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Outline

A kind of justification

• Research on data privacy since year 2000

• We have applied fuzzy sets theory in some research problems

◦ Where fuzzy sets theory can be used?
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Outline

A kind of justification

• Data privacy can be seen from different perspectives (social, legal, etc)

◦ Technological perspective

◦ Data to be used for machine and statistical learning (data analytics)

• In this framework, fuzzy set theory as

◦ one of the tools for data analytics, but also

◦ one of the tools related to data protection
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Outline

Outline

1. A data privacy context

(a) A data privacy problem? Why?

(b) Privacy models

(c) Masking methods

2. Fuzzy sets in data masking

3. Summary

INFUS 2020 3 / 50



Introduction > Outline

Introduction

A data privacy context:

A data privacy problem? Why?
(examples of disclosure)
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

Data privacy in context. A researcher wants to analyze data

?

DB = {(Aylin, Age = 40, Street=Maçka caddesi İstanbul,

salary=147000 TRY/TL), ...}
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

Data privacy in context. A researcher wants to analyze data

• Two main scenarios in which disclosure can take place

1. Disclosure from the data themself

2. Disclosure from the computation, query, data analysis

?
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

• Disclosure from the data themself

• Example of trivial disclosure: we learn Aylin salary:
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A data privacy problem? Why?

• Disclosure from data (non-trivial): learning Burcu’s sickness
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A data privacy problem? Why?

• Disclosure from data (non-trivial): learning Burcu’s sickness

◦ Q: sickness influenced by studies & commuting distance?

◦ University protects data and supplies only:

(where students live, what they study, if they got sick)
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

• Disclosure from data (non-trivial): learning Burcu’s sickness

◦ Q: sickness influenced by studies & commuting distance?

◦ University protects data and supplies only:

(where students live, what they study, if they got sick)

◦ No “personal data”,

DB = {(İstanbul, CS, No), (İstanbul, CS, No),

(İstanbul, CS, Yes), (Konak (İzmir), CS, No), . . . ,

(İstanbul, BA MEDIA STUDIES, No)

(İstanbul, BA MEDIA STUDIES, Yes), . . . }
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A data privacy problem? Why?

• Disclosure from data (non-trivial): learning Burcu’s sickness

◦ Q: sickness influenced by studies & commuting distance?

◦ University protects data and supplies only:

(where students live, what they study, if they got sick)

◦ No “personal data”,

DB = {(İstanbul, CS, No), (İstanbul, CS, No),

(İstanbul, CS, Yes), (Konak (İzmir), CS, No), . . . ,

(İstanbul, BA MEDIA STUDIES, No)

(İstanbul, BA MEDIA STUDIES, Yes), . . . }

This is NOT ok!!:
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A data privacy problem? Why?

• Disclosure from data (non-trivial): learning Burcu’s sickness

◦ Q: sickness influenced by studies & commuting distance?

◦ University protects data and supplies only:

(where students live, what they study, if they got sick)

◦ No “personal data”,

DB = {(İstanbul, CS, No), (İstanbul, CS, No),

(İstanbul, CS, Yes), (Konak (İzmir), CS, No), . . . ,

(İstanbul, BA MEDIA STUDIES, No)

(İstanbul, BA MEDIA STUDIES, Yes), . . . }

This is NOT ok!!:

◦ E.g., only one student (Burcu) on anthropology in Alaçatı:

(Alaçatı(İzmir), Anthropology, Yes)
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

• Disclosure from data (non-trivial): learning Burcu’s sickness

◦ Q: sickness influenced by studies & commuting distance?

◦ University protects data and supplies only:

(where students live, what they study, if they got sick)

◦ No “personal data”,

DB = {(İstanbul, CS, No), (İstanbul, CS, No),

(İstanbul, CS, Yes), (Konak (İzmir), CS, No), . . . ,

(İstanbul, BA MEDIA STUDIES, No)

(İstanbul, BA MEDIA STUDIES, Yes), . . . }

This is NOT ok!!:

◦ E.g., only one student (Burcu) on anthropology in Alaçatı:

(Alaçatı(İzmir), Anthropology, Yes)

⇒ 1. We learn that our friend is in the database
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

• Disclosure from data (non-trivial): learning Burcu’s sickness

◦ Q: sickness influenced by studies & commuting distance?

