EUROFUSE 2007

On Distorted Probabilities and Other Fuzzy Measures

Vicenç Torra¹

April, 2007

¹ Institut d'Investigació en Intel·ligència Artificial (IIIA-CSIC)

Joint work with Y. Narukawa (Toho Gakuen, Tokyo, Japan)

- Fuzzy measures.
 - Application in information fusion / aggregation
 - \rightarrow fuzzy integrals
 - Used to represent *background knowledge* in fuzzy integrals

Outline

- Introduction
- Distorted Probabilities
- Extension of Distorted Probabilities
- *m*-dimensional Distorted Probabilities
- Distorted Probabilities and OWA
- Conclusions

Outline

- Introduction
- Distorted Probabilities
- Extension of Distorted Probabilities
- *m*-dimensional Distorted Probabilities
- Distorted Probabilities and OWA
- Conclusions

- Running example
 - A toy example that provides a framework for application of fuzzy measures and aggregation
- A few definitions
 - Aggregation operators
 - Fuzzy measures

- Running example (originally, from Grabisch):
 - From marks on mathematics (M), physics (P) and literature (L) calculate an *overall mark* (all marks on [0,1]) for a set of students.

Student	Μ	Ρ	L	Overall Mark
Nobita	0	0	1	?
Alfred	0	1	0	?
Ezequiel	1	0	0	?
Arare	1	1	0	?
Joan	1	0	1	?
Berta	1	1	1	?

• Then, we can rank the students or select the best.

- Running example (originally, from Grabisch):
 - From marks on mathematics (M), physics (P) and literature (L) calculate an *overall mark* (all marks on [0,1]) for a set of students.
 - Standard approach:
 - * Compute an overall mark
 - \rightarrow using an aggregation operator
 - (often, a parametric aggregation operator)

- Running example (originally, from Grabisch):
 - From marks on mathematics (M), physics (P) and literature (L) calculate an *overall mark* (all marks on [0,1]) for a set of students.
 - Computation of the overall mark: aggregation
 - * Through the weighted mean
 - \cdot We need to define the weights of the subjects

- Running example (originally, from Grabisch):
 - From marks on mathematics (M), physics (P) and literature (L) calculate an *overall mark* (all marks on [0,1]) for a set of students.
 - Computation of the overall mark: aggregation
 - * Through the weighted mean
 - · We need to define the weights of the subjects

- * Through a fuzzy integral
 - \cdot We need to define the measure on the set of subjects

- Running example (originally, from Grabisch):
 - From marks on mathematics (M), physics (P) and literature (L) calculate an *overall mark* (all marks on [0,1]) for a set of students.
 - Computation of the overall mark: aggregation
 - * Through the weighted mean
 - · We need to define the weights of the subjects

 $X = \{P, M, L\}, \ p : X \rightarrow [0, 1]$ with some constraints on p

- * Through a fuzzy integral
 - \cdot We need to define the measure on the set of subjects

 $X = \{P, M, L\}, \ \mu : 2^X \rightarrow [0, 1]$ with some constraints on μ

• Running example: defining a fuzzy measure

- Running example: defining a fuzzy measure
 - 1. Boundary conditions:
 - If all marks zero, final mark equals zero;
 - If all maximum marks, final mark equals maximum mark.
 - 2. Relative importance of scientific versus literary subjects:

The importance of mathematics and physics is greater than the importance of literature.

3. *Redudancy* between mathematics and physics:

Mathematics and physics are similar subjects. The importance of the set containing both should not be larger than their addition.

4. Support between literature and scientific subjects:

Mathematics and literature are complementary subjects.

- Running example: defining a fuzzy measure
 - 1. Boundary conditions:

 $\mu(\emptyset)=0,\ \mu(\{M,P,L\})=1$

The importance of the empty set is 0.

The set consisting of all objects has maximum importance.

2. Relative importance of scientific versus literary subjects: $\mu(\{M\}) = \mu(\{P\}) = 0.45, \ \mu(\{L\}) = 0.3$ The importance of mathematics and physics is greater than the importance of literature.

