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Aggregation:
from arithmetic mean to fuzzy integrals
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Aggegation functions

Aggregation functions:

They are functions to combine data from a set of information sources.

V. Torra and Z. Ontkovičová; Data-driven measures INFUS 2025 4 / 47



Introduction > Fuzzy integrals Outline

Aggegation functions

Aggregation (a bit more formal)

• Given values a1, . . . , an assume ai ∈ R (numerical)

• We combine them C(a1, . . . , an), also in R

Examples

• Arithmetic mean
∑n

i=1(1/n)ai
• Weighted mean

∑n
i=1wiai

with weights w1, . . . , wn s.t. wi ≥ 0 and
∑

wi = 1.
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Aggregation functions

Aggregation (still more formal)

• Given values a1, . . . , an
• We combine them C(a1, . . . , an)

• such that

◦ if ai ≤ a′i, then C(a1, . . . , an) ≤ C(a′1, . . . , a
′
n)

◦ C(a, . . . , a) = a for all a

(or for some a, e.g. a = 0 and a = 1)
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Aggregation functions

Aggregation

• Given values a1, . . . , an
• We combine them C(a1, . . . , an)

Examples (more examples)

• Arithmetic mean
∑n

i=1(1/n)ai
• Weighted mean

∑n
i=1wiai

with weights w1, . . . , wn s.t. wi ≥ 0 and
∑

wi = 1.

• OWA operators (linear combination of order statistics)

n∑
i=1

wiaσ(i)

with σ a permutation s.t. values are sorted from largest to smallest
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Aggregation functions

Aggregation (revisited, making f explicit)

• Given variables / information sources / criteria X = {x1, . . . , xn}

• and values f : X → [0, 1]

• So, f(xi) value associated to xi (i.e., f(xi) = ai)

• We combine them C(f(x1), . . . , f(xn))

Examples

• Arithmetic mean
∑n

i=1(1/n)f(xi)

• Weighted mean
∑n

i=1wif(xi)

• OWA operators
∑n

i=1wif(xσ(i))
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Aggregation functions

Aggregation (as averaging of f)

Given variables / information sources / criteria X = {x1, . . . , xn}

values f : X → [0, 1], weights wi for each xi

We integrate f with respect to the weights

(weighted mean, expected value)

Ew(f) =
∑
i

wif(xi)

or equivalently

Ew(f) =

∫
fdw
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Aggregation functions

Aggregation as averaging of f (with other integrals)

• Given variables / information sources / criteria X = {x1, . . . , xn}

• values f : X → [0, 1], weights wi for each xi

• Then, other integrals are possible

◦ Choquet and Sugeno integrals

◦ Other generalizations exist as well

⊲ Murofushi & Sugeno fuzzy t-conorm integral, Bustince &

Fernandez & Mesiar etc.
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Aggregation functions

Aggregation as averaging of f

• Given variables / information sources / criteria X = {x1, . . . , xn}

• values f : X → [0, 1], weights wi for each xi

• Then, other integrals are possible

◦ Choquet and Sugeno integrals

◦ but we need the concept of fuzzy measure
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Measures: some basic concepts
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Measures

Measures:

• A measure (mathematics) as a generalization of geometric measures

(e.g., area)

• Used to express size, importance, and

• probabilities

Key property: additivity:

A B
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Additive measures

Additive measures: Formally (reference set X)

• µ(∅) = 0

• µ(S1 ∪ S2) = µ(S1) + µ(S2) for disjoint S1, S2
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Additive measures in statistics/probability theory

Measures: A typical example, probabilities!!

(on X and subsets of X, assume X finite)

• µ(∅) = 0

• µ(X) = 1

• µ(S1 ∪ S2) = µ(S1) + µ(S2) for disjoint S1, S2

X
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Additive measures in decision making

Measures: or standard weights of sets of criteria/variables

(on X and subsets of X, assume X finite)

• µ(∅) = 0

• µ(X) = 1

• µ(S1 ∪ S2) = µ(S1) + µ(S2) for disjoint S1, S2

That is,

• the importance of the set of criteria/variables (price, comfort, size)

equals to

◦ importance(price) + importance(comfort) + importance(size)

implicit assumption in problems using weighted means

Also, because of additivity for any disjoint S1, S2, C,

• if µ(S1) < µ(S2) then also µ(S1 ∪ C) < µ(S2 ∪ C).
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Additive measures in decision making