◦ University protects data and supplies only:

(where students live, what they study, if they got sick)

◦ No “personal data”,

DB = {(İstanbul, CS, No), (İstanbul, CS, No),

(İstanbul, CS, Yes), (Konak (İzmir), CS, No), . . . ,

(İstanbul, BA MEDIA STUDIES, No)

(İstanbul, BA MEDIA STUDIES, Yes), . . . }

This is NOT ok!!:

◦ E.g., only one student (Burcu) on anthropology in Alaçatı:

(Alaçatı(İzmir), Anthropology, Yes)

⇒ 1. We learn that our friend is in the database

⇒ 2. We learn that our friend is sick !!
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

• Disclosure from the computation (data analysis)

• Example of trivial disclosure: Ms. Rich attends pyshiatric unit.
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A data privacy problem? Why?
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• Example of trivial disclosure: Ms. Rich attends pyshiatric unit.
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A data privacy problem? Why?

• Disclosure from the computation (data analysis)

• Example of trivial disclosure: Ms. Rich attends pyshiatric unit.

◦ Q: Mean income of admitted to psychiatric unit given Town=Alaçatı?

◦ Monthly salaries when Town=Alaçatı:

800 1000 700 900 1000 800 600 800 1200 1400 ⇒ mean = 920
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A data privacy problem? Why?

• Disclosure from the computation (data analysis)

• Example of trivial disclosure: Ms. Rich attends pyshiatric unit.

◦ Q: Mean income of admitted to psychiatric unit given Town=Alaçatı?

◦ Monthly salaries when Town=Alaçatı:

800 1000 700 900 1000 800 600 800 1200 1400 ⇒ mean = 920

◦ Mean seems fine, no “personal data” (aggregate), is this ok ?
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A data privacy problem? Why?

• Disclosure from the computation (data analysis)

• Example of trivial disclosure: Ms. Rich attends pyshiatric unit.

◦ Q: Mean income of admitted to psychiatric unit given Town=Alaçatı?

◦ Monthly salaries when Town=Alaçatı:

800 1000 700 900 1000 800 600 800 1200 1400 ⇒ mean = 920

◦ Mean seems fine, no “personal data” (aggregate), is this ok ?

NO!!:
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

• Disclosure from the computation (data analysis)

• Example of trivial disclosure: Ms. Rich attends pyshiatric unit.

◦ Q: Mean income of admitted to psychiatric unit given Town=Alaçatı?

◦ Monthly salaries when Town=Alaçatı:

800 1000 700 900 1000 800 600 800 1200 1400 ⇒ mean = 920

◦ Mean seems fine, no “personal data” (aggregate), is this ok ?

NO!!:

◦ Adding Ms. Rich’s salary 70,000:

800 1000 700 900 1000 800 600 800 1200 1400 70000

⇒ mean = 7200,00 !!

(a extremely high salary changes the mean significantly)
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Introduction > Data protection mechanisms Outline

A data privacy problem? Why?

• Disclosure from the computation (data analysis)

• Example of trivial disclosure: Ms. Rich attends pyshiatric unit.

◦ Q: Mean income of admitted to psychiatric unit given Town=Alaçatı?

◦ Monthly salaries when Town=Alaçatı:

800 1000 700 900 1000 800 600 800 1200 1400 ⇒ mean = 920

◦ Mean seems fine, no “personal data” (aggregate), is this ok ?

NO!!:

◦ Adding Ms. Rich’s salary 70,000:

800 1000 700 900 1000 800 600 800 1200 1400 70000

⇒ mean = 7200,00 !!

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit
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Introduction

A data privacy context:

Privacy models
(how to solve this?: provide a definition)
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Computational definitions of privacy?

• How to solve this?

◦ Provide a definition !!

Vicenç Torra; Fuzzy meets privacy INFUS 2020 11 / 50



Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

• How to solve this?

◦ Provide a definition !!

◦ Well, not one, there are lots of them:

◦ Privacy models:

computational definitions of privacy
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

• Privacy models: computational definitions of privacy

◦ Definitions? Why many?

◦ Different focuses. E.g.,

⋆ Disclosure from data

⋆ Disclosure from computation, query, data analysis
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

Privacy models. A computational definition for privacy. Examples.

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.

