IUKM 2019 - Nara, Japan

Choquet integral in decision making and metric learning

Vicenç Torra Hamilton Institute, Maynooth University Ireland

March 27, 2018

Basics and objectives:

- Using Choquet integral in two types of applications decision and metric learning (reidentification)
- Distances
- and distribution
 - (for non-additive measures)

1. Preliminaries

- Choquet integral: mathematical perspective
 - Non-additive measures
 - \circ Now we need an integral
- Choquet integral: Application perspective
 - \circ Aggregation operators and CI in decision: MCDM
 - \circ Aggregation operators and CI in reidentification: risk assessment
 - \circ Zooming out
- 2. Distances in classification (filling the gaps)
- 3. Distributions

Choquet integral: a mathematical introduction

Non-additive measures

Definitions: measures

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) for every countable sequence A_i (i ≥ 1) of A that is pairwise disjoint (i.e,. A_i ∩ A_j = Ø when i ≠ j)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

Definitions: measures

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) for every countable sequence A_i (i ≥ 1) of A that is pairwise disjoint (i.e,. A_i ∩ A_j = Ø when i ≠ j)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

Finite case: $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, B

Additive measures.

Example:

• Lebesgue measure. Unique measure λ s.t. $\lambda([a,b])=b-a$ for every finite interval [a,b]

Additive measures.

Example:

- Lebesgue measure. Unique measure λ s.t. $\lambda([a,b])=b-a$ for every finite interval [a,b]
- Probability. When $\mu(X) = 1$.

Additive measures.

Example:

- Lebesgue measure. Unique measure λ s.t. $\lambda([a,b])=b-a$ for every finite interval [a,b]
- Probability. When $\mu(X) = 1$.
- Or just price ...

Non-additive measures

- (X, \mathcal{A}) a measurable space, a non-additive (fuzzy) measure μ on (X, \mathcal{A}) is a set function $\mu : \mathcal{A} \to [0, 1]$ satisfying the following axioms:
- (i) $\mu(\emptyset) = 0$, $\mu(X) = 1$ (boundary conditions) (ii) $A \subseteq B$ implies $\mu(A) \le \mu(B)$ (monotonicity)

Non-additive measures

- (X, \mathcal{A}) a measurable space, a non-additive (fuzzy) measure μ on (X, \mathcal{A}) is a set function $\mu : \mathcal{A} \to [0, 1]$ satisfying the following axioms:
- (i) $\mu(\emptyset) = 0$, $\mu(X) = 1$ (boundary conditions) (ii) $A \subseteq B$ implies $\mu(A) \le \mu(B)$ (monotonicity)
- Naturally, additivity implies monotonicity

• E.g., $B = A \cup C$ (with $A \cap C = \emptyset$) then $\mu(B) = \mu(A) + \mu(C) \ge \mu(A)$

• But in non-additive measures, we allow

$$\mu(B = A \cup C) < \mu(A) + \mu(C)$$
$$\mu(B = A \cup C) > \mu(A) + \mu(C)$$

As e.g., $\mu(B)=0.5<\mu(A)+\mu(C)=0.3+0.4=0.7$ A way to represent interactions

- Non-additive measures. Price
 - \circ When we have a discount, for disjoints A and B, we have

 $\mu(A \cup B) < \mu(A) + \mu(B)$ but $\mu(A \cup B) \ge \mu(A)$

• There quite a large number of families of measures

- Non-additive measures. Distorted probabilities
 - $\circ m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability.

$$\mu_{m,P}(A) = m(P(A)) \tag{1}$$

Used in economics: Prospect theory (Kahneman and Tversky, 1979).
 Small probabilities tend to be overestimated, while large ones, underestimated.

