83rd EWG-MCDA 2016

Choquet integral: distributions and decisions

Vicenç Torra School of Informatics, University of Skövde Skövde, Sweden

March 31-32 🙂 , 2016

Basics and objectives:

• Distribution based on the Choquet integral (for non-additive measures)

Motivation:

- Theory: Mathematical properties
- Methodology: different ways to express interactions
- Application: Decision (MCDM), classification, statistical disclosure control (data privacy)

1. Preliminaries

- 2. Choquet integral based distribution
- 3. Choquet-Mahalanobis based distribution
- 4. Summary

Preliminaries Aggregation operators and the Choquet integral in Decision

• Decision, utility functions

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

Modelling=Criteria + Utilities, aggregation, selection

	Number of	Security	Price	Confort	trunk
	seats				
Ford T	0	20	0	20	0
Seat 600	60	0	100	0	50
Simca 1000	100	30	100	50	70
VW Beetle	80	50	30	70	100
Citroën Acadiane	20	40	60	40	0

• Decision, utility functions

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

Modelling, aggregation = \mathbb{C} , selection

	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$
Ford T	0	20	0	20	0	8
Seat 600	60	0	100	0	50	42
Simca 1000	100	30	100	50	70	70
VW	80	50	30	70	100	66
Citr. Acadiane	20	40	60	40	0	32

• MCDM: Aggregation to deal with contradictory criteria

- MCDM: Aggregation to deal with contradictory criteria
- But there are occasions in which ordering is clear

when $a_i \leq b_i$ it is clear that $a \leq b$

\square .g., Seats Security Price Comfort trunk $\mathbb{C} = AM$								
	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$		
Seat 600	60	0	100	0	50	42		
Simca 1000	100	30	100	50	70	70		

- MCDM: Aggregation to deal with contradictory criteria
- But there are occasions in which ordering is clear

when $a_i \leq b_i$ it is clear that $a \leq b$

L.g.,	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$
Seat 600	60	0	100	0	50	42
Simca 1000	100	30	100	50	70	70

Aggregation operators are appropriate because they satisfy monotonicity

- MCDM: Aggregation to deal with contradictory criteria
- But there are occasions in which ordering is clear

when $a_i \leq b_i$ it is clear that $a \leq b$

E.g.,								
	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$		
Seat 600	60	0	100	0	50	42		
Simca 1000	100	30	100	50	70	70		

Aggregation operators are appropriate because they satisfy monotonicity

• Pareto dominance: Given two vectors $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$, we say that b dominates a when $a_i \leq b_i$ for all i and there is at least one k such that $a_k < b_k$.

• Pareto set, Pareto frontier, or non dominance set:

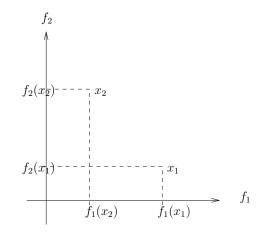
	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$
Simca 1000	100	30	100	50	70	70
VW	80	50	30	70	100	66
Citr. Acadiane	20	40	60	40	0	32

• Each one wins at least in one criteria to another one

Pareto set, Pareto frontier, or non dominance set:
Given a set of alternatives U represented by vectors u = (u₁,..., u_n), the Pareto frontier is the set u ∈ U such that there is no other v ∈ U such that v dominates u.

 $PF = \{u | \text{there is no } v \text{ s.t. } v \text{ dominates } u\}$

• Pareto optimal: an element u of the Pareto set



• Decision making process:

• Decision making process:

Modelling, aggregation, selection=order,first

• Decision making process:

Modelling, aggregation, selection=order,first

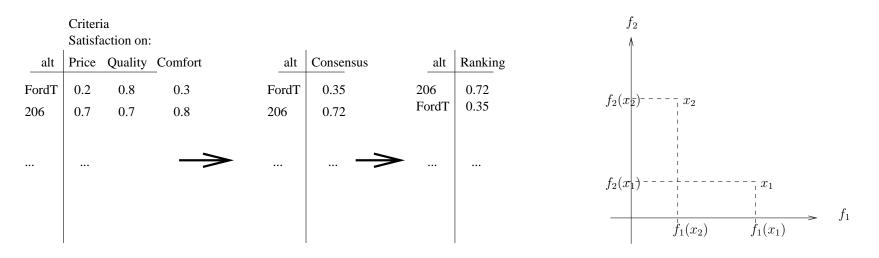
- The function of aggregation functions
 - Different aggregations lead to different orders (in the PF)

• Decision making process:

Modelling, aggregation, selection=order,first

- The function of aggregation functions
 - Different aggregations lead to different orders (in the PF)
 - Aggregation establishes which points are equivalent

Different aggregations, lead to different curves of points (level curves)



- Aggregation functions and different level curves
 - Arithmetic mean
 - Geometric mean, Harmonic mean, ...
 - Weighted mean
 - OWA, ...

