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Measures

Measures:

• A measure (mathematics) as a generalization of geometric measures

(e.g., area)

• Used to express size, importance, and

• probabilities

Key property: additivity:

A B
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Additive measures

Additive measures: Formally (reference set X)

• µ(∅) = 0

• µ(S1 ∪ S2) = µ(S1) + µ(S2) for disjoint S1, S2
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Additive measures in statistics/probability theory

Measures: A typical example, probabilities!!

(on X and subsets of X, assume X finite)

• µ(∅) = 0

• µ(X) = 1

• µ(S1 ∪ S2) = µ(S1) + µ(S2) for disjoint S1, S2

X
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Additive measures in decision making

Measures: or standard weights of sets of criteria/variables

(on X and subsets of X, assume X finite)

• µ(∅) = 0

• µ(X) = 1

• µ(S1 ∪ S2) = µ(S1) + µ(S2) for disjoint S1, S2

That is,

• the importance of the set of criteria/variables (price, comfort, size)

• equals to

• importance(price) + importance(comfort) + importance(size)

implicit assumption in problems using weighted means

Also, because of additivity for any disjoint S1, S2, C,

• if µ(S1) < µ(S2) then also µ(S1 ∪ C) < µ(S2 ∪ C).
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Fuzzy Measures
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Fuzzy measures

Non-additive measures:

• Replace the additivity condition by a monotonicity condition

S1 ⊆ S2 then µ(S1) ≤ µ(S2)

• This allows for interactions:

◦ µ(S1 ∪ S2) > µ(S1) + µ(S2)

◦ µ(S1 ∪ S2) < µ(S1) + µ(S2)
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Fuzzy measures

Non-additive measures:

• Replace the additivity condition by a monotonicity condition

S1 ⊆ S2 then µ(S1) ≤ µ(S2)

• This allows for interactions:

◦ µ(S1 ∪ S2) > µ(S1) + µ(S2)

◦ µ(S1 ∪ S2) < µ(S1) + µ(S2)

• positive/negative interactions !

◦ the importance of the set of criteria/variables (price, comfort, size)

does not need to equal

◦ importance(price) + importance(comfort) + importance(size)

• This allows for inversing inequalities for any disjoint S1, S2, C, it is

possible

◦ µ(S1) < µ(S2) but also µ(S1 ∪ C) > µ(S2 ∪ C).
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Fuzzy integrals and aggregation
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Aggegation functions

Aggregation

• Given variables / information sources / criteria X = {x1, . . . , xn}

• and values f : X → [0, 1]

• So, f(xi) value associated to xi

• We combine them C(f(x1), . . . , f(xn))

Examples

• Arithmetic mean
∑n

i=1(1/n)f(xi)

• Weighted mean
∑n

i=1wif(xi)

• ... other aggregation, and also fuzzy integrals

to combine the values (the data f(xi)) w.r.t. a fuzzy measure µ.
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Aggegation functions

Aggregation

• Given variables / information sources / criteria X = {x1, . . . , xn}

• and values f : X → [0, 1]

• So, f(xi) value associated to xi

• We combine them C(f(x1), . . . , f(xn))

Examples

• Arithmetic mean
∑n

i=1(1/n)f(xi)

• Weighted mean
∑n

i=1wif(xi)

• ... other aggregation, and also fuzzy integrals

to combine the values (the data f(xi)) w.r.t. a fuzzy measure µ.

◦ Choquet and Sugeno integrals

◦ Generalizations and variants: Murofushi & Sugeno fuzzy t-conorm

integral, Bustince & Fernandez & Mesiar etc.
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Distances

Vicenç Torra; Fuzzy measures and metric learning EUSFLAT 2023 12 / 55



Preliminaries > Distance Outline

From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

d(A = (a1, . . . , an), B = (b1, . . . , bn))

• Euclidean distance (squared)

d(A = (a1, . . . , an), B = (b1, . . . , bn)) =
∑

(ai − bi)
2

• Weighted Euclidean (with weights w)
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

d(A = (a1, . . . , an), B = (b1, . . . , bn))

• Euclidean distance (squared)

d(A = (a1, . . . , an), B = (b1, . . . , bn)) =
∑

(ai − bi)
2

• Weighted Euclidean (with weights w)

dw(A,B) =
∑

wi(ai − bi)
2

= WM(d(V1(A), V1(B)), . . . , d(Vn(A), Vn(B)))

where d(Vi(A), Vi(B)) = (ai − bi)
2.
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

• Choquet integral-based (with measure µ)

dµ(A,B) = CIµ(d(V1(A), V1(B)), . . . , d(Vn(A), Vn(B)))

where d(Vi(A), Vi(B)) = (ai − bi)
2.
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

• Choquet integral-based (with measure µ)

dµ(A,B) = CIµ(d(V1(A), V1(B)), . . . , d(Vn(A), Vn(B)))

where d(Vi(A), Vi(B)) = (ai − bi)
2.