- Non-additive measures. Distorted Lebesgue
 - $\circ m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; λ be the Lebesgue measure.

$$\mu_m(A) = m(\lambda(A)) \tag{2}$$

- Non-additive measures. Distorted Lebesgue
 - $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; λ be the Lebesgue measure.

$$\mu_m(A) = m(\lambda(A)) \tag{2}$$

• If $m(x) = x^2$, then $\mu_m(A) = (\lambda(A))^2$ • If $m(x) = x^p$, then $\mu_m(A) = (\lambda(A))^p$

- Non-additive measures. A large number of families
 - \circ Sugeno λ-measures: $\mu(A \cup B) = \mu(A) + \mu(B) + \lambda \mu(A) \mu(B)$ (λ > −1)
 - \circ For $\mathcal P$ a non empty set of probability measures, the upper and lower probabilities
 - $\triangleright \bar{P}(A) = \sup_{P \in \mathcal{P}} P(A)$
 - $\triangleright \underline{P}(A) = \inf_{P \in \mathcal{P}} P(A)$
 - (dual in the sense: $\overline{P}(A) = 1 \underline{P}(A^c)$)
- m-dimensional distorted probabilities (NT/NT, 2005, 2011, 2012, 2018)

Vicenç Torra; Choquet integral in decision making and metric learning

Now we need an integral

• Additive measure: the way you add areas does not change¹ results

- Riemann integral (a) vs Lebesgue integral (c)
 - Riemann sum: $\sum_{I \in \mathcal{C}} f(x(I)) * \mu(I)$ (\mathcal{C} non-overlapping collection, x(I) an element of I)
 - Lebesgue sum: $\sum_{a_i \in Range(f)} (a_i a_{i-1}) \mu(\Gamma(a_i))$ where $\Gamma(a) := \{x | f(x) \ge a\}$

¹Well, if it is calculable

• Lebesgue integral

$$\int f d\mu := \int_0^\infty \mu_f(r) dr$$
 where $\mu_f(r) = \mu(\{x | f(x) \ge r\})$

- Choquet integral (Choquet, 1954):
 - $\circ \mu$ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. μ , where $\mu_f(r) := \mu(\{x | f(x) > r\})$:

$$(C)\int fd\mu := \int_0^\infty \mu_f(r)dr.$$

- Choquet integral (Choquet, 1954):
 - μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. μ , where $\mu_f(r) := \mu(\{x | f(x) > r\})$:

$$(C)\int fd\mu := \int_0^\infty \mu_f(r)dr.$$

- Properties.
 - When the measure is additive, this is the Lebesgue integral (standard integral)

Choquet integral. Discrete version

• μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. $\mu,$

$$(C)\int fd\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})]\mu(A_{s(i)}),$$

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0 \leq f(x_{s(1)}) \leq \cdots \leq f(x_{s(N)}) \leq 1$, and where $f(x_{s(0)}) = 0$ and $A_{s(i)} = \{x_{s(i)}, \dots, x_{s(N)}\}.$

• Choquet integral. Example:

• Distorted probability $\mu_m(A) = m(P(A))$ (with m(0) = 0, m(1) = 1) $CI_{\mu_m}(f)$: (a) \rightarrow max, (b) \rightarrow median, (c) \rightarrow min, (d) \rightarrow mean (expectation)

• Choquet integral. Example:

• Distorted probability $\mu_m(A) = m(P(A))$ (with m(0) = 0, m(1) = 1) $CI_{\mu_m}(f): (a) \to max, (b) \to median, (c) \to min, (d) \to mean (expectation)$

Opper and lower probabilities: bounds for expectations
 CI_P(f) ≤ inf_P E_P(f) ≤ sup_P E_P(f) ≤ CI_{P̄}(f)
 (C) ∫ χ_Adμ = μ(A)

Application I Aggregation operators & Choquet integral in Decision

MCDM: Aggregation for (numerical) utility functions

• Decision, utility functions

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

- Decision making process:
- Modelling=Criteria + Utilities, aggregation, selection

	Number of	Security	Price	Confort	trunk
	seats				
Ford T	0	20	0	20	0
Seat 600	60	0	100	0	50
Simca 1000	100	30	100	50	70
VW Beetle	80	50	30	70	100
Citroën Acadiane	20	40	60	40	0

Decision, utility functions
 Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }
 Criteria = { Seats, Security, Price, Comfort, trunk}
 Decision making process:

Decision, utility functions
 Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }
 Criteria = { Seats, Security, Price, Comfort, trunk}
 Decision making process:

