INFUS 2025

Data-driven identification of non-additive measures

Vicenç Torra and Zuzana Ontkovičová

August, 2025

Dept. CS, Umeå University, Sweden

Outline

1. Introduction

- Aggregation: from arithmetic mean to fuzzy integrals
- Measures: some basic concepts
- Fuzzy Measures

2. Measure identification

- Learning from (input, output) pairs: Regression models
- Learning from associations: Metric learning
- Distances
- Putting the pieces together
- Still another problem

3. Summary

Introduction Outline

Introduction

Aggregation: from arithmetic mean to fuzzy integrals

Introduction > Fuzzy integrals Outline

Aggegation functions

Aggregation functions:

They are functions to combine data from a set of information sources.

Aggregation (a bit more formal)

- Given values a_1, \ldots, a_n assume $a_i \in \mathbb{R}$ (numerical)
- We combine them $\mathbb{C}(a_1,\ldots,a_n)$, also in \mathbb{R}

Examples

- Arithmetic mean $\sum_{i=1}^{n} (1/n)a_i$
- Weighted mean $\sum_{i=1}^{n} w_i a_i$

```
with weights w_1, \ldots, w_n s.t. w_i \geq 0 and \sum w_i = 1.
```

Aggregation (still more formal)

- Given values a_1, \ldots, a_n
- We combine them $\mathbb{C}(a_1,\ldots,a_n)$
- such that

```
\circ if a_i \leq a_i', then \mathbb{C}(a_1, \dots, a_n) \leq \mathbb{C}(a_1', \dots, a_n')
```

 $\circ \ \mathbb{C}(a,\ldots,a) = a \text{ for all } a$

(or for some a, e.g. a=0 and a=1)

Aggregation

- Given values a_1, \ldots, a_n
- We combine them $\mathbb{C}(a_1,\ldots,a_n)$

Examples (more examples)

- Arithmetic mean $\sum_{i=1}^{n} (1/n)a_i$
- Weighted mean $\sum_{i=1}^n w_i a_i$ with weights w_1, \ldots, w_n s.t. $w_i \geq 0$ and $\sum w_i = 1$.
- OWA operators (linear combination of order statistics)

$$\sum_{i=1}^{n} w_i a_{\sigma(i)}$$

with σ a permutation s.t. values are sorted from largest to smallest

Aggregation (revisited, making f explicit)

- Given variables / information sources / criteria $X = \{x_1, \ldots, x_n\}$
- ullet and values f:X o [0,1]
- So, $f(x_i)$ value associated to x_i (i.e., $f(x_i) = a_i$)
- We combine them $\mathbb{C}(f(x_1),\ldots,f(x_n))$

Examples

- Arithmetic mean $\sum_{i=1}^{n} (1/n) f(x_i)$
- Weighted mean $\sum_{i=1}^{n} w_i f(x_i)$
- OWA operators $\sum_{i=1}^{n} w_i f(x_{\sigma(i)})$

Aggregation (as averaging of f)

Given variables / information sources / criteria $X = \{x_1, \ldots, x_n\}$

values $f: X \to [0,1]$, weights w_i for each x_i

We integrate f with respect to the weights (weighted mean, expected value)

$$E_w(f) = \sum_i w_i f(x_i)$$

or equivalently

$$E_w(f) = \int f dw$$

Aggregation as averaging of f (with other integrals)

- Given variables / information sources / criteria $X = \{x_1, \ldots, x_n\}$
- values $f: X \to [0,1]$, weights w_i for each x_i
- Then, other integrals are possible
 - Choquet and Sugeno integrals
 - Other generalizations exist as well
 - Murofushi & Sugeno fuzzy t-conorm integral, Bustince & Fernandez & Mesiar etc.

