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Preface
This volume contains papers that had to be presented at the 19th Interna-

tional Conference on Modeling Decisions for Artificial Intelligence (MDAI 2022),
in Sant Cugat, August 30th - September 2nd, 2022. The rest of papers as well as
invited papers have been separately published in the Lecture Notes in Artificial
Intelligence, Vol. 13408 (by Springer).

This conference followed MDAI 2004 (Barcelona), MDAI 2005 (Tsukuba),
MDAI 2006 (Tarragona), MDAI 2007 (Kitakyushu), MDAI 2008 (Sabadell),
MDAI 2009 (Awaji Island), MDAI 2010 (Perpinyà), MDAI 2011 (Changsha),
MDAI 2012 (Girona), MDAI 2013 (Barcelona), MDAI 2014 (Tokyo), MDAI 2015
(Skövde), MDAI 2016 (Sant Julià de Lòria), MDAI 2017 (Kitakyushu), MDAI
2018 (Mallorca), MDAI 2019 (Milano), MDAI 2020, and MDAI 2021 (Ume̊a).

The aim of MDAI is to provide a forum for researchers to discuss differ-
ent facets of decision processes in a broad sense. This includes model building
and all kinds of mathematical tools for data aggregation, information fusion,
and decision-making; tools to help make decisions related to data science prob-
lems (including, e.g., statistical and machine learning algorithms as well as data
visualization tools); and algorithms for data privacy and transparency-aware
methods so that data processing procedures and the decisions made from them
are fair, transparent, and avoid unnecessary disclosure of sensitive information.

The MDAI conference included tracks on the topics of (a) data science,
(b) machine learning, (c) data privacy, (d) aggregation functions, (e) human
decision-making, (f) graphs and (social) networks, and (g) recommendation and
search.

The conference was supported by ESADE-Institute for Data-Driven Deci-
sions (esadeD3), the European Society for Fuzzy Logic and Technology (EUSFLAT),
the Catalan Association for Artificial Intelligence (ACIA), the Japan Society for
Fuzzy Theory and Intelligent Informatics (SOFT), and the UNESCO Chair in
Data Privacy.

Vicenç Torra, Yasuo Narukawa
June, 2022
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Yukihiro Hamasuna, Kindai University, Japan
Tove Helldin, University of Skövde, Sweden
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Anomaly Detection leveraging Dimensionality
Reduction of Multivariate Spatio-Temporal Data

using Pre-attentive Features

Rui Maia1[0000−0003−2100−3203] and Cláudia Antunes2[0000−0002−9467−2515]

1 Instituto Superior Técnico,Avenida Rovisco Pais 1, Lisboa, 1049-001, Portugal
rui.maia@tecnico.ulisboa.pt

2 Instituto Superior Técnico,Avenida Rovisco Pais 1, Lisboa, 1049-001, Portugal
claudia.antunes@tecnico.ulisboa.pt

Abstract. The growing number of spatio-temporal enabled systems lever-
age the interest in mining data, whether for maritime and land traffic
management or to improve human safety. Different complexities char-
acterize these systems by the evolving characteristics of data sensors,
natural and human introduced noise, legal restrictions or domain speci-
ficities such as weather and sea conditions. While someone can easily
interpret space and time dimensions in human reasoning patterns, it is
still a hard task to use the potential of these referential dimensions along
with other categorical or real-valued dimensions in computational tasks.
In this work, we propose a new symbolic representation of multivariate
spatio-temporal datasets supported by the research on human reason-
ing and cognitive capabilities. The proposed approach uses pre-attentive
features in order to transform complex spatio-temporal multivariate in-
formation into highly representative two-dimensional images. By experi-
menting with a real world Automatic Identification Systems dataset in a
binary classification task using Convolutional Neural Networks as a clas-
sifier, we prove the effectiveness of our approach as a new multivariate
spatio-temporal data representation.