Modelling, aggregation = \mathbb{C} , selection

	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$
Ford T	0	20	0	20	0	8
Seat 600	60	0	100	0	50	42
Simca 1000	100	30	100	50	70	70
VW	80	50	30	70	100	66
Citr. Acadiane	20	40	60	40	0	32

• MCDM: Aggregation to deal with contradictory criteria

- MCDM: Aggregation to deal with contradictory criteria
- But there are occasions in which ordering is clear

when $a_i \leq b_i$ it is clear that $a \leq b$

E.g.,						
	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$
Seat 600	60	0	100	0	50	42
Simca 1000	100	30	100	50	70	70
- MCDM: Aggregation to deal with contradictory criteria
- But there are occasions in which ordering is clear

when $a_i \leq b_i$ it is clear that $a \leq b$

E.g.,						
	Seats	Security	Price	Comfort	trunk	$\mathbb{C} = AM$
Seat 600	60	0	100	0	50	42
Simca 1000	100	30	100	50	70	70

Aggregation operators are appropriate because they satisfy monotonicity

• Decision making process:

• Decision making process:

Modelling, aggregation, selection=order,first

• Decision making process:

Modelling, aggregation, selection=order,first

- The function of aggregation functions
 - Different aggregations lead to different orders (in the PF)

• Decision making process:

Modelling, aggregation, selection=order,first

- The function of aggregation functions
 - Different aggregations lead to different orders (in the PF)
 - Aggregation establishes which points are equivalent

Different aggregations, lead to different curves of points (level curves)

- Aggregation functions and different level curves
 - Arithmetic mean
 - Geometric mean, Harmonic mean, ...
 - Weighted mean
 - OWA, ...

- Aggregation functions and different level curves
 - Arithmetic mean
 - o Geometric mean, Harmonic mean, ...
 - Weighted mean
 - OWA, ...
 - Choquet integral (generalization of the AM, WM, OWA)
 - ▷ to represent interactions between criteria
 - > non-independent criteria allowed

- Aggregation functions and parameters
 - Arithmetic mean: no parameters
 - Geometric mean, Harmonic mean, ...: : no parameters
 - Weighted mean: weighting vector
 - OWA, ...: weighting vector
 - Choquet integral (generalization of the AM, WM, OWA) a measure
 - ▷ to represent interactions between criteria

w(*security*,*price*,*confort*) > (or <) *w*(*security*)+*w*(*price*)+*w*(*confort*)

> non-independent criteria allowed

 $\mu(\{c_1, c_2\}) \neq \mu(\{c_1\}) + \mu(\{c_2\})$

 $\triangleright (C) \int \chi_A d\mu = \mu(A)$

MCDM: What fuzzy measures (and CI) can represent?

- Choquet integral can, and WM/Probability model cannot
 - An element/criteria is added into the set, and the preference is reversed

- Choquet integral can, and WM/Probability model cannot
 - \circ An element/criteria is added into the set, and

the preference is reversed

• Example. Buying a house.

When public transport is available, the preference changes²

- If there is no bus I prefer a public library than a restaurant, but if there is a bus then I instead prefer the restaurant near.
- $\triangleright \text{ Mathematically, with } B=Bus, \ R=Restaurant, \ L=Library \text{ we have } \\ \mu(\{R\}) \leq \mu(\{L\}) \text{ but } \mu(\{R,B\}) \geq \mu(\{L,B\})$

²Ellesberg's paradox.

MCDM: Learn/identify the parameters (e.g. the measures)

• Available information?