Aggregation as averaging of f

- Given variables / information sources / criteria $X = \{x_1, \ldots, x_n\}$
- ullet values $f:X \to [0,1]$, weights w_i for each x_i
- Then, other integrals are possible
 - Choquet and Sugeno integrals
 - but we need the concept of fuzzy measure

Introduction > Measures Outline

Measures: some basic concepts

Measures

Measures:

- A measure (mathematics) as a generalization of geometric measures (e.g., area)
- Used to express size, importance, and
- probabilities

Key property: additivity:

Additive measures

Additive measures: Formally (reference set X)

- $\bullet \ \mu(\emptyset) = 0$
- $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$ for disjoint S_1 , S_2

Additive measures in statistics/probability theory

Measures: A typical example, probabilities!! (on X and subsets of X, assume X finite)

- $\bullet \ \mu(\emptyset) = 0$
- $\mu(X) = 1$
- $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$ for disjoint S_1 , S_2

X

Additive measures in decision making

Measures: or standard weights of sets of criteria/variables (on X and subsets of X, assume X finite)

- $\bullet \ \mu(\emptyset) = 0$
- $\mu(X) = 1$
- $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$ for disjoint S_1 , S_2

That is,

- the importance of the set of criteria/variables (price, comfort, size)
 equals to
 - importance(price) + importance(comfort) + importance(size)

implicit assumption in problems using weighted means

Also, because of additivity for any disjoint S_1, S_2, C ,

• if $\mu(S_1) < \mu(S_2)$ then also $\mu(S_1 \cup C) < \mu(S_2 \cup C)$.

Additive measures in decision making

Example: assessment

Set of 10 students with marks in 5 subjects,
 assess = overall mark

student	ML	Р	М	L	G	Subj. Evaluation
$\overline{s_1}$	8.0	0.9	8.0	0.1	0.1	???
s_2	0.7	0.6	0.9	0.2	0.3	???
s_3	0.7	0.7	0.7	0.2	0.6	???
s_4	0.6	0.9	0.9	0.4	0.4	???
s_5	0.8	0.6	0.3	0.9	0.9	???
s_6	0.2	0.4	0.2	8.0	0.1	???
S7	0.1	0.2	0.4	0.1	0.2	???
s_8	0.3	0.3	0.3	8.0	0.3	???
s_9	0.5	0.2	0.1	0.2	0.1	???
s_{10}	0.8	0.2	0.2	0.5	0.1	???

• How do we assess? Select weighted mean + weights, (model of decision) $w(ML)=0.25, \ w(P)=0.25, \ w(M)=0.25, \ w(L)=0.15, \ w(G)=0.1$ $WM(s_1,w)=0.65$

Introduction > Fuzzy Measures Outline

Fuzzy Measures

Fuzzy measures

Non-additive measures:

- Replace the additivity condition by a monotonicity condition $S_1 \subseteq S_2$ then $\mu(S_1) \leq \mu(S_2)$
- This allows for interactions:

$$\circ \ \mu(S_1 \cup S_2) > \mu(S_1) + \mu(S_2)$$

$$\circ \mu(S_1 \cup S_2) < \mu(S_1) + \mu(S_2)$$

Fuzzy measures

Non-additive measures:

- Replace the additivity condition by a monotonicity condition $S_1 \subseteq S_2$ then $\mu(S_1) \leq \mu(S_2)$
- This allows for interactions:
 - $\circ \ \mu(S_1 \cup S_2) > \mu(S_1) + \mu(S_2)$
 - $\circ \mu(S_1 \cup S_2) < \mu(S_1) + \mu(S_2)$
- positive/negative interactions!
 - the importance of the set of criteria/variables (price, comfort, size)
 does not need to equal
 - importance(price) + importance(comfort) + importance(size)
- This allows for inversing inequalities for any disjoint S_1, S_2, C , it is possible

Fuzzy measures in decision making

Example: assessment

Set of 10 students with marks in 5 subjects,

<u>assess</u> = overall mark							
student	ML	Р	M	L	G	Subj. Evaluation	
$\overline{s_1}$	8.0	0.9	8.0	0.1	0.1	???	
s_2	0.7	0.6	0.9	0.2	0.3	???	
s_3	0.7	0.7	0.7	0.2	0.6	???	
s_4	0.6	0.9	0.9	0.4	0.4	???	
s_5	8.0	0.6	0.3	0.9	0.9	???	
s_6	0.2	0.4	0.2	8.0	0.1	???	
S_7	0.1	0.2	0.4	0.1	0.2	???	
s_8	0.3	0.3	0.3	8.0	0.3	???	
s_9	0.5	0.2	0.1	0.2	0.1	???	
s_{10}	0.8	0.2	0.2	0.5	0.1	???	

