
<th></th>
<th>Seats</th>
<th>Security</th>
<th>Price</th>
<th>Comfort</th>
<th>trunk</th>
<th>$C = AM$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat 600</td>
<td>60</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>Simca 1000</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>50</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Aggregation operators are appropriate because they satisfy monotonicity
Aggregation for (numerical) utility functions

- MCDM: Aggregation to deal with contradictory criteria

- But there are occasions in which ordering is clear when \(a_i \leq b_i \) it is clear that \(a \leq b \)

E.g.,

<table>
<thead>
<tr>
<th></th>
<th>Seats</th>
<th>Security</th>
<th>Price</th>
<th>Comfort</th>
<th>trunk</th>
<th>C = AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat 600</td>
<td>60</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>Simca 1000</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>50</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Aggregation operators are appropriate because they satisfy monotonicity

- Pareto dominance: Given two vectors \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \), we say that \(b \) dominates \(a \) when \(a_i \leq b_i \) for all \(i \) and there is at least one \(k \) such that \(a_k < b_k \).
Aggregation for (numerical) utility functions

- Pareto set, Pareto frontier, or non dominance set:

<table>
<thead>
<tr>
<th>Seats</th>
<th>Security</th>
<th>Price</th>
<th>Comfort</th>
<th>trunk</th>
<th>$C = AM$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simca 1000</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>VW</td>
<td>80</td>
<td>50</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Citr. Acadiane</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>

- Each one wins at least in one criteria to another one
Aggregation and Choquet integral in MCDM

• **Pareto set, Pareto frontier, or non dominance set:**
 Given a set of alternatives U represented by vectors $u = (u_1, \ldots, u_n)$, the Pareto frontier is the set $u \in U$ such that there is no other $v \in U$ such that v dominates u.

 $$PF = \{u | \text{there is no } v \text{ s.t. } v \text{ dominates } u\}$$

• **Pareto optimal:** an element u of the Pareto set
Aggregation and Choquet integral in MCDM

- Decision making process:
Aggregation and Choquet integral in MCDM

• Decision making process:

 Modelling, aggregation, selection=order, first
Aggregation and Choquet integral in MCDM

- Decision making process:
 Modelling, aggregation, selection=order, first

- The function of aggregation functions
 - Different aggregations lead to different orders (in the PF)
Aggregation and Choquet integral in MCDM

- **Decision making process:**

 Modelling, aggregation, selection=order, first

- **The function of aggregation functions**
 - Different aggregations lead to different orders (in the PF)
 - Aggregation establishes which points are *equivalent*
 - Different aggregations, lead to different curves of points (level curves)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Satisfaction on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>alt</td>
<td>Price</td>
</tr>
<tr>
<td>FordT</td>
<td>0.2</td>
</tr>
<tr>
<td>206</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alt</th>
<th>Consensus</th>
<th>alt</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>FordT</td>
<td>0.35</td>
<td>206</td>
<td>0.72</td>
</tr>
<tr>
<td>206</td>
<td>0.72</td>
<td>FordT</td>
<td>0.35</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Aggregation and Choquet integral in MCDM

- Aggregation functions and different level curves
 - Arithmetic mean
 - Geometric mean, Harmonic mean, ...
 - Weighted mean
 - OWA, ...
Aggregation and Choquet integral in MCDM

- Aggregation functions and different level curves
 - Arithmetic mean
 - Geometric mean, Harmonic mean, ...
 - Weighted mean
 - OWA, ...
 - Choquet integral (generalization of the AM, WM, OWA)
 - to represent interactions between criteria
 - non-independent criteria allowed
Aggregation and Choquet integral in MCDM

- Aggregation functions and parameters
 - Arithmetic mean: no parameters
 - Geometric mean, Harmonic mean, ...: no parameters
 - Weighted mean: weighting vector
 - OWA, ...: weighting vector
Aggregation and Choquet integral in MCDM

- Aggregation functions and parameters
 - Arithmetic mean: no parameters
 - Geometric mean, Harmonic mean, ...: no parameters
 - Weighted mean: weighting vector
 - OWA, ...: weighting vector
Aggregation and Choquet integral in MCDM

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
Aggregation and Choquet integral in MCDM