0	Find measure	es from Seats	outcome Security	e: <mark>col</mark> Price	<mark>umn vect</mark> Comfort	or with trunk	$\begin{array}{c} \text{outcome} \\ \mathbb{C} = CI_{\mu} \end{array}$
	Seat 600	60	0	100	0	50	42
	Simca 1000	100	30	100	50	70	70

0	\sim Find measures from preferences – (partial) order <: $S = \{(r_i, t_i)\}_i$						
		Seats	Security	Price	Comfort	trunk	$\mathbb{C} = CI_{\mu}$
	Seat 600	60	0	100	0	50	4th
	Simca 1000	100	30	100	50	70	1st

- Available information?
 - Measures from outcome: a column vector $\Rightarrow \min \sum (\mathbb{C}_P(a_r) o_r)^2$
 - Measures from preferences (partial) order <: $S = \{(r_i, t_i)\}_i$
 - $\triangleright \text{ Formulation: Find } \mu \text{ such that, for all } (r,t) \in S, \text{ it follows that} \\ \mathbb{C}_P(\text{evaluation-car } r) > \mathbb{C}_P(\text{evaluation-car } t) \\ \text{or, with } a_r \text{ and } a_s \text{ for rows } r \text{ and } s, \\ \mathbb{C}_P(a_{r1}, \dots, a_{rn}) > \mathbb{C}_P(a_{t1}, \dots, a_{tn}) \\ \text{Unfortunately, often, no solution: minimize failures } y_{(r,t)} \geq 0 \\ \mathbb{C}_P(a_{r1}, \dots, a_{rn}) \mathbb{C}_P(r_{t1}, \dots, a_{tn}) + y_{(r,t)} > 0. \end{cases}$

- Available information?
 - Measures from outcome: a column vector $\Rightarrow \min \sum (\mathbb{C}_P(a_r) o_r)^2$
 - Measures from preferences (partial) order <: $S = \{(r_i, t_i)\}_i$
 - \triangleright Formulation: Find μ such that, for all $(r,t)\in S$, it follows that

Minimize $\sum_{(r,t)\in S} y_{(r,t)}$ Subject to $\mathbb{C}_P(a_{r1},\ldots,a_{rn}) - \mathbb{C}_P(a_{t1},\ldots,a_{tn}) + \begin{array}{l} y_{(r,t)} > 0 \\ y_{(r,t)} \ge 0 \end{array}$ logical constraints on P

- Aggregation and selection
 - $\circ\,$ Selection of the one with maximum value of $\mathbb{C}=CI$ with μ (maximum distance to nadir worst combination)

$$d((a_1,\ldots,a_n),(0,\ldots,0))$$

• Selection of the one with minimum distance to ideal $d((a_1, \ldots, a_n), (100, \ldots, 100))$

where d is computed as an aggregation

Application II The Choquet integral in metric learning: reidentification

- Re-identification. Record linkage for databases, supervised approach
 - \circ ML/Optimization for distance-based RL (A and B aligned).
 - ▷ Goal: as many correct reidentifications as possible:

for each record *i*, we need $d(a_i, b_j) \ge d(a_i, b_i)$ for all *j*

 $a_i = (a_{i1}, \ldots, a_{in})$ and $b_i = (b_{i1}, \ldots, b_{in})$

- Re-identification. Record linking for databases. Supervised approach
 - ML/Optimization for distance-based approach. (A and B aligned)
 ⊳ Goal: as many correct reidentifications as possible. But, if error for a_i: K_i = 1 and d(a_i, b_j)+CK_i ≥ d(a_i, b_i) for all j
 ⊳ or, expanding d, C_p(diff₁(a_{i1}, b_{j1}),..., diff_n(a_{in}, b_{jn})+CK_i ≥ C_p(diff₁(a_{i1}, b_{i1}),..., diff_n(a_{in}, b_{in}))
 ◦ Formalization:

$$\begin{array}{ll} \text{Minimize} & \sum_{i=1}^{N} K_i \\ \text{Subject to:} \mathbb{C}_p(diff_1(a_{i1}, b_{j1}), \dots, diff_n(a_{in}, b_{jn})) - \\ & - \mathbb{C}_p(diff_1(a_{i1}, b_{i1}), \dots, diff_n(a_{i1}, b_{i1})) + CK_i > 0 \\ & K_i \in \{0, 1\} \\ & \text{Additional constraints according to } \mathbb{C} \end{array}$$

- Re-identification. Record linking for databases. Supervised approach
 - \circ ML/Optimization for distance-based approach. (A and B aligned) \circ Formalization for CI