3. Redudancy between mathematics and physics: $\mu(\{M, P\}) = 0.5 < \mu(\{M\}) + \mu(\{P\})$ Mathematics and physics are similar subjects. T

Mathematics and physics are similar subjects. The importance of the set containing both should not be larger than their addition.

4. Support between literature and scientific subjects:

$$\begin{split} \mu(\{M,L\}) &= \mu(\{P,L\}) = 0.9 > \mu(\{P\}) + \mu(\{L\}) = 0.45 + 0.3 = 0.75 \\ \mu(\{M,L\}) &= \mu(\{P,L\}) = 0.9 > \mu(\{M\}) + \mu(\{L\}) = 0.45 + 0.3 = 0.75 \\ \text{Mathematics and literature are complementary subjects.} \end{split}$$

- Running example: defining weights
 - 1. Boundary conditions:
 - (always true for the weighted mean)
 - 2. Relative importance of scientific versus literary subjects:

$$\mu(\{M\}) = \mu(\{P\}) = 0.45, \ \mu(\{L\}) = 0.3$$

$$\rightarrow p(M) = p(P) = 0.45/1.2 = 0.375, \ p(L) = 0.3/1.2 = 0.25$$

The importance of mathematics and physics is greater than the importance of literature.

• Formalization of the aggregation process: aggregation operators

- Formalization of the aggregation process: aggregation operators
 - Aggregation / fusion of $f: X \to [0,1]$ where X is the information source and f(x) is the data supplied by source x.

Definitions (I)

- Formalization of the aggregation process: aggregation operators
 - Aggregation / fusion of $f: X \to [0,1]$ where X is the information source and f(x) is the data supplied by source x.
 - Weighted mean of a w.r.t. p (where $p_i = p(x_i)$) is $WM_{p_i}(a_1, \ldots, a_N) = \sum_{i=1}^N p_i a_i$

Definitions (I)

- Formalization of the aggregation process: aggregation operators
 - Aggregation / fusion of $f: X \to [0,1]$ where X is the information source and f(x) is the data supplied by source x.
 - Weighted mean of a w.r.t. p (where $p_i = p(x_i)$) is $WM_{p_i}(a_1, \ldots, a_N) = \sum_{i=1}^N p_i a_i$ - Choquet integral of f w.r.t. μ is

$$(C) \int f d\mu = \sum_{i=1}^{N} f(x_{\sigma(i)}) [\mu(A_{\sigma(i)}) - \mu(A_{\sigma(i-1)})]$$

– Sugeno integral of f w.r.t. μ is

$$(S) \int f d\mu = \max_{i=1,N} \min(f(x_{s(i)}), \mu(A_{s(i)}))$$

 σ a permutation of $\{1, ..., N\}$ s.t. $a_{\sigma(i-1)} \ge a_{\sigma(i)}$ for all $i \ge 2$, s a permutation s. t. $a_{s(i-1)} \le a_{s(i)}$, $A_{\sigma(k)} = \{x_{\sigma(j)} | j \le k\}$, $A_{s(i)} = \{x_{s(j)} | i \ge i\}$.

Example

- Running example:
 - Weighted mean:

 $p(L) = 0.3/1.2 = 0.25, \ p(P) = 0.45/1.2 = 0.375, \ p(M) = 0.45/1.2 = 0.375$

- Choquet integral:

$$\begin{split} \mu(\emptyset) &= 0 & \mu(\{M,L\}) = 0.9 \\ \mu(\{M\}) &= 0.45 & \mu(\{P,L\}) = 0.9 \\ \mu(\{P\}) &= 0.45 & \mu(\{M,P\}) = 0.5 \\ \mu(\{L\}) &= 0.3 & \mu(\{M,P,L\}) = 1 \end{split}$$

- Overall mark:

Student	М	Ρ	L	WM	CI
Nobita	0	0	1	0.25	0.3
Alfred	0	1	0	0.375	0.45
Ezequiel	1	0	0	0.375	0.45
Arare	1	1	0	0.75	0.45
Joan	1	0	1	0.625	0.9
Berta	1	1	1	1.0	1.0

Definitions (II)

• Formalization of the aggregation process: fuzzy measures

Definitions (II)

• Formalization of the aggregation process: fuzzy measures

- $\mu : 2^X \to [0, 1]$ is a fuzzy measure: (i) $\mu(\emptyset) = 0$, $\mu(X) = 1$ (boundary conditions) (ii) $A \subseteq B$ implies $\mu(A) \le \mu(B)$ (monotonicity)

Definitions (II)

• Formalization of the aggregation process: fuzzy measures

- $\mu : 2^X \to [0, 1]$ is a fuzzy measure: (i) $\mu(\emptyset) = 0$, $\mu(X) = 1$ (boundary conditions) (ii) $A \subseteq B$ implies $\mu(A) \le \mu(B)$ (monotonicity)

- m is the Möbius transform of μ ($A \subseteq X$):

$$m_{\mu}(A) := \sum_{B \subseteq A} (-1)^{|A| - |B|} \mu(B)$$

- Formalization of the aggregation process: fuzzy measures
 - Unconstrained fuzzy measures require $2^{|X|} 2$ parameters
- Families of fuzzy measures (with reduced complexity):
 - Decomposable fuzzy measures: $\mu(A \cup B) = \mu(A) \perp \mu(B)$ for $A \cap B = \emptyset$
 - k-additive fuzzy measures:
 - m(A) = 0 for all |A| > k
 - *m*-symmetric fuzzy measures

Definitions (IV)

- Formalization of the aggregation process: fuzzy measures
- A key property of k-additive fuzzy measures.
 - $KAFM_{k_0,X}$, the set of all k_0 -additive fuzzy measures.

- Then,

 $KAFM_{1,X} \subset KAFM_{2,X} \subset KAFM_{3,X} \cdots \subset KAFM_{|X|,X}$

- It follows that:
 - 1. $KAFM_{1,X}$ equals the set of additive measures
 - 2. $KAFM_{|X|,X}$ equals the set of all fuzzy measures over X ($KAFM_{|X|,X}$ is the set of unconstrained fuzzy measures)

Definitions (IV)

- Formalization of the aggregation process: fuzzy measures
- A key property of k-additive fuzzy measures.
 - $KAFM_{k_0,X}$, the set of all k_0 -additive fuzzy measures.

- Then,

 $KAFM_{1,X} \subset KAFM_{2,X} \subset KAFM_{3,X} \cdots \subset KAFM_{|X|,X}$

- It follows that:

- 1. $KAFM_{1,X}$ equals the set of additive measures
- 2. $KAFM_{|X|,X}$ equals the set of all fuzzy measures over X ($KAFM_{|X|,X}$ is the set of unconstrained fuzzy measures)
- This family covers the whole set of fuzzy measures
- The smaller k_0 , the less parameters are required

Outline

- Introduction
- Distorted Probabilities
- Extension of Distorted Probabilities
- *m*-dimensional Distorted Probabilities
- Distorted Probabilities and OWA
- Conclusions

- Representation of a fuzzy measure:
 - f and P represent a fuzzy measure μ , iff

$$\mu(A) = f(P(A))$$
 for all $A \in 2^X$

- f a real-valued function, P a probability measure on $(X, 2^X)$
- f is strictly increasing w.r.t. a probability measure P iff P(A) < P(B) implies f(P(A)) < f(P(B))
- f is nondecreasing w.r.t. a probability measure P iff P(A) < P(B) implies $f(P(A)) \leq f(P(B))$

- Representation of a fuzzy measure: distorted probability
 - f and P represent a fuzzy measure μ , iff

$$\mu(A) = f(P(A))$$
 for all $A \in 2^X$

f a real-valued function, P a probability measure on $(X, 2^X)$

- f is strictly increasing w.r.t. a probability measure P iff P(A) < P(B) implies f(P(A)) < f(P(B))
- f is nondecreasing w.r.t. a probability measure P iff P(A) < P(B) implies $f(P(A)) \leq f(P(B))$
- μ is a distorted probability if μ is represented by a probability distribution P and a function f nondecreasing w.r.t. a probability P.