Example: assessment

• Set of 10 students with marks in 5 subjects,

assess = overall mark

student ML P M L G Subj. Evaluation

s1 0.8 0.9 0.8 0.1 0.1 ???
s2 0.7 0.6 0.9 0.2 0.3 ???
s3 0.7 0.7 0.7 0.2 0.6 ???
s4 0.6 0.9 0.9 0.4 0.4 ???
s5 0.8 0.6 0.3 0.9 0.9 ???
s6 0.2 0.4 0.2 0.8 0.1 ???
s7 0.1 0.2 0.4 0.1 0.2 ???
s8 0.3 0.3 0.3 0.8 0.3 ???
s9 0.5 0.2 0.1 0.2 0.1 ???
s10 0.8 0.2 0.2 0.5 0.1 ???

• How do we assess? Select weighted mean + weights, (model of decision)
w(ML)=0.25, w(P)=0.25, w(M)=0.25, w(L)=0.15, w(G)=0.1
WM(s1, w) = 0.65
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Fuzzy Measures
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Fuzzy measures

Non-additive measures:

• Replace the additivity condition by a monotonicity condition

S1 ⊆ S2 then µ(S1) ≤ µ(S2)

• This allows for interactions:

◦ µ(S1 ∪ S2) > µ(S1) + µ(S2)

◦ µ(S1 ∪ S2) < µ(S1) + µ(S2)
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Fuzzy measures

Non-additive measures:

• Replace the additivity condition by a monotonicity condition

S1 ⊆ S2 then µ(S1) ≤ µ(S2)

• This allows for interactions:

◦ µ(S1 ∪ S2) > µ(S1) + µ(S2)

◦ µ(S1 ∪ S2) < µ(S1) + µ(S2)

• positive/negative interactions !

◦ the importance of the set of criteria/variables (price, comfort, size)

does not need to equal

◦ importance(price) + importance(comfort) + importance(size)

• This allows for inversing inequalities for any disjoint S1, S2, C, it is

possible

◦ µ(S1) < µ(S2) but also µ(S1 ∪ C) > µ(S2 ∪ C).
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Fuzzy measures in decision making

Example: assessment

• Set of 10 students with marks in 5 subjects,

assess = overall mark
student ML P M L G Subj. Evaluation

s1 0.8 0.9 0.8 0.1 0.1 ???
s2 0.7 0.6 0.9 0.2 0.3 ???
s3 0.7 0.7 0.7 0.2 0.6 ???
s4 0.6 0.9 0.9 0.4 0.4 ???
s5 0.8 0.6 0.3 0.9 0.9 ???
s6 0.2 0.4 0.2 0.8 0.1 ???
s7 0.1 0.2 0.4 0.1 0.2 ???
s8 0.3 0.3 0.3 0.8 0.3 ???
s9 0.5 0.2 0.1 0.2 0.1 ???
s10 0.8 0.2 0.2 0.5 0.1 ???

• Now, to assess. Fuzzy measures to represent interactions

µ({M}) = 0.25, µ({L}) = 0.15, but µ({M,L}) = 0.5

• CI(s1, µ)
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Measure identification
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Measure identification

• Measure identification: inverse problem

◦ Given data, find the measure
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Measure identification

• Measure identification: inverse problem

◦ Given data, find the measure

• but what is data?

◦ Data is (input, data) pairs as usual in machine learning

⇒ model learning for regression

(i.e., learning a ML model based on a fuzzy measure)
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Measure identification

• Measure identification: inverse problem

◦ Given data, find the measure

• but what is data?

◦ Data is (input, data) pairs as usual in machine learning

⇒ model learning for regression

(i.e., learning a ML model based on a fuzzy measure)

◦ Data is correct association between elements,

⇒ metric learning

(i.e., learning a distance based on a fuzzy measure)
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Learning from (input, output) pairs

Regression models
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Measure identification

• Regression model: An example

• Set of 10 students/marks + subjective evaluation

student ML P M L G Subj. Evaluation

s1 0.8 0.9 0.8 0.1 0.1 0.7
s2 0.7 0.6 0.9 0.2 0.3 0.6
s3 0.7 0.7 0.7 0.2 0.6 0.6
s4 0.6 0.9 0.9 0.4 0.4 0.8
s5 0.8 0.6 0.3 0.9 0.9 0.8
s6 0.2 0.4 0.2 0.8 0.1 0.3
s7 0.1 0.2 0.4 0.1 0.2 0.1
s8 0.3 0.3 0.3 0.8 0.3 0.4
s9 0.5 0.2 0.1 0.2 0.1 0.3
s10 0.8 0.2 0.2 0.5 0.1 0.5