 $\begin{array}{ll} \text{Minimize} & \sum_{i=1}^{N} K_i \\ \text{Subject to:} & CI_{\mu}(diff_1(a_{i1}, b_{j1}), \dots, diff_n(a_{in}, b_{jn})) - \\ & - CI_{\mu}(diff_1(a_{i1}, b_{i1}), \dots, diff_n(a_{i1}, b_{i1})) + CK_i > 0 \\ & K_i \in \{0, 1\} \\ & \text{Additional constraints for } \mu \end{array}$

- Re-identification. Record linking for databases. Supervised approach
 - \circ ML/Optimization for distance-based approach. (A and B aligned) \circ Formalization for Cl

 $\begin{array}{ll} \text{Minimize} & \sum_{i=1}^{N} K_i \\ \text{Subject to:} & CI_{\mu}(diff_1(a_{i1}, b_{j1}), \dots, diff_n(a_{in}, b_{jn})) - \\ & - CI_{\mu}(diff_1(a_{i1}, b_{i1}), \dots, diff_n(a_{i1}, b_{i1})) + CK_i > 0 \\ & K_i \in \{0, 1\} \\ & \text{Additional constraints for } \mu \end{array}$

(but also WM, OWA, and Bilinear distance)

Zooming out: trying to understand

Aggregation, distances, and independence

• Aggregation and distance.

Ο

- Arithmetic mean (AM): Euclidean distance
- Weighted mean (WM): Weighted euclidean
- Choquet integral (CI): Choquet integral-based distance
 - : Bilinear/Mahalanobis distance
- In a single picture: Mahalanobis and Choquet distance

Aggregation, distance and independence.

Only with Choquet integral and Mahalanobis distances

- ▷ Mahalanobis: covariance matrix
- Choquet integral: fuzzy measure
- In a single framework: Mahalanobis and Choquet *distance*

Filling gaps:

Aggregation, distances, and independence

- Mahalanobis distance.
 - $\circ\,$ between $\mathbf{x}\in\mathbb{R}^d$ and a vector $\mathbf{m}\in\mathbb{R}^d$ with respect to the covariance matrix Σ

$$(\mathbf{x} - \mathbf{m})\Sigma^{-1}(\mathbf{x} - \mathbf{m}))$$

- Choquet integral distance.
 - \circ between $\mathbf{x}\in \mathbb{R}^d$ and a vector $\mathbf{m}\in \mathbb{R}^d$ with respect to a non-additive measure μ

$$CI_{\mu}((\mathbf{x}-\mathbf{m})\circ(\mathbf{x}-\mathbf{m})))$$

 $\mathbf{v} \circ \mathbf{w}$ is the Hadamard or Schur (elementwise) product of \mathbf{v} and \mathbf{w} (i.e., $(\mathbf{v} \circ \mathbf{w}) = (v_1 w_1 \dots v_n w_n)$).

• Choquet-Mahalanobis integral distance.

 $\circ \text{ between } \mathbf{x} \in \mathbb{R}^d \text{ and a vector } \mathbf{m} \in \mathbb{R}^d$ with respect to μ and a positive-definite matrix Q

$$CMI(\mathbf{m}, \mu, \mathbf{Q}) = CI_{\mu}(\mathbf{v} \circ \mathbf{w})$$

where

- ▷ $\mathbf{L}\mathbf{L}^T = \mathbf{Q}$ is the Cholesky decomposition of the matrix \mathbf{Q} , ▷ $\mathbf{v} = (\mathbf{x} - \mathbf{m})^T \mathbf{L}$,
- $\triangleright w = \mathbf{L}^T(\mathbf{x} \mathbf{m})$, and where
- $\triangleright \mathbf{v} \circ \mathbf{w}$ is the Hadamard (elementwise) product of \mathbf{v} and \mathbf{w} .

Choquet integral based distribution: generalized *distance*

Well defined when Σ is a covariance matrix.

 When Σ⁻¹ is a definite-positive matrix, the Cholesky descomposition is unique. This is the case when Σ is a covariance matrix valid for generating a probabilitydensity function.