• Homomorphic encryption. We want to avoid access to raw data

and partial computations.
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

Privacy models. A computational definition for privacy. Publish a DB

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• k-Anonymity, l-diversity. l possible categories

• Interval disclosure. The value for an attribute is outside an interval

computed from the protected value: values different enough.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

?
X X’
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

Privacy models. A computational definition for privacy. Publish a DB

• Modify DB X to obtain a DB X’ compliant with the privacy model.

Original DB X:

Respondent City Age Illness

DRR İstanbul 30 Heart attack

ABD İstanbul 32 Cancer

COL İstanbul 33 Cancer

GHE Konak (İzmir) 62 AIDS

CIO Alaçatı(İzmir) 65 AIDS

HYU Konak (İzmir) 60 Heart attack

Published DB X ′:

——– City Age Illness

— İstanbul 30 Cancer

— İstanbul 30 Cancer

— İstanbul 30 Cancer

— İzmir 60 AIDS

— İzmir 60 AIDS

— İzmir – ——
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

• Difficulties

◦ Naive anonymization does not work,

highly identifiable data, high dimensional data

◦ Anonyimization causes information loss

• Examples of successful reidentification attacks

◦ Sweeney analysis of USA population,

◦ data from mobile data (home + work reidentifies a person),

◦ shopping cards

(high dimensional, large number of shopping elements),

◦ film ratings (high dimensional, large number of film)
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

Privacy models. A computational definition for privacy. Compute result

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.

• Homomorphic encryption. We want to avoid access to raw data

and partial computations.

?

f(X) g(X)

X
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

• Difficulties.

◦ A simple function can give information on who is in the database

◦ Modifying the function may lead to high information loss

◦ Function-dependent solution

◦ E.g., mean salary,

◦ if mean outcome is not affected by a single person, is it useful?

Vicenç Torra; Fuzzy meets privacy INFUS 2020 18 / 50



Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

Privacy models. A computational definition for privacy. Share a result

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

?
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

Privacy models. A computational definition for privacy. Share a result

• Compute

f(DB1,DB2,DB3,DB4)

without sharing DB1,DB2,DB3,DB4

• Example: national age mean of hospital-acquired infection patients

(hospitals do not want to share the age of their infected patients!)
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Introduction > Data protection mechanisms Outline

Computational definitions of privacy?

• Difficulties

◦ Distributed approach (no trusted-third party) – computational cost

of solutions

◦ Function-dependent solution
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Introduction

A data privacy context:

Masking methods
(to protect a database against

reidentification)
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Introduction > Masking methods Outline

Masking methods

Anonymization/masking method: Given a data file X compute

a file X ′ with data of less quality.

?
X X’
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Introduction > Masking methods Outline

Research questions

Original 
microdata (X)

Masking
method

Protected
microdata (X’)

Result(X’)

Disclosure

Measure

Information
Loss
Measure

Data
analysis

Result(X)

Data
analysis

Risk

Masking: Less quality (information loss) less risk (disclosure risk)

X ′ = ρ(X): ILf(X,X ′) = divergence(f(X), f(X ′)),

DRX(X ′)=recordLinkage(X,X ′)
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Masking Outline

Introduction

Fuzzy sets in data masking
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Masking Outline

Introduction

Fuzzy sets in data masking

Fuzzy sets based microaggregation
(clustering-based masking method)
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Fuzzy sets based microaggregation Outline

Fuzzy sets based microaggregation

• Microaggregation: small clusters; then, replace data by cluster centers
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Fuzzy sets based microaggregation Outline

Fuzzy sets based microaggregation

• Microaggregation:

◦ Privacy: each cluster at least k records

◦ Utility: small clusters to have low information loss
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Fuzzy sets based microaggregation Outline

Fuzzy sets based microaggregation

• Microaggregation: Implementation

◦ Build clusters

◦ Define cluster representatives

◦ Replace records by cluster representatives
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Fuzzy sets based microaggregation Outline

Fuzzy sets based microaggregation

• Microaggregation:

◦ Privacy: each cluster at least k records

◦ Utility: small clusters to have low information loss

◦ If k = 1, one cluster = one record. No loss, maximum risk

◦ If k = |X|, only one cluster = X. Maximum loss, no risk
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Fuzzy sets based microaggregation Outline

Fuzzy sets based microaggregation

• Microaggregation: Formalization in terms of error minimization

Minimize SSE =
c

∑

i=1

∑

x∈X

χi(x)(d(x, pi))
2 (1)