• Model:

◦ Weighted mean or linear regression (find weights wi)

V. Torra and Z. Ontkovičová; Data-driven measures INFUS 2025 24 / 47



Measure identification > Regression ML Outline

Measure identification

• Regression model: Formalization

• Optimization problem

◦ Objective function: minimize error

◦ Subject to constraints

⊲ Constraints on the parameters. E.g.,

Weighted mean:
∑

wi = 1, wi ≥ 0

Choquet integral: µ is a measure (i.e., monotonicity, ...)
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Measure identification

• Regression model: Examples of solution

◦ Solution by our software (python): http://www.mdai.cat/ifao/

ciFindMoebius(data85, kAdditive=1),

fromMoebius2FM(ciFindMoebius(data85),5)

◦ weighted mean, weights learnt:

[0.424, 0.411, 0.000, 0.125, 0.040]

◦ Choquet integral, FM learnt:

[0, 0.440, 0.197, 0.629, 0, 0.580, 0.561, 0.704, 0.200, 0.570, 0.200, 0.695, 0.704,

0.704, 0.732, 0.815, 0.438, 0.608, 0.619, 0.806, 0.699, 0.748, 0.744, 0.859, 0.585,

0.706, 0.684, 0.919, 0.825, 0.825, 0.825, 1.0]
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Measure identification

• Regression model: Difficulties

◦ As the number of parameters of the measure is high (2|X| − 2)

we may have overfitting

⇒ Families of reduced complexity:

k-additive, belief functions, etc.

◦ Choquet integral-based model is easy to solve with optimization

Quadratic problem with linear constraints

◦ Other measures with other integrals are not so easy to learn

⇒ e.g., Sugeno integral
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Measure identification

• Regression model: Sugeno integral-based

◦ Optimization problem is no longer quadratic

(because of the max-min in the integral)

◦ Solution based on (max,⊕)-transform and genetic algorithms

⊲ In GA, we represent possible solutions with chromosomes

then, we need that most chromosomes lead to feasible measures.

⊲ With (max,⊕)-transform this is the case.
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Learning from associations

Metric learning
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Context: Identity disclosure risk in data privacy

• Parametric Distance based record linkage: d(Ai, Bi)

B
A

• Find the nearest record
(nearest in terms of a distance)

• Formally, 2 sets of vectors
Ai = (a1, . . . , aN ),
(ai protected version of bi)
Bi = (b1, . . . , bN)

• Vk(ai): kth variable, ith record
• Distance d(Vk(ai), Vk(bj))

for all pairs (ai, bj).

• Goal: find the best distance (in terms of re-identification attacks)

◦ Other families beyond Euclidean distance

approach using fuzzy measures (non-additive measures)
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Distances
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

d(A = (a1, . . . , an), B = (b1, . . . , bn))

• Euclidean distance (squared)

d(A = (a1, . . . , an), B = (b1, . . . , bn)) =
∑

(ai − bi)
2
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

d(A = (a1, . . . , an), B = (b1, . . . , bn))

• Euclidean distance (squared)

d(A = (a1, . . . , an), B = (b1, . . . , bn)) =
∑

(ai − bi)
2

• Weighted Euclidean (with weights w)

dw(A,B) =
∑

wi(ai − bi)
2

= WM(d(V1(A), V1(B)), . . . , d(Vn(A), Vn(B)))

where d(Vi(A), Vi(B)) = (ai − bi)
2.
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

• Choquet integral-based
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

• Choquet integral-based

dµ(A,B) = CIµ(d(V1(A), V1(B)), . . . , d(Vn(A), Vn(B)))

where d(Vi(A), Vi(B)) = (ai − bi)
2,

and µ a fuzzy measure (satisfying fuzzy measure properties)
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From the Euclidean distance to CI-based distances

Distances: d : [0, 1]|X| × [0, 1]|X| → R
+.

• Choquet integral-based

dµ(A,B) = CIµ(d(V1(A), V1(B)), . . . , d(Vn(A), Vn(B)))

where d(Vi(A), Vi(B)) = (ai − bi)
2,

and µ a fuzzy measure (satisfying fuzzy measure properties)

CI generalizes WM, and WM generalizes Euclidean distance,

So, appropriate µ and w make dw and dµ the Euclidean distance

When µ submodular, dµ a metric (triangle inequality)
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Putting the pieces together
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Metric learning

• Can we do better than with the Euclidean distance?