CI generalizes WM, and WM generalizes Euclidean distance,

So, appropriate µ and w make dw and dµ the Euclidean distance

When µ submodular, dµ a metric (triangle inequality)
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An application:

data sharing and data privacy

metric learning for dµ
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Context: Data privacy

Data privacy in context. A researcher wants to analyze data

?

DB = {(Aina, Age = 40, Street=Llucmajor, salary=1800 EUR), ...}
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Context: Data privacy

• Disclosure from the data themselves

◦ Identity disclosure: find Aina in the database

◦ Attribute disclosure: learn Aina’s salary

• Usual: identity disclosure leads to attribute disclosure

?

DB = {(Aina, Age = 40, Street=Llucmajor, salary=1800 EUR), ...}
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Context: Data privacy

• To avoid disclosure, remove identifiers, anonymize records / modify

records

?
X X’

DB = {(Aina, Age = 41, Street/Neigh.=El Molinar,

salary=1800 EUR), ...}
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Context: Data privacy

Privacy models. A computational definition for privacy. Publish a DB

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• Interval disclosure. The value for an attribute is outside an interval

computed from the protected value: values different enough.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

Privacy measures. Measures to assess the privacy level of

e.g. protected database.

?
X X’
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Context: Identity disclosure risk in data privacy

• Identity disclosure risk by modeling an intruder attack

◦ How many records in B can be correctly linked to X ′

?
X

Record linkage

X’ / A

B
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Context: Identity disclosure risk in data privacy

• Identity disclosure risk measure

◦ Worst case scenario = the most conservative estimation of risk

◦ Worst case scenario / maximum knowledge:

⊲ Best information B = X

⊲ Best knowledge on the protection process: transparency attacks

⊲ Best record linkage algorithm:

� Best record linkage algorithm: distance-based record linkage

� Best parameters: distance

◦ Best means: the most possible number of reidentifications

The more the better (for an intruder)
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Context: Identity disclosure risk in data privacy

• Can we do better than with the Euclidean distance?

• Other options:

◦ Weighted Euclidean distance (weights w) dw
◦ Mahalanobis distance (using covariance matrix Q)

• But also

◦ Choquet integral (measure µ) dµ
◦ Bilinear forms (using positive definite matrix Q) dQ
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Context: Identity disclosure risk in data privacy

• Can we do better than with the Euclidean distance?

• Other options:

◦ Weighted Euclidean distance (weights w) dw
◦ Mahalanobis distance (using covariance matrix Q)

• But also

◦ Choquet integral (measure µ) dµ
◦ Bilinear forms (using positive definite matrix Q) dQ

• Num. Reidentifications dµ ≥ Num. Reid. dw ≥ d
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Context: Identity disclosure risk in data privacy

• How to find these parameters (µ and Q)?

• For risk analysis of a protected file X ′, we know both X and A = X ′

• So, find best parameters using optimization (and B = X)

?
X

Record linkage

X’ / A

B
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Context: Identity disclosure risk in data privacy

• Distance based record linkage: d(Ai, Bi)

B
A

• Find the nearest record
(nearest in terms of a distance)

• Formally, 2 sets of vectors
Ai = (a1, . . . , aN ),
(ai protected version of bi)
Bi = (b1, . . . , bN)

• Vk(ai): kth variable, ith record
• Distance d(Vk(ai), Vk(bj))

for all pairs (ai, bj).
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Context: Identity disclosure risk in data privacy

• Distance based record linkage: d(Ai, Bi)

B
A

• Find the nearest record
(nearest in terms of a distance)

• Formally, 2 sets of vectors
Ai = (a1, . . . , aN ),
(ai protected version of bi)
Bi = (b1, . . . , bN)

• Vk(ai): kth variable, ith record
• Distance d(Vk(ai), Vk(bj))

for all pairs (ai, bj).