Keywords: Dimensionality, Multivariate, Temporal, Spatial, Image, Perception

1 Introduction

Multivariate temporal data series are nowadays being collected around the globe
in very different contexts such as networks of radars, maritime or land sensors,
weather and climate monitoring devices or medical sensors. The huge amount of
available data can be very different in terms of dimensions, noise, class balance,
consistency or completeness. These differences are examples of the complexities
that must be dealt with when solving a particular problem in a specific domain.

In order to apply computational approach to a determined task, either to
classify observations or forecast a natural system behaviour, data is prepared
applying domain knowledge rules and generic rules, applicable to most of the
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2 Maia and Antunes

problems. It has also been underlined [10] that there is an over-the-top usage of
data subsets that are more likely to prove a certain idea.

The specific case of Multivariate Spatio-Temporal data includes not only the
most common data complexities but also the ones related with the presence of
two referential dimensions: space and time. The information on these two specific
dimensions is easily acquired by the cognitive capabilities of humans, who can
visually identify different data patterns when this data is represented by images.
Although, humans cannot understand images representing a large number of
dimensions, which is a limitation that computational approaches try to tackle
although lacking the advantage human cognition on the referential dimensions.

Several symbolic representation approaches have been published, but they
frequently maintain the number of dimensions [12] which is still seen as challenge
to different mining algorithms do not scale properly. By identifying this gap
between human capabilities and the state-of-art-knowledge on series symbolic
representation and image processing, we propose a new method to represent
multivariate spatio-temporal information in rich images. Each of these images is
generated using a complete series and all the available dimensions, real-valued
or categorical. The proposed method can be seen as a dimensionality reduction
technique, from a multi dimensional to a two-dimensional space.

The next section of this paper presents the related work, followed by the
introduction of relevant visual perception concepts supporting our method in
section 3. Section 4 details the proposed approach while the experimental process
and results analysis are done in Section 5. Finally conclusions, are drawn in
Section 6.

2 Related Work

Multivariate temporal analysis still encompasses relevant challenges as under-
lined by Moskovitch [13]. The research on multivariate time series representation
has been addressed by authors on different perspectives. Lin et al. [12] proposed
the Symbolic Aggregate Approximation (SAX) to convert the result of a Piece-
wise Aggregate Approximation (PAA) [9] into a symbol string. The series space
is split into equally sized number of regions (both predefined), each one identified
by a different symbol. Each segment of a series is then mapped into a symbol,
corresponding to the region in which it resides, which together builds a string of
symbols that represent the complete series.

Baydogan and Runner [3] proposed Symbolic Multivariate Time Series (SMTS)
as an approach to represent series data by the individual attributes and their
relationships using a letter codebook. It is a dimensionality reduction technique
based on a Random Forest approach that will partition the series into leaf nodes,
each one represented by a letter. The words are latter used to classify new series.
The same authors later proposed a similar approach, the Learned Pattern Simi-
larity (LPS) [4]. Segments are extracted from a multivariate time series in order
to train Regression Trees that find relations and dependencies between them.

2
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Each node is also represented by a word, and the complete series is represented
by the collection of leaf node words.

Recently, Bei et al. [2] noted limitations on SAX representation since it only
extracts the mean feature of subsequences to build the symbolic representation.
These authors proposed a new ensemble method called TBOPE based on SAX.
It leverages time series mean feature and trend histograms to represent the
complete series.

Frequent patterns in time series, typically identified through the analysis of
a fixed size rolling window, are called Motifs and support different symbolic ap-
proaches. After the identification of motifs in a set of time series it is possible to
verify which specific motif is part of a series by calculating the distance between
the motif and a segment of a series, or, by converting the series into subsequences
and comparing each subsequence with the identified motifs. They can be identi-
fied in a single series or in the complete series dataset. They can be contiguous,
non-contiguous and multigranular, when they might occur in different window
sizes. Aggarwal [1] underlined that 2-dimensional motifs (or patterns) can be
useful for image processing when considering a spatial scenario. Nonetheless, to
the extent of our knowledge, no works have been published on the representation
of complete multivariate series in a two-dimensional image space.

