#### **EUSFLAT 2023**

### Fuzzy measures for metric learning and data-driven models

### **Fuzzy** measures and distances

Vicenç Torra

September, 2023

Dept. CS, Umeå University, Sweden

### **Outline**

- 1. Preliminaries: Measures and integrals
- 2. Metric learning for risk assessment
- 3. Distances for fuzzy measures
- 4. Summary

Preliminaries Outline

# **Preliminaries**

Preliminaries > Measures Outline

## **Measures**

#### Measures

#### **Measures:**

- A measure (mathematics) as a generalization of geometric measures (e.g., area)
- Used to express size, importance, and
- probabilities

#### **Key property:** additivity:



### **Additive** measures

**Additive measures:** Formally (reference set X)

- $\bullet \ \mu(\emptyset) = 0$
- $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$  for disjoint  $S_1$ ,  $S_2$

Outline

## Additive measures in statistics/probability theory

**Measures:** A typical example, probabilities!! (on X and subsets of X, assume X finite)

- $\bullet \ \mu(\emptyset) = 0$
- $\mu(X) = 1$
- $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$  for disjoint  $S_1$ ,  $S_2$



X

### Additive measures in decision making

**Measures:** or standard weights of sets of criteria/variables (on X and subsets of X, assume X finite)

- $\bullet \ \mu(\emptyset) = 0$
- $\mu(X) = 1$
- $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$  for disjoint  $S_1$ ,  $S_2$

That is,

- the importance of the set of criteria/variables (price, comfort, size)
- equals to
- importance(price) + importance(comfort) + importance(size)

implicit assumption in problems using weighted means

Also, because of additivity for any disjoint  $S_1, S_2, C$ ,

• if  $\mu(S_1) < \mu(S_2)$  then also  $\mu(S_1 \cup C) < \mu(S_2 \cup C)$ .

Preliminaries > Fuzzy Measures Outline

# **Fuzzy Measures**

### **Fuzzy** measures

#### Non-additive measures:

- Replace the additivity condition by a monotonicity condition  $S_1 \subseteq S_2$  then  $\mu(S_1) \leq \mu(S_2)$
- This allows for interactions:
  - $\circ \ \mu(S_1 \cup S_2) > \mu(S_1) + \mu(S_2)$
  - $\circ \mu(S_1 \cup S_2) < \mu(S_1) + \mu(S_2)$

Outline

### **Fuzzy** measures

#### Non-additive measures:

- Replace the additivity condition by a monotonicity condition  $S_1 \subseteq S_2$  then  $\mu(S_1) \leq \mu(S_2)$
- This allows for interactions:
  - $\circ \ \mu(S_1 \cup S_2) > \mu(S_1) + \mu(S_2)$
  - $\circ \mu(S_1 \cup S_2) < \mu(S_1) + \mu(S_2)$
- positive/negative interactions!
  - the importance of the set of criteria/variables (price, comfort, size)
     does not need to equal
  - importance(price) + importance(comfort) + importance(size)
- This allows for inversing inequalities for any disjoint  $S_1, S_2, C$ , it is possible
  - $\circ \ \mu(S_1) < \mu(S_2) \ \text{but also} \ \mu(S_1 \cup C) > \mu(S_2 \cup C).$

## Fuzzy integrals and aggregation

Outline

### **Aggegation functions**

### Aggregation

- Given variables / information sources / criteria  $X = \{x_1, \ldots, x_n\}$
- ullet and values f:X o [0,1]
- So,  $f(x_i)$  value associated to  $x_i$
- We combine them  $\mathbb{C}(f(x_1),\ldots,f(x_n))$

#### Examples

- Arithmetic mean  $\sum_{i=1}^{n} (1/n) f(x_i)$
- Weighted mean  $\sum_{i=1}^{n} w_i f(x_i)$
- ... other aggregation, and also fuzzy integrals to combine the values (the data  $f(x_i)$ ) w.r.t. a fuzzy measure  $\mu$ .