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 - Instead of weight(critera): $w(\text{security})$
 - We consider $\text{weight(set of criteria)}$: $w(\text{security, price, comfort})$
Aggregation and Choquet integral in MCDM

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 - Instead of weight(criteria): $w(\text{security})$
 - We consider weight(set of criteria): $w(\text{security}, \text{price}, \text{confort})$
 - We can, of course, use

 $$w(\text{security}, \text{price}, \text{confort}) = w(\text{security}) + w(\text{price}) + w(\text{confort})$$
Aggregation and Choquet integral in MCDM

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 - Instead of weight(criteria): $w(\text{security})$
 - We consider weight(set of criteria): $w(\text{security, price, confort})$
 - We can, of course, use
 $$w(\text{security, price, confort}) = w(\text{security}) + w(\text{price}) + w(\text{confort})$$
 - but also
 - $w(\text{security, price, confort}) > w(\text{security}) + w(\text{price}) + w(\text{confort})$
 - or
 - $w(\text{security, price, confort}) < w(\text{security}) + w(\text{price}) + w(\text{confort})$
Aggregation and Choquet integral in MCDM

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 * And the level curves? decision?
Preliminaries
Non-additive (fuzzy) measures and the Choquet integral
Definitions: measures

Additive measures.

• \((X, \mathcal{A})\) a measurable space; then, a set function \(\mu\) is an additive measure if it satisfies

(i) \(\mu(A) \geq 0\) for all \(A \in \mathcal{A}\),
(ii) \(\mu(X) \leq \infty\)
(iii) Finite case:
\[
\mu(A \cup B) = \mu(A) + \mu(B) \text{ for disjoint } A, B
\]
Definitions: measures

Additive measures.

- \((X, \mathcal{A})\) a measurable space; then, a set function \(\mu\) is an additive measure if it satisfies
 1. \(\mu(A) \geq 0\) for all \(A \in \mathcal{A}\),
 2. \(\mu(X) \leq \infty\)
 3. Finite case: \(\mu(A \cup B) = \mu(A) + \mu(B)\) for disjoint \(A, B\)
- Probability and weights: \(\mu(X) = 1\)
Non-additive (or fuzzy) measures.

- (X, \mathcal{A}) a measurable space, a non-additive measure μ on (X, \mathcal{A}) is a set function $\mu : \mathcal{A} \to [0, 1]$ satisfying the following axioms:

 (i) $\mu(\emptyset) = 0$
 (ii) $\mu(X) \leq \infty$
 (iii) $A \subseteq B$ implies $\mu(A) \leq \mu(B)$ (monotonicity)

- Weights: $\mu(X) = 1$
Non-additive measures. Examples. Distorted probabilities

- \(m : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) a continuous and increasing function such that \(m(0) = 0 \); \(P \) be a probability.

The following set function \(\mu_m \) is a non-additive measure:

\[
\mu_{m,P}(A) = m(P(A))
\]
Non-additive measures. Examples. Distorted probabilities

- \(m : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) a continuous and increasing function such that \(m(0) = 0; \ P \) be a probability.

The following set function \(\mu_m \) is a non-additive measure:

\[
\mu_{m,P}(A) = m(P(A)) \tag{1}
\]

- If \(m(x) = x^2 \), then \(\mu_m(A) = (P(A))^2 \)
- If \(m(x) = x^p \), then \(\mu_m(A) = (P(A))^p \)
Non-additive measures. Examples. Distorted probabilities

- \(m : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) a continuous and increasing function such that \(m(0) = 0 \); \(P \) be a probability.

The following set function \(\mu_m \) is a non-additive measure:

\[
\mu_{m,P}(A) = m(P(A)) \tag{2}
\]
Non-additive measures. Examples. Distorted probabilities

- $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that $m(0) = 0$; P be a probability.

The following set function μ_m is a non-additive measure:

$$\mu_{m,P}(A) = m(P(A))$$ \hspace{1cm} (2)

Applications.