- Aggregation functions and different level curves
 - Arithmetic mean
 - o Geometric mean, Harmonic mean, ...
 - Weighted mean
 - OWA, ...
 - Choquet integral (generalization of the AM, WM, OWA)
 - * to represent interactions between criteria
 - * non-independent criteria allowed

- Aggregation functions and parameters
 - Arithmetic mean: no parameters
 - Geometric mean, Harmonic mean, ...: : no parameters
 - Weighted mean: weighting vector
 - OWA, ...: weighting vector

- Aggregation functions and parameters
 - Arithmetic mean: no parameters
 - Geometric mean, Harmonic mean, ...: : no parameters
 - Weighted mean: weighting vector
 - OWA, ...: weighting vector

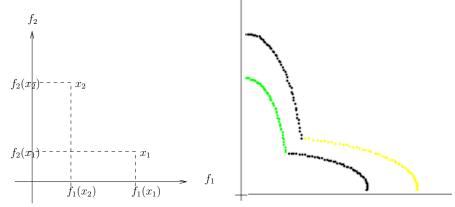
- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 Instead of *weight(criteria)*: *w(security)*
 - We consider weight(set of criteria): w(security, price, confort)

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 Instead of weight(criteria): w(security)
 We consider weight(set of criteria): w(security,price,confort)
 - We can, of course, use w(security,price,confort)=w(security)+w(price)+w(confort)

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 Instead of weight(criteria): w(security)
 - We consider *weight(set of criteria)*: *w(security,price,confort)*
 - We can, of course, use w(security,price,confort)=w(security)+w(price)+w(confort)
 but also
 - o w(security,price,confort) > w(security)+w(price)+w(confort)
 or
 - w(security,price,confort) < w(security)+w(price)+w(confort)

- Aggregation functions and parameters
 - Choquet integral (generalization of the AM, WM, OWA): a measure
 * And the level curves ? decision ?



Preliminaries Non-additive (fuzzy) measures and the Choquet integral

Definitions: measures

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) Finite case: μ(A ∪ B) = μ(A) + μ(B) for disjoint A, B

Definitions: measures

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) Finite case: μ(A ∪ B) = μ(A) + μ(B) for disjoint A, B
Probability and weights: μ(X) = 1

Non-additive (or fuzzy) measures.

(X, A) a measurable space, a non-additive measure μ on (X, A) is a set function μ : A → [0, 1] satisfying the following axioms:
(i) μ(Ø) = 0
(ii) μ(X) ≤ ∞
(iii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)
Weights: μ(X) = 1

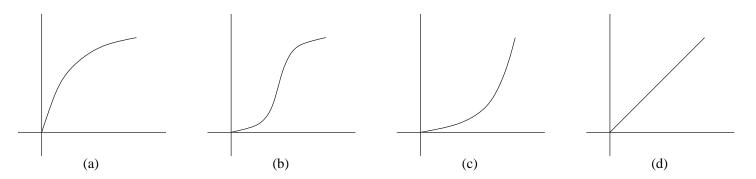
• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability. The following set function μ_m is a non-additive measure:

$$\mu_{m,P}(A) = m(P(A)) \tag{1}$$

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability. The following set function μ_m is a non-additive measure:

$$\mu_{m,P}(A) = m(P(A)) \tag{1}$$

- If $m(x) = x^2$, then $\mu_m(A) = (P(A))^2$
- If $m(x) = x^p$, then $\mu_m(A) = (P(A))^p$



• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability. The following set function μ_m is a non-additive measure:

$$\mu_{m,P}(A) = m(P(A)) \tag{2}$$

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability. The following set function μ_m is a non-additive measure:

$$u_{m,P}(A) = m(P(A)) \tag{2}$$

Applications.

• To represent interactions

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

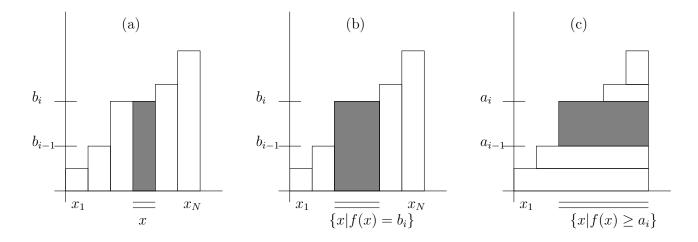
• When the measure is additive, this is the Lebesgue integral

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

• When the measure is additive, this is the Lebesgue integral



Choquet integral. Discrete version

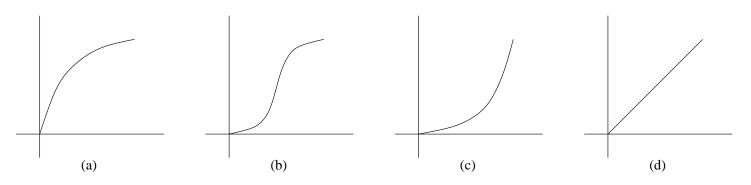
• μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. $\mu,$

$$(C)\int fd\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})]\mu(A_{s(i)}),$$