• Distance based on aggregation functions C

E.g., C = CI (Choquet integral)

• Worst-case scenario: learn weights/fuzzy measure

→ Optimization problem
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Context: Identity disclosure risk in data privacy

• Distance based record linkage: d(Ai, Bi)

◦ Main constraint: for a given i, for all j

N∑

k=1

pid(Vk(Ai), Vk(Bj)) >
N∑

k=1

pid(Vk(Ai), Vk(Bi))

For aligned files A and B (i.e., Ai corresponds to Bi)

• As this is sometimes impossible to satisfy for all i,

introduce Ki which means Ki = 1 incorrect linkage, and then

N∑

k=1

pi(d(Vk(Ai), Vk(Bj))− d(Vk(Ai), Vk(Bi))) + CKi > 0
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Context: Identity disclosure risk in data privacy

• Case C = WM :

Minimise
N∑

i=1

Ki

Subject to :

N∑

k=1

pi(d(Vk(ai), Vk(bj))− d(Vk(ai), Vk(bi))) + CKi > 0

Ki ∈ {0, 1}

N∑

i=1

pi = 1

pi ≥ 0

• Similar with C = CI (Choquet integral) and µ

• Extensive work comparing different scenarios and C.
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Context: Identity disclosure risk in data privacy

• Results give:

◦ number reidentifications in the worst-case scenario

◦ Importance of weights (or sets of weights in fuzzy measures)

• Examples:

◦ Choquet integral (CI):

010111 (0.82) 011110 (0.82)

011111 (0.82)

100111 (0.99) 101110 (0.99)

101111 (0.99)

110110 (0.99)

110111 (0.99) 111110 (0.99)

111111 (1.0)

◦ Weighted Mean (WM):
⊲ V1 0.016809573957189, V2 0.00198841786482128, V3 0.00452923777074791
⊲ V4 0.138812880222131, V5 0.835523953314578, V6 0.00233593687053289
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Distances on fuzzy measures
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Classical case

How to compare fuzzy measures: using probability ones as inspiration

• f -divergence, KL-divergence, etc.

based on Radon-Nikodym-like derivatives1

• Wasserstein distance/earth mover’s distance

based on optimal transport problem.

1Work based on Sugeno’s work on Choquet calculus and in collaboration with Sugeno and Narukawa:

INS 2020, FSS 2016, EUSFLAT 2013
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Optimal transport for probabilities
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Classical case

Optimal transport problem: The case of probabilities

• Inputs:

◦ X, and probability measure P on X (with prob. dist. p)

◦ Y , and probability measure Q on Y (with prob. dist. q)

(on X and subsets of X, assume X finite)

• Output:

◦ Assignment from P to Q

◦ A cost of the assignment: optimal
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Classical case

Optimal transport problem: The case of probabilities

• Probability distributions on X and Y

X

Y
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Classical case

Optimal transport problem: The case of probabilities

• Assignment of probabilities γ(x, y)

X

Y

• γ positive, and marginals should be p and q

p(x) =
∑

y∈Y γ(x, y)

q(y) =
∑

x∈X γ(x, y)
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Classical case

Optimal transport problem: a cost function

• c : X × Y → R
+

X

Y

0
0

0

0

0

0

0

0

0

0

1
1

1

1

2

2

3 2 1

1

2
3

• Cost:
∑

x∈X

∑
y∈Y c(x, y)γ(x, y)

• Distance: from the assignment with minimum cost.
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Optimal transport and fuzzy measures
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Optimal transport

Optimal transport problem: The case of non-additive measures

• input:

◦ X, and fuzzy measure µ on X

◦ Y , and fuzzy measure ν on Y

• Output:

◦ Assignment from µ to ν

◦ A cost of the assignment: optimal
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Optimal transport

How to proceed?

• Option 0. We consider a cost function on X × Y and a Choquet

integral of measures on X × Y with marginals µ and ν.

◦ For all fuzzy measures in X × Y , minimum CI
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Optimal transport

How to proceed?

• Option 0. We consider a cost function on X × Y and a Choquet

integral of measures on X × Y with marginals µ and ν.

◦ For all fuzzy measures in X × Y , minimum CI

• The problem seems difficult in practice

◦ The Fubini theorem does not apply in general for Choquet integral

◦ Margins, also Choquet integrals (?)
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Measures, transforms, and optimal transport

Option 1 and 2

Vicenç Torra; Fuzzy measures and metric learning EUSFLAT 2023 38 / 55



Distances > Option 1 and 2 Outline

Transforms

Measures and transforms: Equivalent representation of a measure.

µ ↔ τµ

They are set functions (same as µ):

τµ : 2X → R

There are different transforms with different properties.

Vicenç Torra; Fuzzy measures and metric learning EUSFLAT 2023 39 / 55



Distances > Option 1 and 2 Outline

Transforms

Measures and transforms: µ ↔ τµ

• Möbius transform

τµ(A) =
∑

B⊆A

(−1)|A|−|B|µ(B).