- To represent interactions
Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_g(r) := \mu(\{x|g(x) > r\})$:

\[
(C) \int gd\mu := \int_{0}^{\infty} \mu_g(r)dr.
\]
Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_g(r) := \mu(\{x \mid g(x) > r\})$:

\[
(C) \int gd\mu := \int_0^\infty \mu_g(r)dr. \tag{3}
\]

- When the measure is additive, this is the Lebesgue integral
Definitions: integrals

Choquet integral (Choquet, 1954):

- \(\mu \) a non-additive measure, \(g \) a measurable function. The Choquet integral of \(g \) w.r.t. \(\mu \), where \(\mu_g(r) := \mu(\{x|g(x) > r\}) \):

\[
(C) \int gd\mu := \int_0^\infty \mu_g(r)dr.
\] (3)

- When the measure is additive, this is the Lebesgue integral
Definitions: integrals

Choquet integral. Discrete version

- μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. μ,

$$
(C) \int f \, d\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})] \mu(A_{s(i)}),
$$

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0 \leq f(x_{s(1)}) \leq \cdots \leq f(x_{s(N)}) \leq 1$, and where $f(x_{s(0)}) = 0$ and $A_{s(i)} = \{x_{s(i)}, \ldots, x_{s(N)}\}$.
Definitions: measures

Choquet integral: Properties:

- When μ is additive, CI corresponds to the weighted mean
- CI can represent min, max, mean, order statistics, ...
- When μ is $\mu_m, P(A) = m(P(A))$ with $m(x) = x^p$, $CI_{\mu_m}(f)$
 - (a) \rightarrow max, (b) \rightarrow median, (c) \rightarrow min, (d) \rightarrow mean
Preliminaries
Classification and shapes of distributions
Classification

Motivation: Another motivation: classification

- Two classes defined in terms of normal distributions (obtained from real data or directly from the parameters of the distribution $N(\mu, \Sigma)$).
- An element x in \mathbb{R}^2
Motivation: Another motivation: classification

- Two classes defined in terms of normal distributions (obtained from real data or directly from the parameters of the distribution $\mathcal{N}(\mu, \Sigma)$).
- An element x in \mathbb{R}^2
 \rightarrow where to classify x?
Classification problems: Classification of x into Ω

- x in a n-dimensional space (i.e., $x \in \mathbb{R}^n$)
- Set of k classes $\Omega = \{\omega_1, \ldots, \omega_k\}$

Formalization:

- Bayes’ maximum-a-posteriori (MAP) classification decision rule: assigns x to the class ω_i s.t. the probability $P(\omega_i|x)$ is maximized.
 I.e., (Bayes condition):

$$P(\omega_i|x) = \frac{P(x|\omega_i)P(\omega_i)}{P(x)}$$

or, as $P(x)$ is constant for all classes,

$$d_i(x) = P(x|\omega_i)P(\omega_i)$$

- $f \circ d$ results into the same classification as for d (e.g. $f = \ln$)
Classification problems: Classes ω_i generated from

- covariance matrices Σ_i
- means \bar{x}_i

\rightarrow class-conditional probability-density function (Gaussian distribution)

$$P(x|\omega_i) = \frac{1}{(2\pi)^{m/2}|\Sigma_i|^{1/2}}e^{-\frac{1}{2}(x-\bar{x}_i)^T\Sigma_i^{-1}(x-\bar{x}_i)}$$

Two classes with different correlations
Classification

Proposition:

• Bayes’ maximum-a-posteriori (MAP) classification decision rule, when $\Sigma_i = \Sigma_j$, and $P(\omega_i) = P(\omega_j)$, is (Mahalanobis distance)

$$d_i(x) = -(x - \bar{x}_i)^T \Sigma^{-1} (x - \bar{x}_i)$$
Classification

Proposition. Bayes’ *maximum-a-posteriori* (MAP) classification

- If $\Sigma_i = \mathbb{I}$ for all i (the identity function)
 \[d_i(x) = -(x - \bar{x}_i)^T(x - \bar{x}_i) = -||x - \bar{x}_i||^2 \]
 \[\rightarrow \text{Euclidean distance} \]

- If Σ_i is diagonal (not necessarily equal to \mathbb{I})
 \[d_i(x) = -\sum_{j=1}^{m}(\sigma_j^2)^{-1}(x_j - \bar{x}_{ij})^2 \]
 \[\rightarrow \text{Weighted Euclidean distance} \]
 (with weights equal to the inverse of the variances: $p_j = (\sigma_j^2)^{-1}$)
Shape of distributions

The class-conditional probability-density functions established above define level curves with the shape of an ellipse → circumference when variables are independent.
The class-conditional probability-density functions established above define level curves with the shape of an ellipse → circumference when variables are independent.
Shape of distributions

The class-conditional probability-density functions established above define level curves with the shape of an ellipse → circumference when variables are independent.