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0 \leq f(x_{s(1)}) \leq \cdots \leq f(x_{s(N)}) \leq 1$, and where $f(x_{s(0)}) = 0$ and $A_{s(i)} = \{x_{s(i)}, \dots, x_{s(N)}\}.$

Choquet integral: Properties:

- When μ is additive, CI corresponds to the weighted mean
- CI can represent min, max, mean, order statistics, ...
- When μ is $\mu_{m,P}(A) = m(P(A))$ with $m(x) = x^p$, $CI_{\mu_m}(f)$ $(a) \to max$, $(b) \to median$, $(c) \to min$, $(d) \to mean$



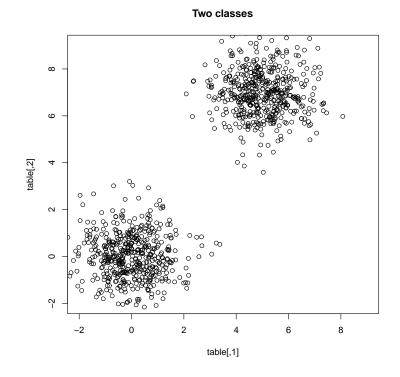
Preliminaries Classification and shapes of distributions

Motivation: Another motivation: classification

- Two classes defined in terms of normal distributions (obtained from real data or directly from the parameters of the distribution $N(\mu, \Sigma)$).
- An element x in \mathbb{R}^2

Motivation: Another motivation: classification

- Two classes defined in terms of normal distributions (obtained from real data or directly from the parameters of the distribution $N(\mu, \Sigma)$).
- An element x in \mathbb{R}^2
 - \rightarrow where to classify x?



83rd EWG-MCDA 2016 24 / 59

Classification problems: Classification of x into Ω

- x in a n-dimensional space (*i.e.*, $x \in \mathbb{R}^n$)
- Set of k classes $\Omega = \{\omega_1, \dots, \omega_k\}$

Formalization:

• Bayes' maximum-a-posteriori (MAP) classification decision rule: assigns x to the class ω_i s.t. the probability $P(\omega_i|x)$ is maximized. I.e., (Bayes condition):

$$P(\omega_i|x) = \frac{P(x|\omega_i)P(\omega_i)}{P(x)}$$

or, as ${\cal P}(\boldsymbol{x})$ is constant for all classes,

$$d_i(x) = P(x|\omega_i)P(\omega_i)$$

 $\blacksquare f \circ d$ results into the same classification as for d (e.g. $f = \ln$)

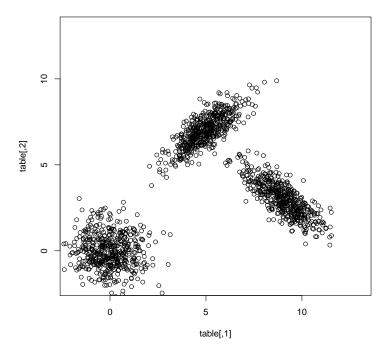
Classification

Classification problems: Classes ω_i generated from

- covariance matrices Σ_i
- means \bar{x}_i

 \rightarrow class-conditional probability-density function (Gaussian distribution)

$$P(x|\omega_i) = \frac{1}{(2\pi)^{m/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2}(x-\bar{x}_i)^T \Sigma_i^{-1}(x-\bar{x}_i)}$$



Two classes with different correlations

Proposition:

• Bayes' maximum-a-posteriori (MAP) classification decision rule, when $\Sigma_i = \Sigma_j$, and $P(\omega_i) = P(\omega_j)$, is (Mahalanobis distance)

$$d_i(x) = -(x - \bar{x}_i)^T \Sigma^{-1} (x - \bar{x}_i)$$

Proposition. Bayes' *maximum-a-posteriori* (MAP) classification

• If $\Sigma_i = \mathbb{I}$ for all i (the identity function)

$$d_i(x) = -(x - \bar{x}_i)^T (x - \bar{x}_i) = -||x - \bar{x}_i||^2$$

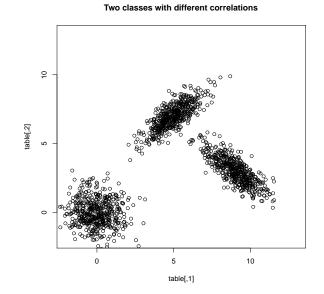
 \rightarrow Euclidean distance

• If Σ_i is diagonal (not necessarily equal to \mathbb{I})

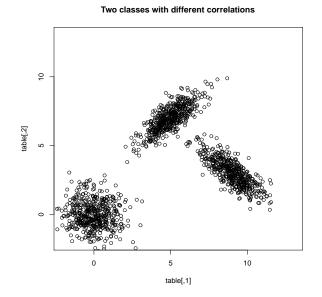
$$d_i(x) = -\sum_{j=1}^m (\sigma_j^2)^{-1} (x_j - \bar{x}_{ij})^2$$

 \rightarrow Weighted Euclidean distance (with weights equal to the inverse of the variances: $p_j = (\sigma_j^2)^{-1}$) The class-conditional probability-density functions established above define level curves with the shape of an ellipse \rightarrow circumference when variables are independent

The class-conditional probability-density functions established above define level curves with the shape of an ellipse \rightarrow circumference when variables are independent



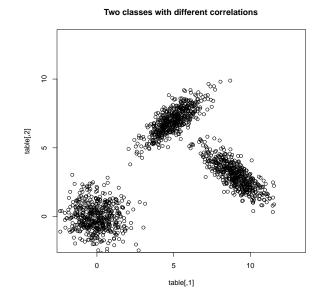
The class-conditional probability-density functions established above define level curves with the shape of an ellipse \rightarrow circumference when variables are independent



What about another shape / another distance ?