Several other approaches to time series representation can be found in liter-
ature, for example, Fourier Transformations, Wavelets, Polynomial Models, or
Shapelets.

3 Perception Background Knowledge

In the context of computing tasks, multivariate series data preparation and rep-
resentation raise relevant complexities. Besides the real-valued and categorical
dimensions, data series may include spatio-temporal dimensions, increasing the
overall process complexity since these are considered as reference dimensions in
almost any domain.

Charts or plots are frequently used to represent information in human friendly
form. Our cognitive system can interpret these graphical representations of infor-
mation being also able to naturally express in the same terms, manually or using
computer tools. This interpretation process consists in the decoding of both cate-
gorical and quantitative information from images [6]. This process, pre-attentive
processing [14], enables humans with a fast cognitive capability where a large
number of visual attributes can instantly be interpreted. These attributes have
been leveraging experiments [11] [5] on the representation of real-time multivari-
ate data [8]. In these experimental research works, data series observations are
represented using multiple pre-attentive visual attributes such as form, color,
position and movement (see Figure 1).

3



4 Maia and Antunes

Fig. 1: Preattentive Visual Attributes.

4 Proposed Approach

This research builds on the possibility of generating images for multivariate
temporal data that express the multitude of factors affecting the series behaviour.
This framework is specific for spatio-temporal domain, where relevant dimensions
are the ones regarding location, time, speed and course.

Figure 2 illustrated this three-phase process. It starts with (1) the generation
of two-dimensional images using the complete data series of an object movement,
i.e. the spatio-temporal and all other categorical and real-valued dimensions. The
spatial features determine where each position is plotted in the two-dimensional
space. Then, each mark depends on the time lag between observations and other
feature values, which will affect the mark’s color, size, transparency or dimension.
Therefore, regarding the pre-attentive features presented in Figure 1, this process
includes: Position, Size, Color Hue and Color Intensity. The hyper-parameters
were defined by testing and validation iterations. Algorithm 1 introduces the
image generation process for each object data series (movement).

Obtained images are then (2) processed in a Convolutional Neural Network
whose weights were previously trained in a classification task using the Ima-
geNet [7] database, featuring 14,197,122 labelled images. We use only the fea-
ture extraction part of this network in order to get information about the image
of an object movement. We used the VGG16 model for image recognition made
available by the Visual Geometry Group of the University of Oxford. This model
has 16 weight layers and a total of 138,357,544 parameters. Figure 3 illustrates
the architecture of VGG16.

Finally, in order to validate our approach, we run a clustered based (3) un-
supervised anomaly detection process over the complete dataset, including with

4
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Fig. 2: Experimental framework for multivariate series image generation based
anomaly detection.

all observation vectors. In parallel we are researching the possibility of retrieving
information on the context or domain (not subject of this paper).

5 Experimental Analysis

This work’s refers to the possibility of representing spatio-temporal multivariate
data series in two-dimensional images. Having applicability in several domains,
we chose to experiment in the maritime vessels Automatic Identification Systems
(AIS) tracks. The similarities between this and other domains such as road traffic
and public transportation is indisputable, as they both have referential spatio-
temporal dimensions on the top of several other common object (vehicle) sensors
information. They also have contextual similarities that may appear as relevant
such as virtually identical notions of traffic lanes, crossing rules, priority passing,
collision risk or coordinated movements.

Experiments were run over a freely available AIS dataset by National Oceanic
and Atmospheric Administration (NOAA) of the United States of America (USA).
In this dataset each observation consists of a multidimensional structure con-
taining both real-valued and categorical features, including also spatial and time
dimensions.

By representing tracks as images, and applying a clustering approach - for two
clusters - we expected to prove the effectiveness of the approach. Because there is
no information about abnormal samples or tracks, this experiment corresponds
to an unsupervised anomaly detection task.