### **Aggegation functions**

### Aggregation

- Given variables / information sources / criteria  $X = \{x_1, \ldots, x_n\}$
- ullet and values  $f:X \to [0,1]$
- So,  $f(x_i)$  value associated to  $x_i$
- We combine them  $\mathbb{C}(f(x_1),\ldots,f(x_n))$

#### **Examples**

- Arithmetic mean  $\sum_{i=1}^{n} (1/n) f(x_i)$
- Weighted mean  $\sum_{i=1}^{n} w_i f(x_i)$
- ... other aggregation, and also fuzzy integrals to combine the values (the data  $f(x_i)$ ) w.r.t. a fuzzy measure  $\mu$ .
  - Choquet and Sugeno integrals
  - Generalizations and variants: Murofushi & Sugeno fuzzy t-conorm integral, Bustince & Fernandez & Mesiar etc.

Preliminaries > Distance Outline

## **Distances**

**Distances:**  $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$ .

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n))$$

Euclidean distance (squared)

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n)) = \sum (a_i - b_i)^2$$

• Weighted Euclidean (with weights w)

**Distances:**  $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$ .

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n))$$

• Euclidean distance (squared)

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n)) = \sum (a_i - b_i)^2$$

• Weighted Euclidean (with weights w)

$$d_w(A, B) = \sum w_i (a_i - b_i)^2$$
  
=  $WM(d(V_1(A), V_1(B)), \dots, d(V_n(A), V_n(B)))$ 

where  $d(V_i(A), V_i(B)) = (a_i - b_i)^2$ .

**Distances:**  $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$ .

• Choquet integral-based (with measure  $\mu$ )

**Distances:**  $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$ .

• Choquet integral-based (with measure  $\mu$ )

$$d_{\mu}(A,B) = CI_{\mu}(d(V_1(A), V_1(B)), \dots, d(V_n(A), V_n(B)))$$

where  $d(V_i(A), V_i(B)) = (a_i - b_i)^2$ .

**Distances:**  $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$ .

• Choquet integral-based (with measure  $\mu$ )

$$d_{\mu}(A,B) = CI_{\mu}(d(V_1(A), V_1(B)), \dots, d(V_n(A), V_n(B)))$$

where  $d(V_i(A), V_i(B)) = (a_i - b_i)^2$ .

CI generalizes WM, and WM generalizes Euclidean distance, So, appropriate  $\mu$  and w make  $d_w$  and  $d_\mu$  the Euclidean distance

When  $\mu$  submodular,  $d_{\mu}$  a metric (triangle inequality)

metric learning Outline

# An application:

data sharing and data privacy metric learning for  $d_{\mu}$ 

### **Context: Data privacy**

Data privacy in context. A researcher wants to analyze data



 $DB = \{(Aina, Age = 40, Street = Llucmajor, salary = 1800 EUR), ...\}$ 

### **Context: Data privacy**

- Disclosure from the data themselves
  - Identity disclosure: find Aina in the database
  - Attribute disclosure: learn Aina's salary
- Usual: identity disclosure leads to attribute disclosure



 $DB = \{(Aina, Age = 40, Street = Llucmajor, salary = 1800 EUR), ...\}$ 

### **Context: Data privacy**

 To avoid disclosure, remove identifiers, anonymize records / modify records



$$DB = \{(Aina, Age = 41, Street/Neigh.=El Molinar, salary=1800 EUR), ...\}$$

metric learning > Outline

### **Context: Data privacy**

Privacy models. A computational definition for privacy. Publish a DB

- Reidentification privacy. Avoid finding a record in a database.
- **k-Anonymity.** A record indistinguishable with k-1 other records.
- Interval disclosure. The value for an attribute is outside an interval computed from the protected value: values different enough.
- **Result privacy.** We want to avoid some results when an algorithm is applied to a database.