- Representation of a fuzzy measure: distorted probability¹
 - μ is a distorted probability if μ is represented by a probability distribution P and a function f nondecreasing w.r.t. a probability P
- So, for a given reference set X we need:
 - Probability distribution on X: p(x) for all $x \in X$
 - Distortion function f on the probability measure: f(P(A))
 - \rightarrow as μ is a measure: f(0) = 0, f(1) = 1
 - $\rightarrow f$ a nondecreasing fuzzy quantifier

¹Suggested by Edwards (1953) in experimental psycology

- Given a distorted probability ...
 - ... we can apply any fuzzy integral
- E.g.
 - the Choquet integral
 - the Sugeno integral

- Distorted probability and Choquet integral:
 - The WOWA operator can be represented by a Choquet integral with a distorted probability.
 - * WOWA generalizes both the WM and the OWA, using both WM weights and OWA weights.
 - From the distorted probability perspective, in WOWA:
 - \ast the WM weights correspond to the probability distribution
 - * the OWA weights are used to build the distortion function (the nondecreasing fuzzy quantifier)

- Trying to find a characterization ...
 - pre-distorted probability: If $\mu(A) < \mu(B) \Leftrightarrow \mu(A \cup C) < \mu(B \cup C)$ for every $A \cap C = \emptyset$, $B \cap C = \emptyset A, B, C \in 2^X$,
- Distorted probs. (with strictly increasing f) are pre-distorted probabilities (similar result with nondecreasing f: μ(A) < μ(B) implies μ(A ∪ C) ≤ μ(B ∪ C))
- However, the reversal is not true in general.
 (it is true for |X| = 3 and |X| = 4 when μ(A) ≠ μ(B) for all A ≠ B)

- Not all fuzzy measures are distorted probabilities
- Nevertheless,
 - all fuzzy measures are representable by a polynomial f and a probability P as $\mu=f\circ P.$

(nondecreasingness of f can not be guaranteed)

 any fuzzy measure can be represented as the difference of two distorted probabilities:

$$\mu = f^+ \circ P - f^- \circ P$$

 $(f^+ \text{ and } f^- \text{ are strictly increasing polynomials})$

- Some relationships with other measures.
- Distorted probabilities generalize
 - \perp -decomposable fuzzy measures
 - Sugeno λ -measures
 - * if for some fixed $\lambda > -1$, it holds for all $A \cap B = \emptyset$

 $\mu(A \cup B) = \mu(A) + \mu(B) + \lambda \mu(A) \mu(B)$

- Some distorted probabilities are not decomposable fuzzy measures.
- Some distorted probabilities cannot be represented easily with other families of fuzzy measures.

- Some distorted probabilities are not decomposable fuzzy measures.
- Some distorted probabilities cannot be represented easily with other families of fuzzy measures.
- 1st. example (I):

- μ on $X = \{a, b, c\}$ with p(a) = 0.2, p(b) = 0.35, p(c) = 0.45, and

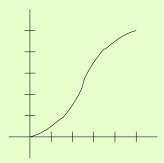
$$f(x) = \begin{cases} 0 & \text{if } x < 0.5 \\ 0.2 & \text{if } 0.5 \le x < 0.6 \\ 0.4 & \text{if } 0.6 \le x < 0.85 \\ 1.0 & \text{if } 0.85 \le x \le 1.0 \end{cases}$$