The dataset characteristics are summarized in the Table 1.
Figure 4 is an example of an image generated for a multivariate temporal

series describing not only the location and movement but also other features

5



6 Maia and Antunes

Algorithm 1: Multivariate Spatio-Temporal Series Image Generation
Data: List of Object Multivariate Spatio-Temporal Observations
Result: Object Movement High-Res Image
α = Position Weight;
β = Size Weight;
γ = Color Hue;
δ = Color Intensity (Transparency) ;
Circular Normalization of Latitude and Longitude ;
Normalization of Speed Over Ground and Course Over Ground ;
for observation ∈ ListOfObjectObservations do

observation Position = (Latitude and Longitude) * α;
observation Size = Default * 1/TimestampLag * 1/Speed Over Ground *
β;

observation Color Hue = Course Over Ground * γ;
observation Color Intensity = TimestampLag * δ;
Plot observation

end

Table 1: Characterization of the experimented Dataset
Dataset Samples Dimensions Real-Valued Di-

mensions
Categorical Di-
mensions

Vessels Count

USA (Zone 10) 279.773 8 Latitude, Lon-
gitude, Course
Over Ground,
Speed Over
Ground, Times-
tamp

Vessel ID, Type,
Status

38

6
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Fig. 3: VGG16 Architecture as published by the Visual Geometry Group (Uni-
versity of Oxford). Feature extraction layers are red coloured, ending at the layer
with format 7x7x512. The fully connect+ReLu and Softmax components are the
classification components which are not used in this research.

influencing the series, namely: Latitude, Longitude, Timestamp, Course-over-
Ground and Speed-over-ground.

Following the intuition that spatio-temporal data series heavily rely on po-
sitional features, similar positioned observations will appear near each others.
Although, the detail of the series plot indicate very different signatures. Figure 5
zooms to the series detail.

The proposed multivariate spatio-temporal series image generation compo-
nent, and the VGG16 model for feature extraction, showed to enable accurate
results in the clustering tests, as illustrated in Figure 6 featuring clusters in red
and blue colour of a small subset of the dataset series. We used a traditional
k-means clustering with k = 2 and in order to analyse the clustering results we
projected the vectors onto a two dimensional space.

6 Conclusions

Our preliminary results show that it is possible to generate what we identified as
multivariate spatio-temporal series images that describe each series’ behaviour
using over 2 dimensions. Results also suggest that image features extracted from
a pre-trained Convolutional Neural Network can be used on classification tasks,
including unsupervised series classification or clustering.

Each part of this method should be further investigated: (1) the key part
of our method - the image generation using pre-attentive features - should be

7



8 Maia and Antunes

Fig. 4: Multivariate temporal series plot considering multiple dimensions

Fig. 5: Zoom over a region of the series

8
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Fig. 6

expanded by comparing against the use of other features and considering the dis-
tribution of each series and the hidden structures or correlations in the dataset.
(2) The convolutional network analysis may be the subject of a transfer learn-
ing approach by retraining at least the last layer of the network with a labelled
dataset. The experiments should be run over a large dataset, increasing also the
size of each image and applying spatial compression methods that encode the
free space of each image (the spatio-temporal dimensions where the object track
is inexistent).

We also consider necessary to extend the experiments to other similar do-
mains, and further validate clustering results, using, for example, the Silhouette
Coefficient score or the Elbow method, frequently applied in unsupervised mod-
els problems.