The class-conditional probability-density functions established above define level curves with the shape of an ellipse

 \rightarrow circumference when variables are independent



What about another shape / another distance ?

What about using the Choquet integral here ?

- Non-additive measures on a set X permit us to represent interactions between objects in $X \ !!$
 - ... similar to covariances !!

- Non-additive measures on a set X permit us to represent interactions between objects in $X \ !!$
 - ... similar to covariances !!
- Choquet integral integrates a function with respect to a non-additive measure

- Non-additive measures on a set X permit us to represent interactions between objects in $X \ !!$
 - ... similar to covariances !!
- Choquet integral integrates a function with respect to a non-additive measure
 - \rightarrow can it be used to compute a distance / to define a distribution ?

- Non-additive measures on a set X permit us to represent interactions between objects in $X \ !!$
 - ... similar to covariances !!
- Choquet integral integrates a function with respect to a non-additive measure
 - \rightarrow can it be used to compute a distance / to define a distribution ?
 - \rightarrow if so, what is the shape of the distribution ?

Choquet integral based distribution

Definition:

- $Y = \{Y_1, \ldots, Y_n\}$ random variables; $\mu : 2^Y \to [0, 1]$ a non-additive measure and **m** a vector in \mathbb{R}^n .
- The exponential family of Choquet integral based class-conditional probability-density functions is defined by:

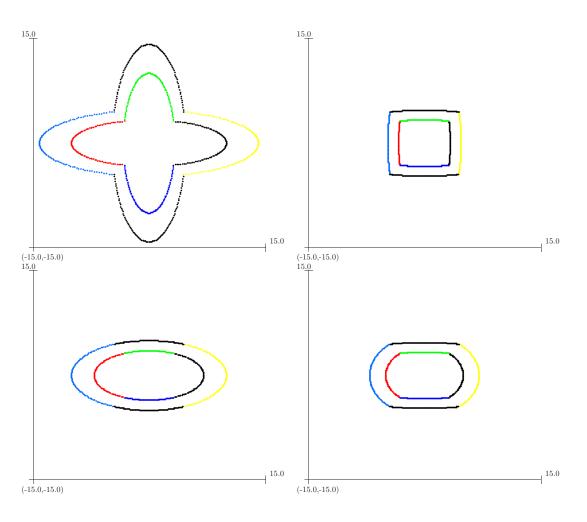
$$PC_{\mathbf{m},\mu}(\mathbf{x}) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}((\mathbf{x}-\mathbf{m})\circ(\mathbf{x}-\mathbf{m}))}$$

where K is a constant that is defined so that the function is a probability, and where $\mathbf{v} \circ \mathbf{w}$ denotes the Hadamard or Schur (elementwise) product of vectors \mathbf{v} and \mathbf{w} (i.e., $(\mathbf{v} \circ \mathbf{w}) = (v_1w_1 \dots v_nw_n)$).

Notation:

• We denote it by $C(\mathbf{m}, \mu)$.

• Shapes (level curves)



(a) $\mu_A(\{x\}) = 0.1$ and $\mu_A(\{y\}) = 0.1$, (b) $\mu_B(\{x\}) = 0.9$ and $\mu_B(\{y\}) = 0.9$, (c) $\mu_C(\{x\}) = 0.2$ and $\mu_C(\{y\}) = 0.8$, and (d) $\mu_D(\{x\}) = 0.4$ and $\mu_D(\{y\}) = 0.9$.

Choquet integral based distribution: Properties

Proposition. Distribution and distance (Choquet distance):

• If $P(w_i) = P(w_j)$ holds for all $i \neq j$, the decision rule is (max):

$$-CI_{\mu}((x-\bar{x}_i)\otimes(x-\bar{x}_i))$$

Proposition: Distribution/distance and level curves:

- The level curves of the Choquet integral in two variables $X = \{x, y\}$ corresponds to an ellipse when $\mu(\{x\}) = 1 \mu(\{y\})$.
 - \rightarrow A natural result: we have an ellipse when $\mu(\{x\}) + \mu(\{y\}) = 1$
 - ightarrow i.e., when μ is a probability.

This follows from the fact that the Choquet integral with a measure that is a probability is equivalent to a weighted mean. Then, similar results are obtained for larger dimensions.