◦ Consider a supervised machine learning problem

◦ We know the correct links, and look for the best distance
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Metric learning

• Can we do better than with the Euclidean distance?

◦ Consider a supervised machine learning problem

◦ We know the correct links, and look for the best distance

• Other options (than the Euclidean distance):

◦ Weighted Euclidean distance (weights w) dw
◦ Mahalanobis distance (using covariance matrix Q)
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Metric learning

• Can we do better than with the Euclidean distance?

◦ Consider a supervised machine learning problem

◦ We know the correct links, and look for the best distance

• Other options (than the Euclidean distance):

◦ Weighted Euclidean distance (weights w) dw
◦ Mahalanobis distance (using covariance matrix Q)

• But also

◦ Choquet integral (measure µ) dµ
◦ Bilinear forms (using positive definite matrix Q) dQ
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Metric learning

• Can we do better than with the Euclidean distance?

◦ Consider a supervised machine learning problem

◦ We know the correct links, and look for the best distance

• Other options (than the Euclidean distance):

◦ Weighted Euclidean distance (weights w) dw
◦ Mahalanobis distance (using covariance matrix Q)

• But also

◦ Choquet integral (measure µ) dµ
◦ Bilinear forms (using positive definite matrix Q) dQ

• From a machine learning perspective (correct links=reidentifications)

◦ correct links dµ ≥ correct links dw ≥ correct links d
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Metric learning

• Metric learning. How to find these parameters (µ and Q)?

◦ We consider the two files A and B

◦ Assume they are aligned (Ai and Bi refer to the same record)

◦ Then, the distance between Ai and Bi should be

smaller than the distance Ai and other Bj.

B
A
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Metric learning

• Metric learning. Formalization (case WMw): dw(Ai, Bi)

◦ Main constraint: for a given i, for all j 6= i

N∑
k=1

wkd(Vk(Ai), Vk(Bj)) >
N∑

k=1

wkd(Vk(Ai), Vk(Bi))

For aligned files A and B (i.e., Ai corresponds to Bi)

• This is sometimes impossible to satisfy for all i,

so, introduce Ki (integer slack variable) which means Ki = 1 incorrect

linkage, and then

N∑
k=1

wk(d(Vk(Ai), Vk(Bj))− d(Vk(Ai), Vk(Bi))) + CKi > 0
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Metric learning

• Case C = WM :

Minimise
N∑
i=1

Ki

Subject to :

N∑
k=1

wk(d(Vk(ai), Vk(bj))− d(Vk(ai), Vk(bi))) + CKi > 0

Ki ∈ {0, 1}

N∑
k=1

wk = 1

wk ≥ 0

• Similar with C = CI (Choquet integral) and µ

• Extensive work comparing different scenarios and C.
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Metric learning

• Results give:

◦ number reidentifications in the worst-case scenario

◦ Importance of weights (or sets of weights in fuzzy measures)

• Examples:

◦ Choquet integral (CI):

010111 (0.82) 011110 (0.82)

011111 (0.82)

100111 (0.99) 101110 (0.99)

101111 (0.99)

110110 (0.99)

110111 (0.99) 111110 (0.99)

111111 (1.0)

◦ Weighted Mean (WM):
⊲ V1 0.016809573957189, V2 0.00198841786482128, V3 0.00452923777074791
⊲ V4 0.138812880222131, V5 0.835523953314578, V6 0.00233593687053289
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Metric learning

• Our application:

◦ Metric learning for privacy-preserving machine learning

◦ Model intrusion attacks in terms of attacking protected databases.

◦ Assessing worst-case scenario using metric learning

?
X

Record linkage

X’ / A

B
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Still another problem
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Radon Nikodym-derivative

• Given two fuzzy measures ν and µ, find f such that

ν(A) = (C)

∫
A

fdµ

• This is the Radon-Nikodym-like derivative for additive measures

useful for defining f -divergence, KL-divergence, entropy

◦ difficult to solve for non-additive (fuzzy) measures

◦ useful if we learn fuzzy measures, to compute distances
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Summary
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Summary

• Measure identification

◦ Regression models

◦ Metric learning

• Future directions

◦ RN-like derivatives
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Thank you
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