Soon, we plan to apply this approach to a labelled car traffic dataset to
evaluate the possibility of automatically identify irregular driver behaviour.
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Detecting Mild Cognitive Impairment
Using Fisher Vectors⋆

José Vicente Egas-López1, Réka Balogh2, Nóra Imre2, Ildikó Hoffmann3,4,
László Tóth1, Magdolna Pákáski2, János Kálmán2, and Gábor Gosztolya1,2

1 University of Szeged, Institute of Informatics, Szeged, Hungary
2 ELKH-SZTE Research Group on Artificial Intelligence, Szeged, Hungary

3 University of Szeged, Department of Psychiatry, Szeged, Hungary
4 Research Center for Linguistics, ELRN, Budapest, Hungary

egasj@inf.u-szeged.hu

Abstract. Mild Cognitive Impairment (MCI) is a neurological disorder
primarily affecting elderly people and it is frequently considered as a
prodromal stage of dementia. MCI is characterized by a slight but mea-
surable deficit in cognitive abilities like memory, thinking, and reasoning;
and it has an effect on the patient’s speech. In this study, to represent
the utterances, we employ the Fisher vector (FV) feature extraction ap-
proach, which proved to be a powerful technique in several other tasks
before. Although there exist several studies related to MCI assessment
via speech, to the best of our knowledge, this is the first study that em-
ploys the Fisher vector approach to assess dementia. Our experiments
indicate that FVs are indeed a good feature extraction technique for this
task as well, as we were able to outperform the standard i-vector and
x-vector techniques. In the last part of our study, we demonstrate that
the extracted feature vectors of the FV approach can be efficiently com-
pressed by PCA, while retaining an identical classification performance.

Keywords: mild cognitive impairment · dementia · Fisher vectors · i-
vectors · x-vectors · speech disorders

1 Introduction

Mild Cognitive Impairment (MCI) is a heterogeneous clinical syndrome, often
considered as the transitional stage between normal cognitive aging and demen-
tia. Its symptoms are similar to those of dementia (including deficits of memory,
reasoning and problem-solving), but in MCI, impairment in the ability to carry

⋆ This research was supported by the Hungarian Ministry of Innovation and Technol-
ogy (grants no. NKFIH-1279-2/2020 and TKP2021-NVA-09), by the NRDI Office
with grant FK-124413 and within the framework of the Artificial Intelligence Na-
tional Laboratory Program (MILAB). G. Gosztolya was also funded by the János
Bolyai Scholarship of the Hungarian Academy of Sciences and by the Hungarian
Ministry of Innovation and Technology New National Excellence Program ÚNKP-
21-5-SZTE.
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out the activities of daily living is rarely significant [1]. Still, MCI is a rather
serious condition, especially considering the fact that persons with MCI have a
quadrupled risk of developing dementia later on [2]. The transition of MCI to
dementia is a slow process, which can last for 15 years or more, during which
subtle signs of cognitive decline can be detected [3]. The limited efficacy and
applicability of currently available screening tools makes the recognition of MCI
particularly challenging. Most screening measures are time consuming, and they
may require trained clinicians to administer them.

Patients at this stage of cognitive decline may not show any clear signs of
impairment during testing which makes the case identification even more dif-
ficult [4]. And, since current pharmacological agents seem to be more effective
in the early or even in the pre-clinical stage of dementia [5], early identification
is a primary concern. Thus, there is a growing need for a sensitive tool that
can detect even the subtle changes indicating cognitive decline. Changes in lan-
guage performance are also present in MCI, even before the manifestation of
distinctive cognitive symptoms [6]. Monitoring these changes can be extremely
beneficial, since speech production requires the parallel functioning of several
domains, which gradually deteriorates during the course of disease progression
(such as lexical semantic abilities, memory and executive functions) [7].

In addition, since speech can act as a cheap, easy-to-collect, non-invasive
biomarker, there is a growing pool of acoustic parameters that have the potential
to distinguish between persons with intact cognition and those with MCI. One
set of these parameters may be treated as the temporal parameters of speech,
including different types of pauses, duration, or speech rate. It has been shown
that compared to healthy controls (HC), MCI patients tend to have a lower
speech rate, and increased hesitation number and time. The proportion of pause
and disfluencies is also higher in the case of patients with MCI [8]. Earlier [9]
our team also found that there are certain temporal speech features which seem
to characterize MCI patients relative to those for healthy people; and similar
Automatic Speech Recognition (ASR)-based solutions for detecting dementia
were proposed by other groups as well [10,11].