- Now, to assess. Fuzzy measures to represent interactions $\mu(\{M\})=0.25,\ \mu(\{L\})=0.15,\ {\rm but}\ \mu(\{M,L\})=0.5$
- \bullet $CI(s_1,\mu)$

Measure identification Outline

- Measure identification: inverse problem
 - o Given data, find the measure

- Measure identification: inverse problem
 - Given data, find the measure
- but what is data?
 - Data is (input, data) pairs as usual in machine learning
 ⇒ model learning for regression
 (i.e., learning a ML model based on a fuzzy measure)

- Measure identification: inverse problem
 - Given data, find the measure
- but what is data?
 - Data is (input, data) pairs as usual in machine learning
 ⇒ model learning for regression
 (i.e., learning a ML model based on a fuzzy measure)
 - Data is correct association between elements,
 - ⇒ metric learning
 - (i.e., learning a distance based on a fuzzy measure)

Learning from (input, output) pairs Regression models

- Regression model: An example
- Set of 10 students/marks + subjective evaluation

student	ML	Р	M	L	G	Subj. Evaluation
$\overline{s_1}$	8.0	0.9	8.0	0.1	0.1	0.7
s_2	0.7	0.6	0.9	0.2	0.3	0.6
s_3	0.7	0.7	0.7	0.2	0.6	0.6
s_4	0.6	0.9	0.9	0.4	0.4	0.8
s_5	8.0	0.6	0.3	0.9	0.9	0.8
s_6	0.2	0.4	0.2	8.0	0.1	0.3
S_7	0.1	0.2	0.4	0.1	0.2	0.1
s_8	0.3	0.3	0.3	8.0	0.3	0.4
s_9	0.5	0.2	0.1	0.2	0.1	0.3
s_{10}	8.0	0.2	0.2	0.5	0.1	0.5

- Model:
 - \circ Weighted mean or linear regression (find weights w_i)

- Regression model: Formalization
- Optimization problem
 - Objective function: minimize error
 - Subject to constraints
 - Constraints on the parameters. E.g.,

Weighted mean: $\sum w_i = 1$, $w_i \geq 0$

Choquet integral: μ is a measure (i.e., monotonicity, ...)

- Regression model: Examples of solution
 - O Solution by our software (python): http://www.mdai.cat/ifao/ciFindMoebius(data85, kAdditive=1), fromMoebius2FM(ciFindMoebius(data85),5)
 - weighted mean, weights learnt:
 [0.424, 0.411, 0.000, 0.125, 0.040]
 - Choquet integral, FM learnt:

```
[0, 0.440, 0.197, 0.629, 0, 0.580, 0.561, 0.704, 0.200, 0.570, 0.200, 0.695, 0.704, 0.704, 0.732, 0.815, 0.438, 0.608, 0.619, 0.806, 0.699, 0.748, 0.744, 0.859, 0.585, 0.706, 0.684, 0.919, 0.825, 0.825, 0.825, 1.0]
```

- Regression model: Difficulties
 - \circ As the number of parameters of the measure is high $(2^{|X|}-2)$ we may have overfitting
 - ⇒ Families of reduced complexity:
 - *k*-additive, belief functions, etc.
 - Choquet integral-based model is easy to solve with optimization
 Quadratic problem with linear constraints
 - Other measures with other integrals are not so easy to learn
 - \Rightarrow e.g., Sugeno integral

- Regression model: Sugeno integral-based
 - Optimization problem is no longer quadratic (because of the max-min in the integral)
 - \circ Solution based on (max, \oplus) -transform and genetic algorithms
 - ▷ In GA, we represent possible solutions with chromosomes then, we need that most chromosomes lead to feasible measures.
 - \triangleright With (max, \oplus) -transform this is the case.