**Privacy measures.** Measures to assess the privacy level of e.g. protected database.



• Identity disclosure risk by modeling an intruder attack

 $\circ$  How many records in B can be correctly linked to X'



- Identity disclosure risk measure
  - Worst case scenario = the most conservative estimation of risk
  - Worst case scenario / maximum knowledge:
    - $\triangleright$  Best information B=X
    - ▷ Best knowledge on the protection process: transparency attacks
    - ▶ Best record linkage algorithm:
      - Best record linkage algorithm: distance-based record linkage
      - Best parameters: distance
  - Best means: the most possible number of reidentifications
     The more the better (for an intruder)

- Can we do better than with the Euclidean distance?
- Other options:
  - $\circ$  Weighted Euclidean distance (weights w)  $d_w$
  - $\circ$  Mahalanobis distance (using covariance matrix Q)
- But also
  - $\circ$  Choquet integral (measure  $\mu$ )  $d_{\mu}$
  - $\circ$  Bilinear forms (using positive definite matrix Q)  $d_Q$

- Can we do better than with the Euclidean distance?
- Other options:
  - $\circ$  Weighted Euclidean distance (weights w)  $d_w$
  - $\circ$  Mahalanobis distance (using covariance matrix Q)
- But also
  - $\circ$  Choquet integral (measure  $\mu$ )  $d_{\mu}$
  - $\circ$  Bilinear forms (using positive definite matrix Q)  $d_Q$
- Num. Reidentifications  $d_{\mu} \geq$  Num. Reid.  $d_{w} \geq d$

- How to find these parameters ( $\mu$  and Q)?
- ullet For risk analysis of a protected file X', we know both X and A=X'
- ullet So, find best parameters using optimization (and B=X)



• Distance based record linkage:  $d(A_i, B_i)$ 



- Find the *nearest* record (nearest in terms of a distance)
- Formally, 2 sets of vectors  $A_i = (a_1, \dots, a_N),$   $(a_i \text{ protected version of } b_i)$   $B_i = (b_1, \dots, b_N)$
- $V_k(a_i)$ : kth variable, ith record
- Distance  $d(V_k(a_i), V_k(b_j))$  for all pairs  $(a_i, b_i)$ .

• Distance based record linkage:  $d(A_i, B_i)$ 



- Find the *nearest* record (nearest in terms of a distance)
- Formally, 2 sets of vectors  $A_i = (a_1, \ldots, a_N),$   $(a_i \text{ protected version of } b_i)$   $B_i = (b_1, \ldots, b_N)$
- $V_k(a_i)$ : kth variable, ith record
- Distance  $d(V_k(a_i), V_k(b_j))$  for all pairs  $(a_i, b_j)$ .
- Distance based on aggregation functions  $\mathbb{C}$  E.g.,  $\mathbb{C} = CI$  (Choquet integral)
- Worst-case scenario: learn weights/fuzzy measure
  - → Optimization problem

- Distance based record linkage:  $d(A_i, B_i)$ 
  - $\circ$  Main constraint: for a given i, for all j

$$\sum_{k=1}^{N} p_i d(V_k(A_i), V_k(B_j)) > \sum_{k=1}^{N} p_i d(V_k(A_i), V_k(B_i))$$

For aligned files A and B (i.e.,  $A_i$  corresponds to  $B_i$ )

• As this is sometimes impossible to satisfy for all i, introduce  $K_i$  which means  $K_i=1$  incorrect linkage, and then

$$\sum_{k=1}^{N} p_i(d(V_k(A_i), V_k(B_j)) - d(V_k(A_i), V_k(B_i))) + CK_i > 0$$

• Case  $\mathbb{C} = WM$ :

$$Minimise \qquad \sum_{i=1}^{N} K_i$$
 
$$Subject\ to:$$
 
$$\sum_{k=1}^{N} p_i(d(V_k(a_i),V_k(b_j))-d(V_k(a_i),V_k(b_i)))+CK_i>0$$
 
$$K_i\in\{0,1\}$$
 
$$\sum_{i=1}^{N} p_i=1$$
 
$$p_i\geq 0$$

- ullet Similar with  $\mathbb{C}=CI$  (Choquet integral) and  $\mu$
- ullet Extensive work comparing different scenarios and  $\mathbb{C}$ .