Choquet integral based distribution: Properties

Property:

 The family of distributions N(m, Σ) in ℝⁿ with a diagonal matrix Σ of rank n, and the family of distributions C(m, μ) with an additive measure μ with all μ({x_i}) ≠ 0 are equivalent.

 $(\mu(X) \text{ is not necessarily here 1})$

Choquet integral based distribution: Properties

Property:

 The family of distributions N(m, Σ) in ℝⁿ with a diagonal matrix Σ of rank n, and the family of distributions C(m, μ) with an additive measure μ with all μ({x_i}) ≠ 0 are equivalent.

($\mu(X)$ is not necessarily here 1)

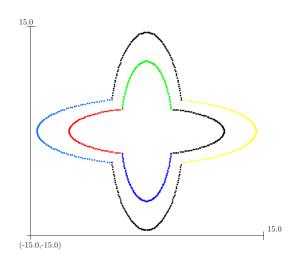
Corollary:

• The distribution $N(\mathbf{0}, \mathbb{I})$ corresponds to $C(\mathbf{0}, \mu^1)$ where μ^1 is the additive measure defined as $\mu^1(A) = |A|$ for all $A \subseteq X$.

Choquet integral based distribution: $N \ {\rm vs.} \ C$

Properties:

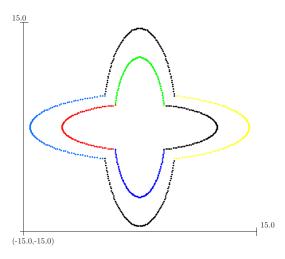
- In general, the two families of distributions $N({\bf m}, {\bf \Sigma})$ and $C({\bf m}, \mu)$ are different.
- $C(\mathbf{m},\mu)$ always symmetric w.r.t. Y_1 and Y_2 axis.



Choquet integral based distribution: $N \ {\rm vs.} \ C$

Properties:

- In general, the two families of distributions $N({\bf m}, {\bf \Sigma})$ and $C({\bf m}, \mu)$ are different.
- $C(\mathbf{m},\mu)$ always symmetric w.r.t. Y_1 and Y_2 axis.



- A generalization of both: Choquet-Mahalanobis based distribution.
 - Mahalanobis: Σ represents some interactions
 - Choquet (measure): μ represents some interactions

Choquet-Mahalanobis based distribution

Choquet integral based distribution: generalized *distance*

Definition:

- Σ be a matrix, $\Sigma^{-1} = LL^*$ be the Cholesky decomposition of its inverse.
- The Choquet-Mahalanobis *integral* is defined by

$$CMI_{\mu,\Sigma}(x,\bar{x}) = CI_{\mu}(v \otimes w) \tag{4}$$

where v and w are the vectors defined by: $v = (x - \bar{x})^T L \text{ and } w = L^*(x - \bar{x})\text{,}$

where $v \otimes w$ denotes the elementwise product of vectors v and w(i.e., $(v \otimes w) = (v_1 w_1 \dots v_n w_n)$).

Choquet integral based distribution: generalized *distance*

On the definition:

Well defined when Σ is a covariance matrix
 When Σ⁻¹ is a definite-positive matrix, the Cholesky descomposition is unique.
 This is the case when Σ is a covariance matrix valid for generating a probability-density function.

Outline

Choquet integral based distribution: generalized *distance*

On the definition:

• Well defined when Σ is a covariance matrix

When Σ^{-1} is a definite-positive matrix, the Cholesky descomposition is unique. This is the case when Σ is a covariance matrix valid for generating a probabilitydensity function.

Proper generalization:

- Generalization of both the Mahalanobis and the Choquet integral based distance.
 - The definition with Σ equal to the identity results into the Choquet integral of $(x \bar{x}) \otimes (x \bar{x})$ with respect to μ .
 - The definition with μ corresponding to an additive probability $\mu(A) = 1/|A|$ results into 1/n of the Mahalanobis distance with respect to Σ .

Definition:

- $Y = \{Y_1, \ldots, Y_n\}$ random variables, $\mu : 2^Y \to [0, 1]$ a measure, **m** a vector in \mathbb{R}^n , and Q a positive-definite matrix.
- The exponential family of Choquet-Mahalanobis integral based classconditional probability-density functions is defined by:

$$PCM_{\mathbf{m},\mu,\mathbf{Q}}(x) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}(\mathbf{v} \circ \mathbf{w})}$$

where K is a constant that is defined so that the function is a probability, where $\mathbf{L}\mathbf{L}^T = \mathbf{Q}$ is the Cholesky decomposition of the matrix \mathbf{Q} , $\mathbf{v} = (\mathbf{x} - \mathbf{m})^T \mathbf{L}$, $w = \mathbf{L}^T (\mathbf{x} - \mathbf{m})$, and where $\mathbf{v} \circ \mathbf{w}$ denotes the elementwise product of vectors \mathbf{v} and \mathbf{w} .