Learning from associations Metric learning

Context: Identity disclosure risk in data privacy

• Parametric Distance based record linkage: $d(A_i, B_i)$

- Find the *nearest* record (nearest in terms of a distance)
- Formally, 2 sets of vectors $A_i = (a_1, \ldots, a_N),$ $(a_i \text{ protected version of } b_i)$ $B_i = (b_1, \ldots, b_N)$
- $V_k(a_i)$: kth variable, ith record
- Distance $d(V_k(a_i), V_k(b_j))$ for all pairs (a_i, b_i) .
- Goal: find the best distance (in terms of re-identification attacks)
 - Other families beyond Euclidean distance approach using fuzzy measures (non-additive measures)

Measure identification > Distance

Distances

From the Euclidean distance to CI-based distances

Distances: $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$.

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n))$$

• Euclidean distance (squared)

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n)) = \sum (a_i - b_i)^2$$

Distances: $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$.

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n))$$

Euclidean distance (squared)

$$d(A = (a_1, \dots, a_n), B = (b_1, \dots, b_n)) = \sum (a_i - b_i)^2$$

• Weighted Euclidean (with weights w)

$$d_w(A, B) = \sum w_i (a_i - b_i)^2$$

= $WM(d(V_1(A), V_1(B)), \dots, d(V_n(A), V_n(B)))$

where $d(V_i(A), V_i(B)) = (a_i - b_i)^2$.

Distances: $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$.

Choquet integral-based

Distances: $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$.

Choquet integral-based

$$d_{\mu}(A,B) = CI_{\mu}(d(V_1(A), V_1(B)), \dots, d(V_n(A), V_n(B)))$$

where $d(V_i(A), V_i(B)) = (a_i - b_i)^2$, and μ a fuzzy measure (satisfying fuzzy measure properties)

Distances: $d: [0,1]^{|X|} \times [0,1]^{|X|} \to \mathbb{R}^+$.

Choquet integral-based

$$d_{\mu}(A,B) = CI_{\mu}(d(V_1(A), V_1(B)), \dots, d(V_n(A), V_n(B)))$$

where $d(V_i(A), V_i(B)) = (a_i - b_i)^2$, and μ a fuzzy measure (satisfying fuzzy measure properties)

CI generalizes WM, and WM generalizes Euclidean distance, So, appropriate μ and w make d_w and d_μ the Euclidean distance

When μ submodular, d_{μ} a metric (triangle inequality)

Measure identification > Puzzle Outline

Putting the pieces together

- Can we do better than with the Euclidean distance?
 - Consider a supervised machine learning problem
 - We know the correct links, and look for the best distance

- Can we do better than with the Euclidean distance?
 - Consider a supervised machine learning problem
 - We know the correct links, and look for the best distance
- Other options (than the Euclidean distance):
 - \circ Weighted Euclidean distance (weights w) d_w
 - \circ Mahalanobis distance (using covariance matrix Q)

- Can we do better than with the Euclidean distance?
 - Consider a supervised machine learning problem
 - We know the correct links, and look for the best distance
- Other options (than the Euclidean distance):
 - \circ Weighted Euclidean distance (weights w) d_w
 - \circ Mahalanobis distance (using covariance matrix Q)
- But also
 - \circ Choquet integral (measure μ) d_{μ}
 - \circ Bilinear forms (using positive definite matrix Q) d_Q