- Some distorted probabilities are not decomposable fuzzy measures.
- Some distorted probabilities cannot be represented easily with other families of fuzzy measures.
- 1st. example (II):

$$-\mu(\emptyset) = 0, \ \mu(\{a\}) = 0, \ \mu(\{b\}) = 0, \ \mu(\{c\}) = 0, \ \mu(\{a,b\}) = 0.2, \ \mu(\{a,c\}) = 0.4, \ \mu(\{b,c\}) = 0.4, \ \mu(\{a,b,c\}) = 1$$

- μ is a DP but not a \perp -decomposable fuzzy measure because, there is no t-conorm s.t. $\perp(0,0) \neq 0$ \rightarrow as $\mu(\{a,b\}) = 0.2$ when $\mu(\{a\}) = 0$ and $\mu(\{b\}) = 0$, we would require $0.2 = \mu(\{a,b\}) = \perp(\mu(\{a\}), \mu(\{b\})) = \perp(0,0)$.

- Some distorted probabilities are not decomposable fuzzy measures.
- Some distorted probabilities cannot be represented easily with other families of fuzzy measures.
- 2nd. example (I):
 - $\mu_{\mathbf{p},\mathbf{w}}$ over $X = \{x_1, x_2, x_3, x_4, x_5\}$ from (probability distribution) $\mathbf{p} = (0.2, 0.3, 0.1, 0.2, 0.1)$, and function (from $\mathbf{w} = (0.1, 0.2, 0.4, 0.2, 0.1)$):



- Some distorted probabilities are not decomposable fuzzy measures.
- Some distorted probabilities cannot be represented easily with other families of fuzzy measures.
- 2nd. example (II):

- $\mu_{\mathbf{p},\mathbf{w}}$ is a 5-additive fuzzy measure because $m(A) \neq 0$ for all A. - E.g.,

 $m(\{x_1, x_2, x_3, x_4, x_5\}) = 0.50746528,$ $m(\{x_1, x_2, x_3, x_4\}) = -0.2537326.$

There is no k-additive fuzzy measure equivalent to $\mu_{\mathbf{p},\mathbf{w}}$ for k < 5.

Outline

- Introduction
- Distorted Probabilities
- Extension of Distorted Probabilities
- *m*-dimensional Distorted Probabilities
- Distorted Probabilities and OWA
- Conclusions

Extension of Distorted Probabilities: Why?

• Question:

How many fuzzy measures can be represented by a distorted probability?

- Counting the number of distorted probabilities.
 - Assume $X = \{1, 2, 3\}$.
 - Assume μ with $\mu(\{1\}) < \mu(\{2\}) < \mu(\{3\})$.
 - Possible distorted probabilities:

 $\begin{array}{l} \mu(\emptyset) < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,2\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \\ \mu(\emptyset) < \mu(\{1\}) < \mu(\{2\}) < \mu(\{1,2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \end{array}$

- Counting the number of distorted probabilities.
 - Assume $X = \{1, 2, 3\}$.
 - Assume μ with $\mu(\{1\}) < \mu(\{2\}) < \mu(\{3\})$.
 - Possible distorted probabilities:

 $\begin{array}{l} \mu(\emptyset) < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,2\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \\ \mu(\emptyset) < \mu(\{1\}) < \mu(\{2\}) < \mu(\{1,2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \end{array}$

- Constraints for measures $\mu(A) \leq \mu(B)$ if $A \subseteq B$
- Constraints due to probabilities: p(1) < p(2) < p(3) implies p(1) + p(3) < p(1) + p(2) therefore, $\mu(\{1,3\}) < \mu(\{1,2\})$

- Counting the number of distorted probabilities.
 - Assume $X = \{1, 2, 3\}$.
 - Assume μ with $\mu(\{1\}) < \mu(\{2\}) < \mu(\{3\})$.
 - Possible unconstrained fuzzy measures:

$$\begin{split} & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,2\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{1,2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(\{2,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{1,2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,2\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,2\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1,3\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(\{1,2\}) < \mu(X) \\ & \emptyset < \mu(\{1,3\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(\{1,3\}) < \mu(\{1,$$

- Counting the number of distorted probabilities.
 - For $X = \{1, 2, 3\}$, 2/8 of distorted probabilities.
 - For larger sets X ...