Notation:

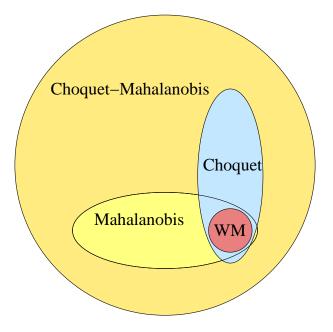
• We denote it by $CMI(\mathbf{m}, \mu, \mathbf{Q})$.

Property:

- The distribution $CMI(\mathbf{m}, \mu, \mathbf{Q})$ generalizes the multivariate normal distributions and the Choquet integral based distribution. In addition
 - A $CMI(\mathbf{m}, \mu, \mathbf{Q})$ with $\mu = \mu^1$ corresponds to multivariate normal distributions,
 - A $CMI(\mathbf{m}, \mu, \mathbf{Q})$ with $Q = \mathbb{I}$ corresponds to a $CI(\mathbf{m}, \mu)$.

Graphically:

• Choquet integral (CI distribution), Mahalobis distance (multivariate normal distribution), generalization (CMI distribution)

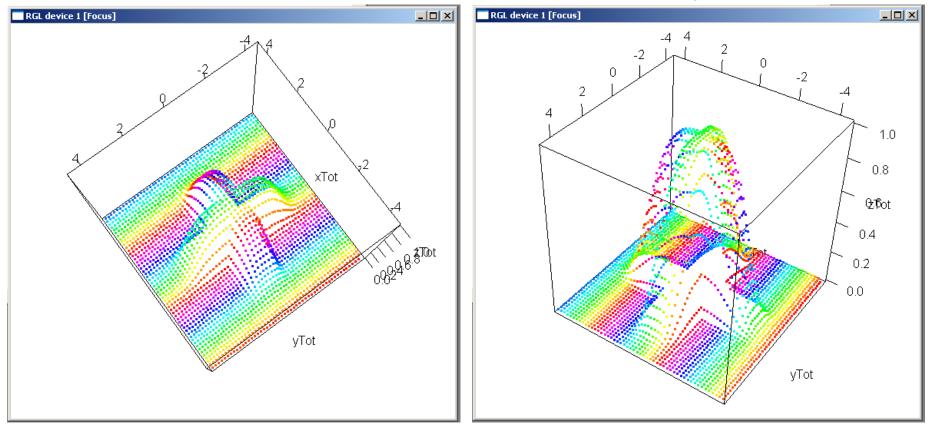


Outline

Choquet integral based distribution: Examples

1st Example: Interactions only expressed in terms of a measure.

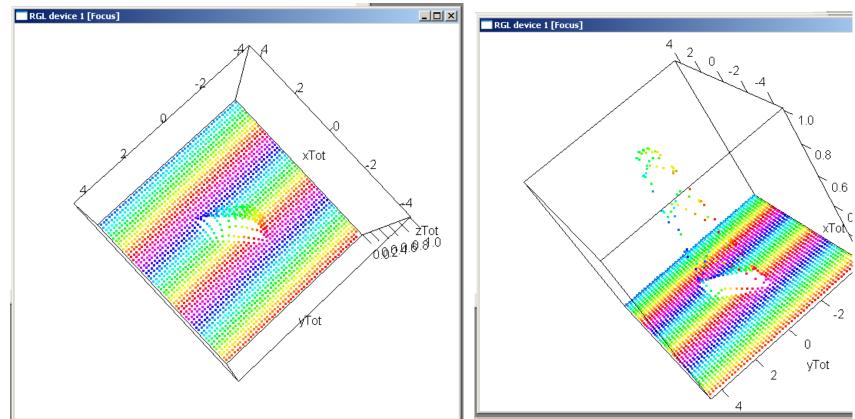
- No correlation exists between the variables.
- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.0$, $\mu_x = 0.01$, $\mu_y = 0.01$.



Choquet integral based distribution: Examples

2nd Example: Interactions only in terms of a covariance matrix.

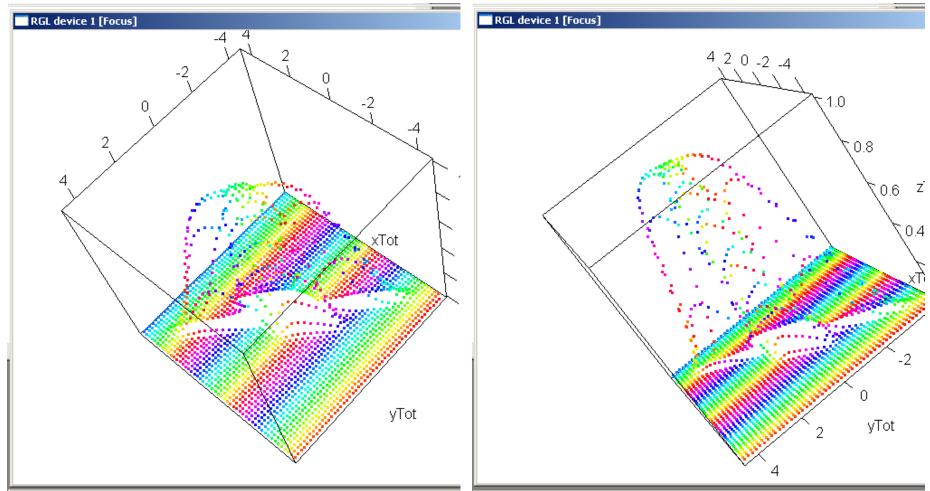
• CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.10$, $\mu_y = 0.90$.