• If µ additive (probability)

◦ τµ(B) = p(xi), if B = {xi} (singletons)

◦ τµ(B) = 0, if |B| > 1 (non-singletons)

• If µ a belief function

◦ τµ(B) ∈ [0, 1]
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Optimal transport

• Option 1. If the measure is a belief function,

Möbius transform is always positive

◦ Probability on sets, define OT on Möbius transform

◦ Marginals on the Möbius transform (addition of Möbius)

◦ Cost functions on 2X × 2X

• Same problem but larger space, easy definition
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Optimal transport

• Option 2. If the measure is not a belief,

Möbius can be positive and negative

◦ Use absolute value of the assignment

OF =
∑

∅⊂A⊆X

∑

∅⊂B⊆X

cM(A,B)|assg(A,B)|

• Different problem, doable: linear problem, linear constraints
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Optimal transport

• Option 2. Problems:

◦ Not only negative, but arbitrarily large (or small – negative).

◦ For X with cardinality at least n, we can define a measure µ with

⊲ τµ(A) = −n for sets of cardinality n+ 1, and

⊲ τµ(A) = (n2 + n)/2 for sets of cardinality n+ 2

◦ In a way, we are counting the same measure multiple times
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Measures, transforms, and optimal transport

Option 3
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Transforms

Measures and transforms: µ ↔ τµ

• (max,+)-transform2

τµ(B) = µ(B)−max
A⊂B

µ(A)

◦ The (max,+)-transform is always positive in [0,1]

◦ If µ additive τµ(B) = minxi∈B µ({xi}).

2V. Torra, (Max,⊕)-transforms and genetic algorithms for fuzzy measure identification, Fuzzy Sets

and Systems 28 (2022) 253-265
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Optimal transport

• Option 3. Definition through the (max,+)-transform,

cost ca : 2X × 2X → [0, 1]

◦ Find assg : 2X × 2X → [0, 1] such that

⊲ assg(∅, ∅) = 0

⊲ τµ(A) =
∑

B′⊆X assg(A,B′) for all A 6= ∅

⊲ τν(B) =
∑

A′⊆X assg(A′, B) for all B 6= ∅

◦ Cost of the assignment:

⊲ cost(ca, assg) =
∑

A⊆X

∑
B⊆X ca(A,B)assg(A,B).
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Optimal transport

• Option 3. Then, we can define:

◦ Optimal transport: Assignment with minimal cost

◦ Wasserstein-like discrepancy:

dca(µ, ν) = inf
assg∈Π(τµ,τν)

∑

A⊆X

∑

B⊆X

ca(A,B)assg(A,B)
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Optimal transport

• Option 3. Example, µ is additive, ν is not, (max,+)-transforms τµ and

τν, feasible assignment:

ν(B) τν set lackν

1 0.8 X 0 0 0.3 0.5 0 0 0 0

0 0 {x2, x3} 0 0 0 0 0 0 0 0
0.2 0 {x1, x3} 0 0 0 0 0 0 0 0
0.2 0 {x1, x2} 0 0 0 0 0 0 0 0

0 0 {x3} 0 0 0 0 0 0 0 0
0 0 {x2} 0 0 0 0 0 0 0 0
0.2 0.2 {x1} 0 0.2 0 0 0 0 0 0

lackµ ∅ −− 0 0 0 0.1 0.1 0.4 0.1

set ∅ {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X

τµ −− −− 0.2 0.3 0.5 0.1 0.1 0.4 0.1
µ(A) −− 0.2 0.3 0.5 0.4 0.6 0.9 1.0
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Optimal transport

• Properties3:

◦ This is a proper generalization

◦ When our FM solution is a probability solution?

⊲ assignment on X, Y vs. assignment on 2X, 2Y

⊲ cost on X, Y vs. cost on 2X, 2Y

◦ Results on

⊲ A cost function that is independent on the measures

⊲ A cost function that depends on the measures

3V. Torra (2023) The transport problem for non-additive measures, Euro. J Oper. Res. 311 679-689
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Optimal transport

• Implementation: Linear problem with linear constraints

◦ 1. Linear problem with linear constraints (case belief functions)

OT with 2X variables

◦ 2. Linear problem with linear constraints (case Möbius transform)

Same but: transformation of |t| into two additional constraints

+t ≤ t′, −t ≤ t′. So, 2 · 22|X| additional constraints

◦ 3. Linear problem with linear constraints (case (max,+)-transform)

OT with 2X variables.

Software: http://www.mdai.cat/code/

⊲ What is an appropriate cost function?
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Summary

• Results presented

◦ Fuzzy measures for metric learning / distances

◦ Distance for fuzzy measures

• Future directions

◦ Distances for fuzzy measures

◦ Foundations of optimal transport, Wasserstein distance and related

topics for fuzzy measures
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