Subject to
c

∑

i=1

χi(x) = 1 for all x ∈ X

2k ≥
∑

x∈X

χi(x) ≥ k for all i = 1, . . . , c

χi(x) ∈ {0, 1}

• Similar to c-means but with constraints on number of records in clusters
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Masking Outline

Introduction

Fuzzy sets in data masking

Why fuzzy sets based microaggregation?
(the transparency principle)
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Terminology > Transparency Outline

Transparency

• The transparency principle in data privacy1

Given a privacy model, a masking method should be compliant with this privacy

model even if everything about the method is public knowledge. (Torra, 2017, p17)

1Similar to the Kerckhoffs’s principle (Kerckhoffs, 1883) in cryptography: a cryptosystem should be

secure even if everything about the system is public knowledge, except the key
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Terminology > Transparency Outline

Transparency

• The transparency principle in data privacy1

Given a privacy model, a masking method should be compliant with this privacy

model even if everything about the method is public knowledge. (Torra, 2017, p17)

• Transparency a requirement of Trustworthy AI. Related to three elements:

traceability, explicability (why decisions are made), and comunication (distinguish AI

systems from humans). Transparency in data privacy relates to traceability.

1Similar to the Kerckhoffs’s principle (Kerckhoffs, 1883) in cryptography: a cryptosystem should be

secure even if everything about the system is public knowledge, except the key
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Transparency Outline

Fuzzy sets based microaggregation

• Transparency

◦ DB is published: give details on how data has been produced.

Description of any data protection process and parameters

◦ Positive effect on data utility. Use information in data analysis.

◦ Negative effect on risk. Intruders use the information to attack.
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Transparency Outline

Fuzzy sets based microaggregation

• Transparency

◦ DB is published: give details on how data has been produced.

Description of any data protection process and parameters

◦ Positive effect on data utility. Use information in data analysis.

◦ Negative effect on risk. Intruders use the information to attack.

In microaggregation.

◦ An intruder can infer in which cluster is a record

◦ If different variables are microaggregated independently, intersection

attacks can lead to reidentification
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Transparency Outline

Fuzzy sets based microaggregation

• Transparency.

◦ An intruder can infer in which cluster is a record

◦ If different variables are microaggregated independently, intersection

attacks can lead to reidentification
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Transparency Outline

Fuzzy sets based microaggregation

• Transparency.

◦ An intruder can infer in which cluster is a record

◦ If different variables are microaggregated independently, intersection

attacks can lead to reidentification

• Fuzzy clustering can fuzzify membership to clusters

• A fuzzy approach can reduce disclosure risk
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Masking Outline

Introduction

Fuzzy sets in data masking

Fuzzy microaggregation: definition
(using fuzzy clustering)
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Fuzzy microaggregation: Definition Outline

Fuzzy sets based microaggregation

• Consider fuzzy c-means, the usual algorithm for fuzzy clustering

⇒ to achieve fuzzy assignment of elements to clusters
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Fuzzy microaggregation: Definition Outline

Fuzzy sets based microaggregation

• Consider fuzzy c-means, the usual algorithm for fuzzy clustering

⇒ to achieve fuzzy assignment of elements to clusters

Step 1: Generate an initial U and V

Step 2: Solve minU∈MJ(U, V ) computing:

uij =
(

c
∑

r=1

( ||xj − vi||
2

||xj − vr||2

)
1

m−1
)−1

Step 3: Solve minV J(U, V ) computing:

vi =

∑

j=1
n(uij)

mxj
∑n

j=1
(uij)m

Step 4: If the solution does not converge, go to step 2; otherwise,

stop
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Fuzzy microaggregation: Definition Outline

Fuzzy sets based microaggregation

• Implement fuzzy microaggregation with parameters c, m1, and m2 as:

Step 1: Apply FCM with given c and a given m := m1

Step 2: For each xj in X, compute memberships to all clusters

i = 1, . . . , c for a given m2:

uij =
(

c
∑

r=1

( ||xj − vi||
2

||xj − vr||2

)
1

m2−1
)−1

Step 3: For each xj determine a random value χ ∈ [0, 1] using a

uniform distribution in [0,1], and

assign xj to cluster according probability distr. u1j, . . . , ucj

Formally, given χ select the ith cluster satisfying
∑

k<i ukj < χ <
∑

k≤i ukj
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Fuzzy microaggregation: Definition Outline

Fuzzy sets based microaggregation

• Properties:

1. The larger the m1, the larger IL (information loss)

Clusters collide, all protected data collapses to vi = vj = X̄.