Proper generalization:

- Generalization of both the Mahalanobis and the Choquet integral based distance.
 - The definition with Σ equal to the identity results into the Choquet integral of $(x \bar{x}) \otimes (x \bar{x})$ with respect to μ .
 - The definition with μ corresponding to an additive probability $\mu(A) = 1/|A|$ results into 1/n of the Mahalanobis distance with respect to Σ .

• Aggregation and distance.

Ο

- Arithmetic mean (AM): Euclidean distance
- Weighted mean (WM): Weighted euclidean
- Choquet integral (CI): Choquet integral-based distance
 - : Bilinear/Mahalanobis distance
- Choquet-Mahalanobis integral: CMI-distance

A natural construction:

Distributions

Distributions

- E.g. in Classification data drawn from normal Gaussian distributions.
 - \circ Parameters $N(\mu,\Sigma)$ determined from real data or known
 - Set of k classes $\Omega = \{\omega_1, \ldots, \omega_k\}$
 - \circ covariance matrices Σ_i
 - \circ means \bar{x}_i

class-conditional probability-density function Gaussian distribution

 $P(x|\omega_i) = \frac{1}{(2\pi)^{m/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2}(x-\bar{x}_i)^T \Sigma_i^{-1}(x-\bar{x}_i)}$

- Define distributions based on the Choquet integral. Why?
 - $\circ\,$ Non-additive measures on a set X permit us to represent interactions between objects in X !!
 - ... similar to covariances but different types of interactions !!

Definition:

- $Y = \{Y_1, \dots, Y_n\}$ random variables; $\mu : 2^Y \to [0, 1]$ a non-additive measure and **m** a vector in \mathbb{R}^n .
- The exponential family of Choquet integral based class-conditional probability-density functions is defined by:

$$PC_{\mathbf{m},\mu}(\mathbf{x}) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}((\mathbf{x}-\mathbf{m})\circ(\mathbf{x}-\mathbf{m}))}$$

where K is a constant that is defined so that the function is a probability, and where $\mathbf{v} \circ \mathbf{w}$ denotes the Hadamard or Schur (elementwise) product of vectors \mathbf{v} and \mathbf{w} (i.e., $(\mathbf{v} \circ \mathbf{w}) = (v_1w_1 \dots v_nw_n)$).

Notation:

• We denote it by $C(\mathbf{m}, \mu)$.

Distributions

• Shapes (level curves)

(a) $\mu_A(\{x\}) = 0.1$ and $\mu_A(\{y\}) = 0.1$, (b) $\mu_B(\{x\}) = 0.9$ and $\mu_B(\{y\}) = 0.9$, (c) $\mu_C(\{x\}) = 0.2$ and $\mu_C(\{y\}) = 0.8$, and (d) $\mu_D(\{x\}) = 0.4$ and $\mu_D(\{y\}) = 0.9$.

Property:

The family of distributions N(m, Σ) in ℝⁿ with a diagonal matrix Σ of rank n, and the family of distributions C(m, μ) with an additive measure μ with all μ({x_i}) ≠ 0 are equivalent.
 (μ(X) is not necessarily here 1)

Follows from additivity in $\mu = \text{probability} = \text{diagonal } \Sigma$
Property:

The family of distributions N(m, Σ) in ℝⁿ with a diagonal matrix Σ of rank n, and the family of distributions C(m, μ) with an additive measure μ with all μ({x_i}) ≠ 0 are equivalent.
 (μ(X) is not necessarily here 1)

Follows from additivity in $\mu = \text{probability} = \text{diagonal } \Sigma$

Corollary:

• The distribution $N(\mathbf{0}, \mathbb{I})$ corresponds to $C(\mathbf{0}, \mu^1)$ where μ^1 is the additive measure defined as $\mu^1(A) = |A|$ for all $A \subseteq X$.

Properties:

- In general, the two families of distributions $N({\bf m}, {\bf \Sigma})$ and $C({\bf m}, \mu)$ are different.
- $C(\mathbf{m}, \mu)$ always symmetric w.r.t. Y_1 and Y_2 axis.