... the proportion of distorted probabilities decreases rapidly – For $\mu(\{1\}) \le \mu(\{2\}) \le \ldots$

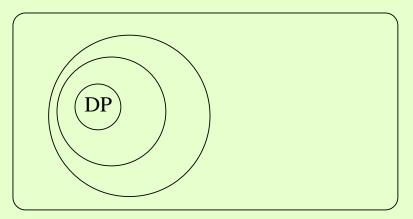
X	Number of possible orderings for	Number of possible orderings for		
	Distorted Probabilities	Fuzzy Measures		
1	1	1		
2	1	1		
3	2	8		
4	14	70016		
5	546	$O(10^{12})$		
6	215470	_		

Motivation

• Goal:

- Cover a larger region of the space of fuzzy measures

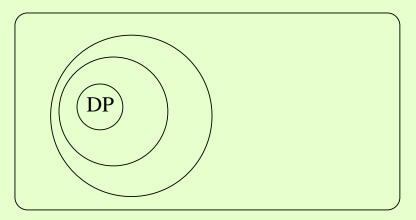
Unconstrained fuzzy measures



Motivation

- Goal:
 - Cover a larger region of the space of fuzzy measures

Unconstrained fuzzy measures



 \rightarrow Similar to the property of k-additive fuzzy measures:

 $KAFM_{1,X} \subset KAFM_{2,X} \subset KAFM_{3,X} \cdots \subset KAFM_{|X|,X}$

Outline

- Introduction
- Distorted Probabilities
- Extension of Distorted Probabilities
- *m*-dimensional Distorted Probabilities
- Distorted Probabilities and OWA
- Conclusions

- In distorted probabilities:
 - One probability distribution
 - One function f to distort the probabilities
- Extension to:
 - -m probability distributions
 - One function f to distort/combine the probabilities

- In distorted probabilities:
 - One probability distribution
 - One function f to distort the probabilities
- Extension to:
 - -m probability distributions P_i
 - * Each P_i defined on X_i
 - * Each X_i is a partition element of X (a dimension)
 - One function f to distort/combine the probabilities

Example

• Running example:

- Reconsidering the fuzzy measure: $\mu(\emptyset) = 0$ $\mu(\{M, L\}) = 0.9$ $\mu(\{M\}) = 0.45$ $\mu(\{P, L\}) = 0.9$ $\mu(\{P\}) = 0.45$ $\mu(\{M, P\}) = 0.5$ $\mu(\{L\}) = 0.3$ $\mu(\{M, P, L\}) = 1$ - Partition on X:

- * $X_1 = \{L\}$ (Literary subjects)
- * $X_2 = \{M, P\}$ (Scientific Subjects)

- *m*-dimensional distorted probabilities.
 - μ is an at most m dimensional distorted probability if

$$\mu(A) = f(P_1(A \cap X_1), P_2(A \cap X_2), \cdots, P_m(A \cap X_m))$$

where,

- $\{X_1, X_2, \cdots, X_m\}$ is a partition of X, P_i are probabilities on $(X_i, 2^{X_i})$, f is a function on \mathbb{R}^m strictly increasing with respect to the *i*-th axis for all $i = 1, 2, \ldots, m$.
- μ is an *m*-dimensional distorted probability if it is an at most *m* dimensional distorted probability but it is not an at most m-1 dimensional.