What about another shape / another distance?
Shape of distributions

The class-conditional probability-density functions established above define level curves with the shape of an ellipse → circumference when variables are independent.

What about another shape / another distance ?

What about using the Choquet integral here ?
Shape of distributions

Why Choquet integral?:

- Non-additive measures on a set X permit us to represent interactions between objects in X!

... similar to covariances!!
Shape of distributions

Why Choquet integral?:

• Non-additive measures on a set X permit us to represent interactions between objects in X.
 ... similar to covariances!

• Choquet integral integrates a function with respect to a non-additive measure.
Shape of distributions

Why Choquet integral?:

- Non-additive measures on a set X permit us to represent interactions between objects in X.
 ... similar to covariances!

- Choquet integral integrates a function with respect to a non-additive measure.
 → can it be used to compute a distance / to define a distribution?
Shape of distributions

Why Choquet integral?:

- Non-additive measures on a set X permit us to represent interactions between objects in X!
 ... similar to covariances!!
- Choquet integral integrates a function with respect to a non-additive measure
 → can it be used to compute a distance / to define a distribution ?
 → if so, what is the shape of the distribution ?
Choquet integral based distribution
Choquet integral based distribution: Definition

Definition:

- \(Y = \{Y_1, \ldots, Y_n\} \) random variables; \(\mu : 2^Y \rightarrow [0, 1] \) a non-additive measure and \(m \) a vector in \(\mathbb{R}^n \).
- The exponential family of Choquet integral based class-conditional probability-density functions is defined by:

\[
PC_{m, \mu}(x) = \frac{1}{K} e^{-\frac{1}{2} CI_{\mu}((x-m) \circ (x-m))}
\]

where \(K \) is a constant that is defined so that the function is a probability, and where \(v \circ w \) denotes the Hadamard or Schur (elementwise) product of vectors \(v \) and \(w \) (i.e., \((v \circ w) = (v_1w_1 \ldots v_nw_n) \)).

Notation:

- We denote it by \(C(m, \mu) \).
Choquet integral based distribution: Examples

- **Shapes (level curves)**

\[
\begin{align*}
(a) \quad \mu_A(\{x\}) &= 0.1 \quad \text{and} \quad \mu_A(\{y\}) = 0.1, \\
(b) \quad \mu_B(\{x\}) &= 0.9 \quad \text{and} \quad \mu_B(\{y\}) = 0.9, \\
(c) \quad \mu_C(\{x\}) &= 0.2 \quad \text{and} \quad \mu_C(\{y\}) = 0.8, \quad \text{and} \quad (d) \quad \mu_D(\{x\}) &= 0.4 \quad \text{and} \quad \mu_D(\{y\}) = 0.9.
\end{align*}
\]
Choquet integral based distribution: Properties

Proposition. Distribution and distance (Choquet distance):

- If $P(w_i) = P(w_j)$ holds for all $i \neq j$, the decision rule is (max):

$$-CI_{\mu}((x - \bar{x}_i) \otimes (x - \bar{x}_i))$$

Proposition: Distribution/distance and level curves:

- The level curves of the Choquet integral in two variables $X = \{x, y\}$ corresponds to an ellipse when $\mu(\{x\}) = 1 - \mu(\{y\})$.
 - A natural result: we have an ellipse when $\mu(\{x\}) + \mu(\{y\}) = 1$
 - i.e., when μ is a probability.

This follows from the fact that the Choquet integral with a measure that is a probability is equivalent to a weighted mean. Then, similar results are obtained for larger dimensions.
Choquet integral based distribution: Properties

Property:

- The family of distributions $N(m, \Sigma)$ in \mathbb{R}^n with a diagonal matrix Σ of rank n, and the family of distributions $C(m, \mu)$ with an additive measure μ with all $\mu(\{x_i\}) \neq 0$ are equivalent.