Besides focusing on temporal or ASR-based parameters which differ for the
(spontaneous) speech of MCI and HC subjects, another approach is to em-
ploy more general techniques, which were shown to provide good choices for
speaker groups in similar tasks. For example, i-vectors, originally introduced
for speaker recognition, have been successfully applied for detecting Parkinson’s
Disease [12,13] and Alzheimer’s Disease [14,15]. Likewise, x-vectors have been
used to detect pathological speech [16].

In this study we use the utterance representation technique of Fisher vec-
tors (FV, [17]) to perform a classification of utterances into two categories (MCI
and HC). We will show that Fisher vectors, originally developed for image clas-
sification and image retrieval (see e.g. [18]), are an efficient feature extraction
approach for this task as well. Despite its potential, however, FVs have been
employed so far in audio processing relatively rarely; the handful of studies we
found cover a variety of tasks like categorizing audio files as speech, music and
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miscellaneous [19], emotion detection [20], and for determining food type from
eating sounds [21]. Based on to our experimental results, FVs might lead to a
better classification performance in MCI detection than those provided by the
i-vector and x-vector techniques.

2 Data

The utterances were recorded at the Memory Clinic at the Department of Psy-
chiatry of the University of Szeged, Hungary. A total of 50 subjects, selected
from a larger pool of test participants, were used in the current study: 25 MCI
patients and 25 healthy controls. These subjects were selected to ensure that
the two study groups did not differ statistically from each other with regard to
gender (p = 0.734), age (p = 0.150) and years of education (p = 0.214). All
the subjects were right-handed and native speakers of Hungarian. The exclusion
criteria were drug or alcohol consumption; being under pharmacological treat-
ment affecting cognitive functions; depression; a medical history of head injuries
or psychosis; and visual or auditory deficits. MCI patients were selected after a
medical diagnosis supported by neuropsychological tests and CT or MRI. As it
was found that MCI affects the spontaneous speech of the subjects more than
their planned speech, we recorded and processed spontaneous speech. According
to our protocol, the subjects were asked to talk about their previous day. The
responses were recorded with a digital voice recorder and a tie clip microphone.
Since our previous studies (e.g. [11,22]) and studies performed by other groups
(e.g. [23,24]) found that MCI affect the spontaneous speech of the subjects more
than their planned speech, we recorded and processed spontaneous speech.

3 Fisher Vectors

The Fisher Vector approach was originally developed for image representation to
pool local image descriptors (e.g. SIFT, describing occurrences of rotation- and
scale-invariant primitives). By modelling the low-level attributes by a Gaussian
Mixture Model (GMM), it extracts a fixed-sized feature representation from each
image, regardless of the number of local features. It can be applied to audio
processing in a quite straightforward way, by substituting the SIFT descriptors
of the actual image with the frame-level feature vectors of the actual utterance.

3.1 The Fisher Kernel

The Fisher Kernel (FK) seeks to measure the similarity of two objects from a
parametric generative model of the data (X), which is defined as the gradient
of the log-likelihood of X:

GX
λ = ▽λ log υλ(X), (1)

where X = {xt, t = 1, . . . , T} is a sample of T observations xt ∈ X , υ represents
a probability density function that models the elements in X , and λ stands for

13



4 Egas-López et al.

the parameter vector of υλ [17]. Thus, the GX
λ gradient describes the way the

parameter υλ should be changed in order to best fit the data X. The similarity
of X and Y by the FK can be expressed as [25]

KFK(X,Y ) = GX′
λ F−1

λ GY
λ . (2)

The Cholesky decomposition F−1
λ = L′

λLλ can be utilized to rewrite the Eq. (2)
in terms of the dot product:

KFK(X,Y ) = G X′
λ G Y

λ , (3)

where
G X
λ = LλG

X
λ = Lλ ▽λ log υλ(X). (4)

Such a normalized gradient vector is the so-called Fisher vector of X [17]. Both
the Fisher vector G X

λ and the gradient vector GX
λ have the same dimension.