2. The larger the m2, the larger IL.

All memberships tend to uij = 1/c.

Any record can be replaced by any cluster center.

All clusters, same size. If c = |X|/k+, (probabilistically) k-anonymity

3. The smaller the number of clusters c, the larger IL

Minimum IL with c = |X|, Maximum IL with c = 1.
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Masking Outline

Introduction

Fuzzy sets in data masking

Other uses of fuzzy set theory

(in IL and DR)
(in information loss and disclosure risk)
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Fuzzy in IL + DR Outline

Fuzzy in IL + DR

• Fuzziness in Information loss.

◦ Compare X and X ′ w.r.t. analysis (f)

ILf(X,X ′) = divergence(f(X), f(X ′))

?
X X’

f(X) = f(X’)?
◦ f is fuzzy clustering. Extensive work with S. Miyamoto and Y. Endo.

◦ Difficulty: How to compare fuzzy clusters? (fuzzy clust. suboptimal)
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Fuzzy in IL + DR Outline

Fuzzy in IL + DR

• Fuzziness in disclosure risk assessment.

◦ Link databases using fuzzy integrals based distances

?
X

Record linkage

X’ / A

B

Vicenç Torra; Fuzzy meets privacy INFUS 2020 42 / 50



Fuzzy in IL + DR Outline

Fuzzy in IL + DR

• Distance based record linkage: d(Ai, Bi)

B
A

• Find the nearest record
(nearest in terms of a distance)

• Formally, 2 sets of vectors
Ai = (a1, . . . , aN ),
(ai protected version of bi)
Bi = (b1, . . . , bN)

• Vk(ai): kth variable, ith record
• Distance d(Vk(ai), Vk(bj))

for all pairs (ai, bj).
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Fuzzy in IL + DR Outline

Fuzzy in IL + DR

• Distance based record linkage: d(Ai, Bi)

B
A

• Find the nearest record
(nearest in terms of a distance)

• Formally, 2 sets of vectors
Ai = (a1, . . . , aN ),
(ai protected version of bi)
Bi = (b1, . . . , bN)

• Vk(ai): kth variable, ith record
• Distance d(Vk(ai), Vk(bj))

for all pairs (ai, bj).

• Distance based on aggregation functions C

E.g., C = CI (Choquet integral)

• Worst-case scenario: learn weights/fuzzy measure

→ Optimization problem
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Fuzzy in IL + DR Outline

Fuzzy in IL + DR

• Case C = WM :

Minimise
N
∑

i=1

Ki

Subject to :

N
∑

k=1

pi(d(Vk(ai), Vk(bj))− d(Vk(ai), Vk(bi))) + CKi > 0

Ki ∈ {0, 1}

N
∑

i=1

pi = 1

pi ≥ 0

• Similar with C = CI (Choquet integral)

• Extensive work comparing different scenarios and C.
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Fuzzy in IL + DR Outline

Fuzzy in IL + DR

• Results give:

◦ number reidentifications in the worst-case scenario

◦ Importance of weights (or sets of weights in fuzzy measures)

• Examples:

◦ Choquet integral (CI):

010111 (0.82) 011110 (0.82)

011111 (0.82)

100111 (0.99) 101110 (0.99)

101111 (0.99)

110110 (0.99)

110111 (0.99) 111110 (0.99)

111111 (1.0)

◦ Weighted Mean (WM):
⋆ V1 0.016809573957189, V2 0.00198841786482128, V3 0.00452923777074791
⋆ V4 0.138812880222131, V5 0.835523953314578, V6 0.00233593687053289
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Summary

• Outline the use of fuzzy methods in database privacy

◦ Data protection

◦ Information loss measures

◦ Disclosure risk

• Fuzzy in other models: multiparty computation and differential privacy

• Research directions related to fuzzy set theory

◦ Constraints on data (e.g., net + tax = gross), fuzzy microaggregation

◦ Hesitant fuzzy clustering (e.g., several cluster centers x cluster)

Vicenç Torra; Fuzzy meets privacy INFUS 2020 47 / 50



References Outline

References
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