Choquet integral based distribution: Examples

3rd Example: Interactions both: covariance matrix and measure.

• CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.01$, $\mu_y = 0.01$.



More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- ${\rm o}$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$

More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- ${\rm o}\,$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$
- Neither $CMI(\mathbf{m}, \mu, \mathbf{Q}) \subseteq / \supseteq$ spherical / elliptical distributions.

More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- ${\rm o}\,$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$
- Neither $CMI(\mathbf{m}, \mu, \mathbf{Q}) \subseteq / \supseteq$ spherical / elliptical distributions.

Example:

• Non-additive μ : $CMI(\mathbf{m}, \mu, \mathbf{Q})$ not repr. spherical/elliptical

More properties: Data not always acc. normality assumption

- spherical, elliptical distributions
- ${\rm \circ}\,$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$
- Neither $CMI(\mathbf{m}, \mu, \mathbf{Q}) \subseteq / \supseteq$ spherical / elliptical distributions.

Example:

- Non-additive μ : $CMI(\mathbf{m}, \mu, \mathbf{Q})$ not repr. spherical/elliptical
- No *CMI* for the following spherical distribution: Spherical distribution with density

$$f(r) = (1/K)e^{-\left(\frac{r-r_0}{\sigma}\right)^2},$$

where r_0 is a radius over which the density is maximum, σ is a variance, and K is the normalization constant.

More properties: (symmetry)

• $P(x) = C(\mathbf{m}, \mu)$ i.e., mean $\mathbf{m} = (m_1, \dots, m_n)$ and a fuzzy measure μ . Then, for all $x \in \mathbb{R}^n$ and all $i \in \{1, \dots, n\}$

 $P(x_1, \ldots, x_{i-1}, x_i + m_i, x_{i+1}, \ldots, x_n) = P(x_1, \ldots, x_{i-1}, -x_i + m_i, x_{i+1}, \ldots, x_n).$

• P(x) a $CMI(\mathbf{m}, \mu, \mathbf{Q})$ i.e., with mean $\mathbf{m} = (m_1, \ldots, m_n)$, a positive-definite diagonal matrix \mathbf{Q} , and a fuzzy measure μ . Then, for all $x \in \mathbb{R}^n$ and all $i \in \{1, \ldots, n\}$

 $P(x_1, \ldots, x_{i-1}, x_i + m_i, x_{i+1}, \ldots, x_n) = P(x_1, \ldots, x_{i-1}, -x_i + m_i, x_{i+1}, \ldots, x_n).$

More properties:

- $P(x) = C(\mathbf{m}, \mu)$ i.e., with mean $\mathbf{m} = (m_1, \dots, m_n)$. Then, for any fuzzy measure μ ,
 - the mean vector $\overline{\mathbf{X}} = [E[X_1], E[X_2], \dots, E[X_n]]$ is \mathbf{m} and
 - $\Sigma = [Cov[X_i, X_j]]$ for i = 1, ..., n and j = 1, ..., n is zero for all $i \neq j$ and, thus, diagonal.
- P(x) a CMI(m, μ, Q) i.e., with mean m = (m₁,...,m_n). Then, for any fuzzy measure μ and any diagonal matrix Q,
 the mean vector X
 = [E[X₁], E[X₂],..., E[X_n]] is m and
 - $\Sigma = [Cov[X_i, X_j]]$ for i = 1, ..., n and j = 1, ..., n is zero for all $i \neq j$ and thus, diagonal.

More properties:

 \bullet When ${\bf Q}$ is not diagonal, we may have

 $Cov[X_i, X_j] \neq Q(X_i, X_j).$

More properties: If this type of data distinguishable from Normal ?

More properties: If this type of data distinguishable from Normal ?

Study:

- Case of $X = \{x_1, x_2\}$
- $CMI(0, \mu)$ with $\mu(\{x\}) = i/10$ and $\mu(\{y\}) = i/10$ for i = 1, 2, ..., 9

More properties: If this type of data distinguishable from Normal ?