Example

• Running example: a two dimensional distorted probability

 $\mu(A) = f(P_1(A \cap \{L\}), P_2(A \cap \{M, P\}))$

- with partition on $X = \{M, L, P\}$
 - 1. Literary subject $\{L\}$
 - 2. Science subjects $\{M, P\}$,
- probabilities
 - 1. $P_1(\{L\}) = 1$
 - 2. $P_2(\{M\}) = P_2(\{P\}) = 0.5$,
- and distortion function f defined by

1
$$\{L\}$$
0.30.91.00Ø00.450.5setsØ $\{M\}, \{P\}$ $\{M,P\}$ fØ0.51

Outline

- Introduction
- Distorted Probabilities
- Extension of Distorted Probabilities
- *m*-dimensional Distorted Probabilities
- Distorted Probabilities and OWA
- Conclusions

Distorted Probabilities and OWA

- OWA operators and Choquet integrals:
 - OWA equivalent to a Choquet integral w.r.t. a symmetric μ
- μ is symmetric when (informally, only cardinality is important)

$$\mu(A)=\mu(B)\text{, if }|A|=|B|$$

• Miranda et al. introduced *m*-symmetric fuzzy measures.

m-symmetric fuzzy measures

- *m*-symmetric fuzzy measures (Miranda et al., 2002):
 - $A \subseteq X$ is a set of indifference iff (informally, only cardinality is important)

 $\forall B_1, B_2 \subseteq A, |B_1| = |B_2|,$

 $\forall C \subseteq X \setminus A \quad \mu(B_1 \cup C) = \mu(B_2 \cup C)$

- 2-symmetric fuzzy measure μ iff:
 - * there exists a partition of $\{X_1, X_2\}$ $(X_1, X_2 \neq \emptyset)$ s. t. both X_1 and X_2 are sets of indifference.
 - * and X is not a set of indifference (one set is not enough).
- *m*-symmetric fuzzy measure μ iff:
 - * there exists a partition of the universal set $\{X_1, \ldots, X_m\}$, with $X_1, \ldots, X_m \neq \emptyset$ s. t. X_1, \ldots, X_m are sets of indifference (and there is no partition with m-1 sets of indifference).

m-symmetric fuzzy measures: properties

- Properties (Miranda et al., 2002):
 - 2-symmetric fuzzy measure: $\mu(A) = M(|A \cap X_1|, |A \cap X_2|)$

- μ , a *m*-symmetric measure w.r.t. the partition $\{X_1, \ldots, X_m\}$. Then, the number of values needed to determine μ is:

$$[(|X_1|+1)\cdots(|X_m|+1)] - 2$$

 $\rightarrow \mu$ can be represented by a $(|X_1|+1)\cdots(|X_m|+1)$ matrix M

- all fuzzy measures are at most N-symmetric f. m. for N = |X|.

• Running example: it is a 2-symmetric f.m.

 $\mu(A) = M(|A \cap \{L\}|, |A \cap \{M, P\}|)$

- with partition (2 sets of indifference)
 - 1. Literary subject $\{L\}$
 - 2. Science subjects $\{M, P\}$,
- probabilities only depend on cardinality (they can be ignored)
 - 1. $P_1(\{L\}) = 1$

2.
$$P_2(\{M\}) = P_2(\{P\}) = 0.5$$
,

– and distortion function f defined by

1	{L}	0.3	0.9	1.0
0	Ø	0	0.45	0.5
cardinality	sets	Ø	{M}, {P}	{M,P}
M	cardinality	0	1	2

Example: 2-dimensional distorted probabilities

• Running example: a variation that is a two dimensional d. p.

 $\mu(A) = f(P_1(A \cap \{L\}), P_2(A \cap \{M, P\}))$

- with partition on $X=\{M,L,P\}$
 - 1. Literary subject $\{L\}$
 - 2. Science subjects $\{M, P\}$,
- probabilities
 - 1. $P_1(\{L\}) = 1$

2.
$$P_2(\{M\}) = 2/3, P_2(\{P\}) = 1/3,$$

– and distortion function f defined by

1	{L}	0.3	0.9	0.95	1.0
0	Ø	0	0.45	0.5	0.5
probability	sets	Ø	{P}	{M}	{M,P}
f	probability	Ø	1/3	2/3	1

m-symmetric and m-dimensional DP

- Properties:
 - Symmetric fuzzy measures are a special case of distorted probabilities:
 - All m-symmetric fuzzy measures are m-dimensional distorted probabilities.
 - If μ is a DP with P(A) = |A|/|X|; then, μ is a 1-symmetric f.m.
 - If μ is an *m*-dimensional DP with $p_i(x_j) = p_i(x_k)$ for all $x_j, x_k \in X_i$ and for all i = 1, ..., m; then, μ is a *m*-symmetric f.m.