($\mu(X)$ is not necessarily here 1)
Choquet integral based distribution: Properties

Property:

- The family of distributions $N(m, \Sigma)$ in \mathbb{R}^n with a diagonal matrix Σ of rank n, and the family of distributions $C(m, \mu)$ with an additive measure μ with all $\mu(\{x_i\}) \neq 0$ are equivalent.

($\mu(X)$ is not necessarily here 1)

Corollary:

- The distribution $N(0, I)$ corresponds to $C(0, \mu^1)$ where μ^1 is the additive measure defined as $\mu^1(A) = |A|$ for all $A \subseteq X$.
Properties:

- In general, the two families of distributions $N(m, \Sigma)$ and $C(m, \mu)$ are different.
- $C(m, \mu)$ always symmetric w.r.t. Y_1 and Y_2 axis.
Choquet integral based distribution: N vs. C

Properties:

- In general, the two families of distributions $N(m, \Sigma)$ and $C(m, \mu)$ are different.
- $C(m, \mu)$ always symmetric w.r.t. Y_1 and Y_2 axis.

A generalization of both: Choquet-Mahalanobis based distribution.
- Mahalanobis: Σ represents some interactions
- Choquet (measure): μ represents some interactions
Choquet-Mahalanobis based distribution
Choquet integral based distribution: generalized distance

Definition:

- Σ be a matrix, $\Sigma^{-1} = LL^*$ be the Cholesky decomposition of its inverse.
- The Choquet-Mahalanobis integral is defined by

$$CMI_{\mu,\Sigma}(x, \bar{x}) = CI_\mu(v \otimes w)$$

where v and w are the vectors defined by:

$$v = (x - \bar{x})^T L \text{ and } w = L^*(x - \bar{x}),$$

where $v \otimes w$ denotes the elementwise product of vectors v and w (i.e., $(v \otimes w) = (v_1w_1 \ldots v_nw_n)$).
Choquet integral based distribution: generalized distance

On the definition:

- **Well defined** when Σ is a covariance matrix

 When Σ^{-1} is a definite-positive matrix, the Cholesky decomposition is unique. This is the case when Σ is a covariance matrix valid for generating a probability-density function.
Choquet integral based distribution: generalized distance

On the definition:

- **Well defined** when Σ is a covariance matrix

 When Σ^{-1} is a definite-positive matrix, the Cholesky descomposition is unique. This is the case when Σ is a covariance matrix valid for generating a probability-density function.

Proper generalization:

- **Generalization of both the Mahalanobis and the Choquet integral based distance.**

 - The definition with Σ equal to the identity results into the Choquet integral of $(x - \bar{x}) \otimes (x - \bar{x})$ with respect to μ.

 - The definition with μ corresponding to an additive probability $\mu(A) = 1/|A|$ results into $1/n$ of the Mahalanobis distance with respect to Σ.
Choquet integral based distribution: Definition

Definition:

• \(Y = \{Y_1, \ldots, Y_n\} \) random variables, \(\mu : 2^Y \to [0, 1] \) a measure, \(m \) a vector in \(\mathbb{R}^n \), and \(Q \) a positive-definite matrix.

• The exponential family of Choquet-Mahalanobis integral based class-conditional probability-density functions is defined by:

\[
PCM_{m, \mu, Q}(x) = \frac{1}{K} e^{-\frac{1}{2} CI_{\mu}(v \circ w)}
\]

where \(K \) is a constant that is defined so that the function is a probability, where \(LL^T = Q \) is the Cholesky decomposition of the matrix \(Q \), \(v = (x - m)^T L \), \(w = L^T (x - m) \), and where \(v \circ w \) denotes the elementwise product of vectors \(v \) and \(w \).

Notation:

• We denote it by \(CMI(m, \mu, Q) \).
Choquet integral based distribution: Properties

Property:

- The distribution $CMI(\mathbf{m}, \mu, Q)$ generalizes the multivariate normal distributions and the Choquet integral based distribution. In addition
 - A $CMI(\mathbf{m}, \mu, Q)$ with $\mu = \mu^1$ corresponds to multivariate normal distributions,
 - A $CMI(\mathbf{m}, \mu, Q)$ with $Q = \mathbb{I}$ corresponds to a $CI(\mathbf{m}, \mu)$.
Choquet integral based distribution: Properties

Graphically:

- Choquet integral (CI distribution), Mahalanobis distance (multivariate normal distribution), generalization (CMI distribution)
1st Example: Interactions only expressed in terms of a measure.