Measure identification > Puzzle Outline

- Can we do better than with the Euclidean distance?
 - Consider a supervised machine learning problem
 - We know the correct links, and look for the best distance
- Other options (than the Euclidean distance):
 - \circ Weighted Euclidean distance (weights w) d_w
 - \circ Mahalanobis distance (using covariance matrix Q)
- But also
 - \circ Choquet integral (measure μ) d_{μ}
 - \circ Bilinear forms (using positive definite matrix Q) d_Q
- From a machine learning perspective (correct links=reidentifications)
 - \circ correct links $d_{\mu} \geq$ correct links $d_{w} \geq$ correct links d

- Metric learning. How to find these parameters (μ and Q)?
 - \circ We consider the two files A and B
 - \circ Assume they are aligned $(A_i \text{ and } B_i \text{ refer to the same record})$
 - Then, the distance between A_i and B_i should be smaller than the distance A_i and other B_j .

- Metric learning. Formalization (case WM_w): $d_w(A_i, B_i)$
 - Main constraint: for a given i, for all $j \neq i$

$$\sum_{k=1}^{N} w_k d(V_k(A_i), V_k(B_j)) > \sum_{k=1}^{N} w_k d(V_k(A_i), V_k(B_i))$$

For aligned files A and B (i.e., A_i corresponds to B_i)

• This is sometimes impossible to satisfy for all i, so, introduce K_i (integer slack variable) which means $K_i=1$ incorrect linkage, and then

$$\sum_{k=1}^{N} w_k(d(V_k(A_i), V_k(B_j)) - d(V_k(A_i), V_k(B_i))) + CK_i > 0$$

• Case $\mathbb{C} = WM$:

$$Minimise \qquad \sum_{i=1}^{N} K_i$$

$$Subject\ to:$$

$$\sum_{k=1}^{N} w_k(d(V_k(a_i),V_k(b_j))-d(V_k(a_i),V_k(b_i)))+CK_i>0$$

$$K_i\in\{0,1\}$$

$$\sum_{k=1}^{N} w_k=1$$

ullet Similar with $\mathbb{C}=CI$ (Choquet integral) and μ

 $w_k \ge 0$

ullet Extensive work comparing different scenarios and \mathbb{C} .

- Results give:
 - number reidentifications in the worst-case scenario
 - Importance of weights (or sets of weights in fuzzy measures)
- Examples:
 - Choquet integral

- Weighted Mean (WM):
 - $\triangleright V_1$ 0.016809573957189, V_2 0.00198841786482128, V_3 0.00452923777074791
 - $\triangleright V_4$ 0.138812880222131, V_5 0.835523953314578, V_6 0.00233593687053289

Measure identification > Puzzle Outline

- Our application:
 - Metric learning for privacy-preserving machine learning
 - Model intrusion attacks in terms of attacking protected databases.
 - Assessing worst-case scenario using metric learning

Still another problem

Radon Nikodym-derivative

ullet Given two fuzzy measures u and μ , find f such that

$$\nu(A) = (C) \int_A f d\mu$$

- \bullet This is the Radon-Nikodym-like derivative for additive measures useful for defining f-divergence, KL-divergence, entropy
 - difficult to solve for non-additive (fuzzy) measures
 - useful if we learn fuzzy measures, to compute distances

Summary

Summary

- Measure identification
 - Regression models
 - Metric learning
- Future directions
 - RN-like derivatives

References

References

- D. Abril, V. Torra, G. Navarro-Arribas (2015) Supervised learning using a symmetric bilinear form for record linkage. Inf. Fusion 26: 144-153.
- \bullet V. Torra (2022) (Max, \oplus) -transforms and genetic algorithms for fuzzy measure identification. Fuzzy Sets Syst. 451 253-265
- E. Türkarslan, V. Torra (2022) Measure Identification for the Choquet Integral: A Python Module. Int. J. Comput. Intell. Syst. 15:1 89
- Z. Ontkovicová, V. Torra (2024) Computation of Choquet integrals: Analytical approach for continuous functions. Inf. Sci. 679: 121105
- V. Torra (2022) Guide to Data Privacy, Springer.

Thank you