3.2 Fisher Vectors

Let X = {xt, t = 1 . . . T} be the set of D-dimensional local low-level descriptors,
and us assume that the xt samples are independent. Then Eq. (4) becomes

G X
λ =

T∑︂

t=1

Lλ ▽λ log υλ(xt). (5)

The assumption of independence allows the FV to become a sum of normalized
gradients statistics Lλ ▽λ log υλ(xt) calculated for each xt; i.e.

Xt → φFK(Xt) = Lλ ▽λ log υλ(Xt), (6)

describing an operation that can be considered as a higher dimensional space
embedding of the local descriptors Xt, describing the direction to which the
model parameters should be changed in order to best fit the data X. When the
distribution is modelled by a GMM with a diagonal covariance matrix, consisting
of N Gaussian components, the FV will practically store one value for the mean
and one for the variance for each component (i.e. it will have a size of ND) [17].

4 Other Feature Extraction Methods

4.1 i-vectors

GMM supervectors and JFA (Joint Factor Analysis) are successful approaches
that were once the state-of-the-art systems for robust speaker recognition. In
an attempt to combine of both techniques, JFA speaker factors were used as
features for SVM classifiers. It was found that the channel factors estimated
with JFA not only contain channel effects but speaker-dependent information
as well; hence, speaker and channel factors were combined into a single space.
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Fig. 1. Classification accuracy scores with the Fisher Vector approach as a function of
the number of GMM components.

Factor Analysis (FA), which is used as a feature extractor, defines a new low-
dimensional total variability space in which a speech utterance is defined by a
new vector called i-vector [26] which contains the estimates of the total factors:

M = m+ Tw, (7)

whereM is the GMM speaker supervector for a given signal;m is the speaker/channel-
independent component (the UBM supervector); T is the Total Variability ma-
trix; and w is a normal distributed hidden variable (i.e. the i-vector).

4.2 x-vectors

The x-vector approach is a neural network-based feature extraction technique
providing fixed-dimensional embeddings for variable-length utterances, describ-
ing the observations at the utterance level rather than at the frame-level. We
employed a deep network with an identical structure to that described by Sny-
der et al. [27]. It comprises five frame-level layers with time-delay architecture, a
statistics pooling layer, two segment-layers and a final softmax output layer. The
stats pooling layer gets the T frame-level activations from the last frame-level
layer, and aggregates over the input segment by computing mean and standard
deviation. These mean and standard deviation values are concatenated and then
used as the input of the subsequent segment layers. The neurons of the final
softmax layer correspond to the speakers in the training set. Since it only has a
role during the training phase, it can be discarded after the training process has
finished [27].

The embeddings produced by this network (i.e. the x-vectors) capture infor-
mation from the speakers over the whole audio-signal. x-vectors can be extracted
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Fig. 2. AUC scores with the Fisher Vector approach as a function of the number of
GMM components.

from any segment layer, although those from the segment6 layer have shown to
lead to a better performance than those from segment7 [27].

5 Experiments and Results

All three tested feature extraction approaches rely on the frame-level features of
the utterances. For this purpose, we used 13 dimensional Mel Frequency Cepstral
Coefficients (MFCCs) with a frame-length of 25ms and a step size of 10ms,
extracted by Kaldi. We also used Kaldi for i-vector and x-vector extraction,
while the Fisher vector encodings were calculated by the VLFeat library.

A linear SVM classifier was utilized to discriminate the audio-signals (MCI
and healthy controls). We used the libSVM implementation; the C complexity
parameter was set in the range 10−5, 10−4, . . . , 101. We trained our classifier
model in 25-fold stratified cross-validation (CV): each fold consisted of the ut-
terances of one healthy and one MCI subject. Performance was measured by
classification accuracy besides equal error rate (EER), and by the area under
the ROC curve (AUC).