Properties:

- In general, the two families of distributions $N({\bf m}, {\bf \Sigma})$ and $C({\bf m}, \mu)$ are different.
- $C(\mathbf{m}, \mu)$ always symmetric w.r.t. Y_1 and Y_2 axis.

- Using the CMI distance, we consider both types of interactions
 Mahalanobis: Σ
 - Choquet (measure): μ

Definition:

- $Y = \{Y_1, \ldots, Y_n\}$ random variables, $\mu : 2^Y \to [0, 1]$ a measure, **m** a vector in \mathbb{R}^n , and Q a positive-definite matrix.
- The exponential family of Choquet-Mahalanobis integral based classconditional probability-density functions is defined by:

$$PCM_{\mathbf{m},\mu,\mathbf{Q}}(x) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}(\mathbf{v} \circ \mathbf{w})}$$

where K is a constant that is defined so that the function is a probability, where $\mathbf{L}\mathbf{L}^T = \mathbf{Q}$ is the Cholesky decomposition of the matrix \mathbf{Q} , $\mathbf{v} = (\mathbf{x} - \mathbf{m})^T \mathbf{L}$, $w = \mathbf{L}^T (\mathbf{x} - \mathbf{m})$, and where $\mathbf{v} \circ \mathbf{w}$ denotes the elementwise product of vectors \mathbf{v} and \mathbf{w} .

Notation:

• We denote it by $CMI(\mathbf{m}, \mu, \mathbf{Q})$.

Property:

- The distribution $CMI(\mathbf{m},\mu,\mathbf{Q})$ generalizes the multivariate normal distributions and the Choquet integral based distribution. In addition
 - A $CMI(\mathbf{m}, \mu, \mathbf{Q})$ with $\mu = \mu^1$ corresponds to multivariate normal distributions,
 - $\circ \ {\rm A} \ CMI({\bf m},\mu,{\bf Q}) \ {\rm with} \ Q = \mathbb{I} \ {\rm corresponds} \ {\rm to} \ {\rm a} \ CI({\bf m},\mu).$

Graphically:

• Choquet integral (CI distribution), Mahalobis distance (multivariate normal distribution), generalization (CMI distribution)

1st Example: Interactions only expressed in terms of a measure.

- No correlation exists between the variables.
- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.0$, $\mu_x = 0.01$, $\mu_y = 0.01$.

2nd Example: Interactions only in terms of a covariance matrix.

• CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.10$, $\mu_y = 0.90$.

3rd Example: Interactions both: covariance matrix and measure.

• CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.01$, $\mu_y = 0.01$.

- spherical, elliptical distributions
- ${\rm o}\,$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$

- spherical, elliptical distributions
- ${\rm o}$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$
- Neither $CMI(\mathbf{m}, \mu, \mathbf{Q}) \subseteq / \supseteq$ spherical / elliptical distributions.

- spherical, elliptical distributions
- ${\rm o}\,$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$
- Neither $CMI(\mathbf{m}, \mu, \mathbf{Q}) \subseteq / \supseteq$ spherical / elliptical distributions.

Example:

• Non-additive μ : $CMI(\mathbf{m}, \mu, \mathbf{Q})$ not repr. spherical/elliptical

- spherical, elliptical distributions
- ${\rm o}\,$ They generalize, respectively, $N({\bf 0},\mathbb{I})$ and $N({\bf m},\Sigma)$
- Neither $CMI(\mathbf{m}, \mu, \mathbf{Q}) \subseteq / \supseteq$ spherical / elliptical distributions.

Example:

- Non-additive μ : $CMI(\mathbf{m}, \mu, \mathbf{Q})$ not repr. spherical/elliptical
- No *CMI* for the following spherical distribution: Spherical distribution with density

$$f(r) = (1/K)e^{-\left(\frac{r-r_0}{\sigma}\right)^2},$$

where r_0 is a radius over which the density is maximum, σ is a variance, and K is the normalization constant.

Summary

Summary

Summary:

- Choquet integral and non-additive measures for decision and reidentification
- Definition of distances based on the Choquet integral
- Comparison with the Mahalanobis distance
- Construction of distributions
- Relationship with multivariate normal and spherical distributions

Thank you