- Results give:
  - number reidentifications in the worst-case scenario
  - Importance of weights (or sets of weights in fuzzy measures)
- Examples:
  - Choquet integral



- Weighted Mean (WM):
  - $\triangleright V_1$  0.016809573957189,  $V_2$  0.00198841786482128,  $V_3$  0.00452923777074791
  - $\triangleright V_4$  0.138812880222131,  $V_5$  0.835523953314578,  $V_6$  0.00233593687053289

Distances

# Distances on fuzzy measures

Outline

How to compare fuzzy measures: using probability ones as inspiration

- f-divergence, KL-divergence, etc. based on Radon-Nikodym-like derivatives<sup>1</sup>
- Wasserstein distance/earth mover's distance based on optimal transport problem.

<sup>&</sup>lt;sup>1</sup>Work based on Sugeno's work on Choquet calculus and in collaboration with Sugeno and Narukawa: INS 2020, FSS 2016, EUSFLAT 2013

Distances > for probabilities Outline

## Optimal transport for probabilities

#### **Optimal transport problem:** The case of probabilities

- Inputs:
  - $\circ X$ , and probability measure P on X (with prob. dist. p)
  - $\circ$  Y, and probability measure Q on Y (with prob. dist. q) (on X and subsets of X, assume X finite)
- Output:
  - $\circ$  Assignment from P to Q
  - A cost of the assignment: optimal

## Optimal transport problem: The case of probabilities

ullet Probability distributions on X and Y



#### Optimal transport problem: The case of probabilities

• Assignment of probabilities  $\gamma(x,y)$ 



ullet  $\gamma$  positive, and marginals should be p and q

$$p(x) = \sum_{y \in Y} \gamma(x, y)$$
$$q(y) = \sum_{x \in X} \gamma(x, y)$$

#### Optimal transport problem: a cost function

 $\bullet$   $c: X \times Y \to \mathbb{R}^+$ 



- Cost:  $\sum_{x \in X} \sum_{y \in Y} c(x, y) \gamma(x, y)$
- Distance: from the assignment with minimum cost.

Distances > for fuzzy measures Outline

## Optimal transport and fuzzy measures

#### Optimal transport problem: The case of non-additive measures

- input:
  - $\circ X$ , and fuzzy measure  $\mu$  on X
  - $\circ~Y$ , and fuzzy measure u on Y
- Output:
  - $\circ$  Assignment from  $\mu$  to  $\nu$
  - A cost of the assignment: optimal

#### How to proceed?

- Option 0. We consider a cost function on  $X \times Y$  and a Choquet integral of measures on  $X \times Y$  with marginals  $\mu$  and  $\nu$ .
  - $\circ$  For all fuzzy measures in  $X \times Y$ , minimum Cl

#### How to proceed?

- Option 0. We consider a cost function on  $X \times Y$  and a Choquet integral of measures on  $X \times Y$  with marginals  $\mu$  and  $\nu$ .
  - $\circ$  For all fuzzy measures in  $X \times Y$ , minimum Cl
- The problem seems difficult in practice
  - The Fubini theorem does not apply in general for Choquet integral
  - Margins, also Choquet integrals (?)

Distances > Option 1 and 2

# Measures, transforms, and optimal transport Option 1 and 2

## **Transforms**

Measures and transforms: Equivalent representation of a measure.

$$\mu \leftrightarrow \tau_{\mu}$$

They are set functions (same as  $\mu$ ):

$$au_{\mu}: 2^X \to \mathbb{R}$$

There are different transforms with different properties.