Study:

- Case of $X = \{x_1, x_2\}$
- $CMI(0, \mu)$ with $\mu(\{x\}) = i/10$ and $\mu(\{y\}) = i/10$ for i = 1, 2, ..., 9
- Test: Normality test for CI-based distribution
 - Normality of the marginals
 - Normality of the multidimensional distribution

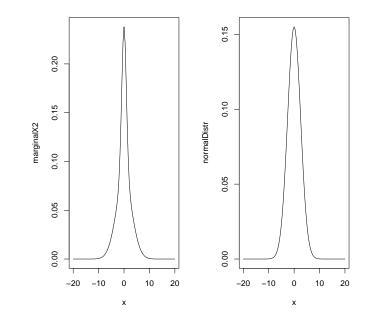
Outline

More properties: Normality test for CI-based distribution

• Normality of the marginals: Shapiro-Wilk test Marginal computed numerically integrate, uniroot function in R. Almost always the test is passed for samples of n = 100 data

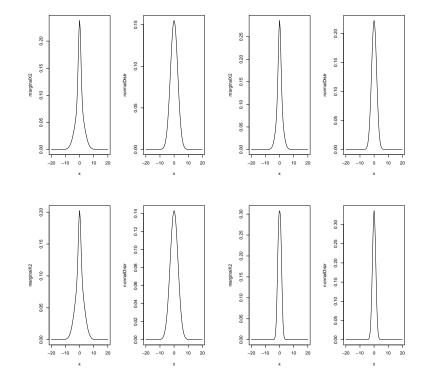
More properties: Normality test for CI-based distribution

- Normality of the marginals: Shapiro-Wilk test Marginal computed numerically integrate, uniroot function in R. Almost always the test is passed for samples of n = 100 data
- Marginals (left) of the bivariate $CI(\mathbf{0}, \mu)$, and the normal distribution (right) with the same variance. $\mu(\{x_1\}) = 0.1$ and $\mu(\{x_2\}) = 0.1$



More properties: Normality test for CI-based distribution

- Normality of the marginals: Shapiro-Wilk test
- Marginals (left) of $CI(0, \mu)$, and (right) N same variance. (i) $\mu(\{x_1\}) = 0.1$ and $\mu(\{x_2\}) = 0.1$; (ii) $\mu(\{x_1\}) = 0.1$ and $\mu(\{x_2\}) = 0.2$; (iii) $\mu(\{x_1\}) = 0.2$ and $\mu(\{x_2\}) = 0.1$; (iv) $\mu(\{x_1\}) = 0.9$ and $\mu(\{x_2\}) = 0.9$



More properties: Normality test for CI-based distribution

• Normality of the distribution:

Mardia's test based on skewness and kurtosis

- Skewness test is passed.
- Almost all distributions (in \mathbb{R}^2) pass kurtosis test in experiments:
 - $CI(0,\mu)$ distributions with $\mu(\{x\}) = i/10$ and $\mu(\{y\}) = i/10$ for $i = 1, 2, \dots, 9$.
 - \circ Test only fails in

(i) $\mu(\{x\}) = 0.1$ and $\mu(\{y\}) = 0.1$, (ii) $\mu(\{x\}) = 0.2$ and $\mu(\{y\}) = 0.1$.

Summary

Summary:

- Definition of distributions based on the Choquet integral Integral for non-additive measures
- Relationship with multivariate normal and spherical distributions

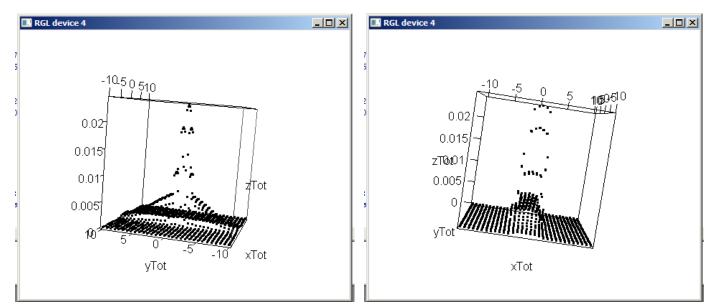
Summary:

- Definition of distributions based on the Choquet integral Integral for non-additive measures
- Relationship with multivariate normal and spherical distributions

Future work:

- Study of the properties
- Parameters determination from data (μ, Q)
- Statistical tests

- Level-dependent capacity (non-additive, fuzzy measure) Defined by S. Greco, B. Matarazzo, S. Giove (FSS, 2011)
 - Level-dependent-based distribution (generalizes CI-based) $P(x) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}^{G}((x-\bar{x})\otimes(x-\bar{x}))}$
 - Example. Two perspectives of same level dependent CI. Defined by the same fuzzy measures μ^1 and μ^2 with intervals (0,3) for μ^1 , and (3,100) for μ^2 .



 $\mu^1(\{x\})=0.05 \text{ and } \mu^1(\{y\})=0.95 \text{, and } \mu^2(\{x\})=0.95 \text{ and } \mu^2(\{y\})=0.05$

Thank you

References:

- V. Torra, Y. Narukawa, On a comparison between Mahalanobis distance and Choquet integral: the Choquet-Mahalanobis operator, Information Sciences 190 (2012) 56-63.
- V. Torra, Distributions based on the Choquet integral and nonadditive measures, RIMS Kokyuroku 1906 (2014) 136-143.
- V. Torra, Some properties of Choquet integral based probability functions, Acta et Commentationes Universitatis Tartuensis de Mathematica 19:1 (2015) 35-47.

http://dx.doi.org/10.12697/ACUTM.2015.19.04

Thank you

Slides at: http://www.mdai.cat/ifao/ http://www.mdai.cat/ifao/slides.php