- No correlation exists between the variables.
- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.0$, $\mu_x = 0.01$, $\mu_y = 0.01$.
2nd Example: Interactions only in terms of a covariance matrix.

- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.10$, $\mu_y = 0.90$.
3rd Example: Interactions both: covariance matrix and measure.

- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.01$, $\mu_y = 0.01$.
More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- They generalize, respectively, $N(0, I)$ and $N(m, \Sigma)$
Choquet integral based distribution: Properties

More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- They generalize, respectively, $N(0, I)$ and $N(m, \Sigma)$
- Neither $CMI(m, \mu, Q) \subseteq / \supseteq$ spherical / elliptical distributions.
More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- They generalize, respectively, $N(0, I)$ and $N(m, \Sigma)$
- Neither $CMI(m, \mu, Q) \subseteq / \supseteq$ spherical / elliptical distributions.

Example:

- Non-additive μ: $CMI(m, \mu, Q)$ not repr. spherical/elliptical
Choquet integral based distribution: Properties

More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- They generalize, respectively, $N(0, I)$ and $N(m, \Sigma)$
- Neither $CMI(m, \mu, Q) \subseteq / \supseteq$ spherical / elliptical distributions.

Example:

- Non-additive μ: $CMI(m, \mu, Q)$ not repr. spherical/elliptical
- No CMI for the following spherical distribution: Spherical distribution with density

$$f(r) = (1/K)e^{-\left(\frac{r-r_0}{\sigma}\right)^2},$$

where r_0 is a radius over which the density is maximum, σ is a variance, and K is the normalization constant.
More properties: (symmetry)

- \(P(x) \) a \(C(m, \mu) \) i.e., mean \(m = (m_1, \ldots, m_n) \) and a fuzzy measure \(\mu \). Then, for all \(x \in \mathbb{R}^n \) and all \(i \in \{1, \ldots, n\} \)

\[
P(x_1, \ldots, x_{i-1}, x_i + m_i, x_{i+1}, \ldots, x_n) = P(x_1, \ldots, x_{i-1}, -x_i + m_i, x_{i+1}, \ldots, x_n).
\]

- \(P(x) \) a \(CMI(m, \mu, Q) \) i.e., with mean \(m = (m_1, \ldots, m_n) \), a positive-definite diagonal matrix \(Q \), and a fuzzy measure \(\mu \). Then, for all \(x \in \mathbb{R}^n \) and all \(i \in \{1, \ldots, n\} \)

\[
P(x_1, \ldots, x_{i-1}, x_i + m_i, x_{i+1}, \ldots, x_n) = P(x_1, \ldots, x_{i-1}, -x_i + m_i, x_{i+1}, \ldots, x_n).
\]
More properties:

- \(P(x) \) a \(C(m, \mu) \) i.e., with mean \(m = (m_1, \ldots, m_n) \). Then, for any fuzzy measure \(\mu \),
 - the mean vector \(\bar{X} = [E[X_1], E[X_2], \ldots, E[X_n]] \) is \(m \) and
 - \(\Sigma = [Cov[X_i, X_j]] \) for \(i = 1, \ldots, n \) and \(j = 1, \ldots, n \) is zero for all \(i \neq j \) and thus, diagonal.

- \(P(x) \) a \(CMI(m, \mu, Q) \) i.e., with mean \(m = (m_1, \ldots, m_n) \). Then, for any fuzzy measure \(\mu \) and any diagonal matrix \(Q \),
 - the mean vector \(\bar{X} = [E[X_1], E[X_2], \ldots, E[X_n]] \) is \(m \) and
 - \(\Sigma = [Cov[X_i, X_j]] \) for \(i = 1, \ldots, n \) and \(j = 1, \ldots, n \) is zero for all \(i \neq j \) and thus, diagonal.
More properties:

- When Q is not diagonal, we may have

\[\text{Cov}[X_i, X_j] \neq Q(X_i, X_j). \]
More properties: If this type of data distinguishable from Normal?
More properties: If this type of data distinguishable from Normal?