## Measures and transforms: $\mu \leftrightarrow \tau_{\mu}$

Möbius transform

$$\tau_{\mu}(A) = \sum_{B \subseteq A} (-1)^{|A| - |B|} \mu(B).$$

• If  $\mu$  additive (probability)

$$\circ \tau_{\mu}(B) = p(x_i)$$
, if  $B = \{x_i\}$  (singletons)

$$\circ \tau_{\mu}(B) = 0$$
, if  $|B| > 1$  (non-singletons)

• If  $\mu$  a belief function

$$\circ \ \tau_{\mu}(B) \in [0,1]$$

Outline

- Option 1. If the measure is a belief function,
   Möbius transform is always positive
  - o Probability on sets, define OT on Möbius transform
  - Marginals on the Möbius transform (addition of Möbius)
  - $\circ$  Cost functions on  $2^X \times 2^X$
- Same problem but larger space, easy definition

- Option 2. If the measure is not a belief,
   Möbius can be positive and negative
  - Use absolute value of the assignment

$$OF = \sum_{\emptyset \subset A \subseteq X} \sum_{\emptyset \subset B \subseteq X} c_M(A, B) |assg(A, B)|$$

• Different problem, doable: linear problem, linear constraints

#### • Option 2. Problems:

- Not only negative, but arbitrarily large (or small negative).
- $\circ$  For X with cardinality at least n, we can define a measure  $\mu$  with
  - $\triangleright \tau_{\mu}(A) = -n$  for sets of cardinality n+1, and
  - $\triangleright \tau_{\mu}(A) = (n^2 + n)/2$  for sets of cardinality n + 2
- In a way, we are counting the same measure multiple times

Distances > Option 3 Outline

# Measures, transforms, and optimal transport Option 3

### **Transforms**

## Measures and transforms: $\mu \leftrightarrow \tau_{\mu}$

• (max, +)-transform<sup>2</sup>

$$\tau_{\mu}(B) = \mu(B) - \max_{A \subset B} \mu(A)$$

- $\circ$  The  $(\max, +)$ -transform is always positive in [0,1]
- $\circ$  If  $\mu$  additive  $\tau_{\mu}(B) = \min_{x_i \in B} \mu(\{x_i\})$ .

 $<sup>^2</sup>$ V. Torra,  $(Max,\oplus)$ -transforms and genetic algorithms for fuzzy measure identification, Fuzzy Sets and Systems 28 (2022) 253-265

- Option 3. Definition through the (max, +)-transform,
  - $\mathsf{cost}\ c_a: 2^X \times 2^X \to [0, 1]$
  - $\circ$  Find  $assg: 2^X \times 2^X \rightarrow [0,1]$  such that
    - $\triangleright assg(\emptyset,\emptyset) = 0$
    - $\triangleright \tau_{\mu}(A) = \sum_{B' \subset X} assg(A, B') \text{ for all } A \neq \emptyset$
    - $\triangleright \tau_{\nu}(B) = \sum_{A' \subset X} assg(A', B) \text{ for all } B \neq \emptyset$
  - Cost of the assignment:
    - $\triangleright cost(c_a, assg) = \sum_{A \subseteq X} \sum_{B \subseteq X} c_a(A, B) assg(A, B).$

- Option 3. Then, we can define:
  - Optimal transport: Assignment with minimal cost
  - Wasserstein-like discrepancy:

$$d_{c_a}(\mu, \nu) = \inf_{assg \in \Pi(\tau_\mu, \tau_\nu)} \sum_{A \subseteq X} \sum_{B \subseteq X} c_a(A, B) assg(A, B)$$