OWAs

- OWA extensions:
 - OWA is equivalent to
 - a Choquet integral w.r.t. to a symmetric f. m.
 - *m*-dimensional OWA is defined by the Choquet integral w.r.t. to a *m*-symmetric f. m.

WOWAs

- WOWA extensions:
 - WOWA is equivalent to
 - a Choquet integral w.r.t. to a distorted probability
 - *m*-dimensional WOWA is defined by the Choquet integral w.r.t. to a *m*-dimensional distorted probability

OWAs and WOWAs

- Properties:
 - OWA is a particular case of WOWA

• *m*-dimensional OWA, a particular case of *m*-dimensional WOWA (it follows from: Choquet integrals w.r.t. *m*-symmetric fuzzy measures, particular cases of Choquet integrals w.r.t. *m*-dimensional distorted probabilities

Outline

- Introduction
- Distorted Probabilities
- Extension of Distorted Probabilities
- *m*-dimensional Distorted Probabilities
- Distorted Probabilities and OWA
- Conclusions and future work

Conclusions and Summary

- Review of distorted probabilities
- \bullet and of m-dimensional distorted probabilities
- and a few relationships with other fuzzy measures

- Counting the number of 2-dimensional distorted probabilities.
 - Assume $X = \{1, 2, 3\}$.
 - Assume μ with $\mu(\{1\}) < \mu(\{2\}) < \mu(\{3\})$.
 - Possible 2-dimensional distorted probabilities:

$$\begin{split} & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,2\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{1,2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(X) \\ & \text{With } X_2 = \{1,2\} \rightarrow (1 < 2 => 13 < 23) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(\{2,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \text{With } X_2 = \{1,3\} \rightarrow (1 < 3 => 12 < 23) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{1,2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{1,2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{1,2\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \text{With } X_2 = \{2,3\} \rightarrow (2 < 3 => 12 < 13) \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \text{Invalid case:} \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \text{Invalid case:} \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \text{Invalid case:} \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(X) \\ & \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{3,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(\{1,2\}) < \mu(X) \\ & \text{Invalid case:} \\ & \emptyset < \mu(\{1\}) < \mu(\{2\}) < \mu(\{3\}) < \mu(\{2,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(\{1,2\}) < \mu(X) \\ & \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{3,3\}) < \mu(\{1,3\}) < \mu(\{1,2\}) < \mu(\{1,2\}) < \mu(X) \\ & \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{3,3\}) < \mu(\{1,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{3,3\}) < \mu(\{1,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{3,3\}) < \mu(\{1,3\}) < \mu(\{1,3\}) < \mu(X) \\ & \mu(\{1,3\}) < \mu(\{2,3\}) < \mu(\{3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(X) \\ & \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(X) \\ & \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(X) \\ & \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(X) \\ & \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(X) \\ & \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(\{1,3,3\}) < \mu(X) \\ & \mu(\{1,3,3\}) < \mu(\{1,3$$

- Learning fuzzy measures from examples (case with Choquet integral)
 - Simple for k-additive f.m., for a given k
 - \rightarrow optimal solution can be found
 - Relatively simple for distorted probabilities
 - \rightarrow no optimal solution
 - Not easy for m-dimensional distorted probabilities

References

- Narukawa, Y., Torra, V. (2005) Fuzzy measure and probability distributions: distorted probabilities, IEEE Trans. on Fuzzy Systems, 13:5 617-629
- Narukawa, Y., Torra, V. *m*-dimensional distorted probabilities: establishing relationships with other types of fuzzy measures, manuscript.
- Torra, V., Narukawa, T. (2007) Modeling Decisions: Information Fusion and Aggregation Operators, Springer.

Thank-you