Study:

- Case of $X = \{x_1, x_2\}$
- $CMI(0, \mu)$ with $\mu(\{x\}) = i/10$ and $\mu(\{y\}) = i/10$ for $i = 1, 2, \ldots, 9$
More properties: If this type of data distinguishable from Normal?

Study:

- Case of \(X = \{x_1, x_2\} \)
- \(CMI(0, \mu) \) with \(\mu(\{x\}) = i/10 \) and \(\mu(\{y\}) = i/10 \) for \(i = 1, 2, \ldots, 9 \)
- Test: Normality test for CI-based distribution
 - Normality of the marginals
 - Normality of the multidimensional distribution
More properties: Normality test for CI-based distribution

- **Normality of the marginals:** Shapiro-Wilk test
 Marginal computed numerically integrate, uniroot function in R.
 Almost always the test is passed for samples of $n = 100$ data.
More properties: Normality test for CI-based distribution

- **Normality of the marginals**: Shapiro-Wilk test
 Marginal computed numerically integrate, unirroot function in R. Almost always the test is passed for samples of \(n = 100 \) data

- Marginals (left) of the bivariate \(CI(0, \mu) \), and the normal distribution (right) with the same variance. \(\mu(\{x_1\}) = 0.1 \) and \(\mu(\{x_2\}) = 0.1 \)
Choose integral based distribution: Properties

More properties: Normality test for CI-based distribution

- **Normality of the marginals:** Shapiro-Wilk test
- Marginals (left) of $CI(0, \mu)$, and (right) N same variance. (i) $\mu(\{x_1\}) = 0.1$ and $\mu(\{x_2\}) = 0.1$; (ii) $\mu(\{x_1\}) = 0.1$ and $\mu(\{x_2\}) = 0.2$; (iii) $\mu(\{x_1\}) = 0.2$ and $\mu(\{x_2\}) = 0.1$; (iv) $\mu(\{x_1\}) = 0.9$ and $\mu(\{x_2\}) = 0.9$
More properties: Normality test for CI-based distribution

- **Normality of the distribution:**
 Mardia’s test based on skewness and kurtosis
 - Skewness test is passed.
 - Almost all distributions (in \mathbb{R}^2) pass kurtosis test in experiments:
 - $CI(0, \mu)$ distributions with $\mu(\{x\}) = i/10$ and $\mu(\{y\}) = i/10$ for $i = 1, 2, \ldots, 9$.
 - Test only fails in
 - (i) $\mu(\{x\}) = 0.1$ and $\mu(\{y\}) = 0.1$,
 - (ii) $\mu(\{x\}) = 0.2$ and $\mu(\{y\}) = 0.1$.
Summary
Summary:

- Definition of distributions based on the Choquet integral
 Integral for non-additive measures
- Relationship with multivariate normal and spherical distributions
Summary:

- Definition of distributions based on the Choquet integral
 Integral for non-additive measures
- Relationship with multivariate normal and spherical distributions

Future work:

- Study of the properties
- Parameters determination from data \((\mu, Q)\)
- Statistical tests
Summary

- Level-dependent capacity (non-additive, fuzzy measure)
 Defined by S. Greco, B. Matarazzo, S. Giove (FSS, 2011)
 - Level-dependent-based distribution (generalizes CI-based)
 \[P(x) = \frac{1}{K} e^{-\frac{1}{2} CI_G((x-\bar{x}) \otimes (x-\bar{x}))} \]
 - Example. Two perspectives of same level dependent CI. Defined by the same fuzzy measures \(\mu_1 \) and \(\mu_2 \) with intervals (0, 3) for \(\mu_1 \), and (3, 100) for \(\mu_2 \).

\[\mu_1(\{x\}) = 0.05 \text{ and } \mu_1(\{y\}) = 0.95, \text{ and } \mu_2(\{x\}) = 0.95 \text{ and } \mu_2(\{y\}) = 0.05 \]
Thank you
References:

http://dx.doi.org/10.12697/ACUTM.2015.19.04
Thank you

Slides at:
http://www.mdai.cat/ifao/
http://www.mdai.cat/ifao/slides.php