Outline

• Option 3. Example,  $\mu$  is additive,  $\nu$  is not,  $(\max, +)$ -transforms  $\tau_{\mu}$  and  $\tau_{\nu}$ , feasible assignment:

| $\nu(B)$     | $	au_ u$ | set            | $lack_{ u}$ |           |           |           |                |                |                |     |
|--------------|----------|----------------|-------------|-----------|-----------|-----------|----------------|----------------|----------------|-----|
| 1            | 0.8      | X              | 0           | 0         | 0.3       | 0.5       | 0              | 0              | 0              | 0   |
| 0            | 0        | $\{x_2, x_3\}$ | 0           | 0         | 0         | 0         | 0              | 0              | 0              | 0   |
| 0.2          | 0        | $\{x_1, x_3\}$ | 0           | 0         | 0         | 0         | 0              | 0              | 0              | 0   |
| 0.2          | 0        | $\{x_1,x_2\}$  | 0           | 0         | 0         | 0         | 0              | 0              | 0              | 0   |
| 0            | 0        | $\{x_3\}$      | 0           | 0         | 0         | 0         | 0              | 0              | 0              | 0   |
| 0            | 0        | $\{x_2\}$      | 0           | 0         | 0         | 0         | 0              | 0              | 0              | 0   |
| 0.2          | 0.2      | $\{x_1\}$      | 0           | 0.2       | 0         | 0         | 0              | 0              | 0              | 0   |
| $lack_{\mu}$ |          | Ø              |             | 0         | 0         | 0         | 0.1            | 0.1            | 0.4            | 0.1 |
| set          |          |                | Ø           | $\{x_1\}$ | $\{x_2\}$ | $\{x_3\}$ | $\{x_1, x_2\}$ | $\{x_1, x_3\}$ | $\{x_2, x_3\}$ | X   |
| $	au_{\mu}$  |          |                |             | 0.2       | 0.3       | 0.5       | 0.1            | 0.1            | 0.4            | 0.1 |
| $\mu(A)$     |          |                |             | 0.2       | 0.3       | 0.5       | 0.4            | 0.6            | 0.9            | 1.0 |

Distances > Option 3 Outline

## **Optimal transport**

## • Properties<sup>3</sup>:

- This is a proper generalization
- When our FM solution is a probability solution?
  - $\triangleright$  assignment on X, Y vs. assignment on  $2^X$ ,  $2^Y$
  - $\triangleright$  cost on X, Y vs. cost on  $2^X$ ,  $2^Y$
- Results on
  - A cost function that is independent on the measures
  - ▷ A cost function that depends on the measures

<sup>&</sup>lt;sup>3</sup>V. Torra (2023) The transport problem for non-additive measures, Euro. J Oper. Res. 311 679-689

- Implementation: Linear problem with linear constraints
  - $\circ$  1. Linear problem with linear constraints (case belief functions) OT with  $2^X$  variables
  - $\circ$  2. Linear problem with linear constraints (case Möbius transform) Same but: transformation of |t| into two additional constraints  $+t \leq t', -t \leq t'$ . So,  $2 \cdot 2^{2|X|}$  additional constraints
  - $\circ$  3. Linear problem with linear constraints (case  $(\max, +)$ -transform) OT with  $2^X$  variables.

Software: http://www.mdai.cat/code/

▶ What is an appropriate cost function?

# **Summary**

## Summary

- Results presented
  - Fuzzy measures for metric learning / distances
  - Distance for fuzzy measures
- Future directions
  - Distances for fuzzy measures
  - Foundations of optimal transport, Wasserstein distance and related topics for fuzzy measures

## References

References

#### References

- D. Abril, V. Torra, G. Navarro-Arribas (2015) Supervised learning using a symmetric bilinear form for record linkage. Inf. Fusion 26: 144-153.
- V. Torra (2023) The transport problem for non-additive measures, Euro. J Oper. Res. 311 679-689
- V. Torra, G. Navarro-Arribas (2020) Fuzzy meets privacy: a short overview, Proc. INFUS 2020.
- V. Torra (2022) Guide to Data Privacy, Springer.



# Thank you