Our preliminary tests revealed that i-vectors and Fisher vectors did not re-
quire standardization before classification, while for x-vectors this pre-processing
step helped classification. The frame-level GMM model was trained on a subset
of the BEA corpus [28], containing Hungarian spontaneous speech. We trained
diagonal-covariance GMMs with N = 2, 4, . . . , 128 components; the same GMMs
were used both for i-vector and Fisher vector extraction. The neural network for
extracting the x-vectors embeddings was trained using the same data as the
GMM models. We extracted the embeddings from the segment6 layer with a
dimension of 512.
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Table 1. Classification accuracy and AUC scores achieved with the different feature
extraction methods; N denotes the number of Gaussians components where applicable.
∆ and ∆∆ represent the first and second derivatives of the MFCCs, respectively.

Approach Features N Acc. AUC

MFCC 128 72% 0.733
i-vectors MFCC + ∆ 2 52% 0.554

MFCC + ∆ + ∆∆ 2 68% 0.702
MFCC 32 72% 0.733

FV MFCC + ∆ 128 76% 0.742
MFCC + ∆ + ∆∆ 32 72% 0.747

x-vectors MFCC — 60% 0.584

5.1 Results

Figure 1 shows the accuracy scores got using the FV features as a function of the
number of Gaussian components N . When the features used the ∆ and/or the
∆∆s, we can see a pattern where the accuracy results increased as the number
of components increased, although there was a slight decrease in the score with
the full feature set at N = 128. However, this is not true for the features with
no-deltas, where the scores were quite similar (i.e. in the range 68 . . . 72%) in
the whole examined area. The best accuracy results were got by using MFCCs
along with their first order derivatives and with 128 Gaussian components.

In Figure 2 we see how the number of Gaussian components affects the Area-
Under-Curve score. As in the other illustration, here, the color of the bars rep-
resent the use of MFCCs with a different number of derivatives. It can be seen
that, as the number of components increases, the AUC scores do so as well. Here,
the best AUC score was obtained by FVs using 32 Gaussian components and
using both the ∆ and ∆∆ values. From both graphs, we can state that the more
components there are, the better the GMM is able to model the distribution of
the data. Hence, the FV encoding was able to exploit the GMM model to extract
more meaningful features.

The best values attained are listed in Table 1, along with the performances
of the i-vector and x-vector techniques. (For the sake of clarity, the best values
and those close to it are shown as bold.) In terms of classification accuracy,
when not using any derivatives, Fisher vectors and i-vectors gave the same per-
formance (72%); however, adding the ∆ and ∆∆ values made the scores of the
i-vector approach worse, while FVs continued to provide a good performance: in
the MFCC + ∆ case, the classification accuracy even increased to 76%. When
inspecting the AUC scores, we can draw similar conclusions; using FVs gives the
best results when using all or just the first order derivatives.

Surprisingly, the performance of x-vectors was lower for this particular dataset:
such representations led to an accuracy of 60% and an AUC score of 0.584. We
think that this particular performance is mainly due to the fact that the network
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Table 2. Comparison of performances of the original features with the features after
applying PCA.

Full PCA 95%
Features Acc. AUC Acc. AUC

MFCC 72% 0.733 72% 0.733
MFCC + ∆ 76% 0.742 76% 0.746
MFCC + ∆ + ∆∆ 72% 0.747 72% 0.746

was trained using a relatively small amount of data (slightly less than 2 hours).
GMMs turned out to be more robust using the same amount of data.

As for the Fisher vector representations, they attained the best accuracy and
AUC scores for all our experiment configurations. However, it is worth pointing
out that, as can be observed in Table 1, i-vectors achieve the same accuracy and
AUC scores when no ∆ values are used. We can attribute this behavior to the
size of the dataset used for UBM training. However, when using ∆ and ∆∆,
FVs encodings outperformed the other representations significantly, achieving
the best AUC score of 0.747.

6 Applying Principal Component Analysis

Despite the classification performance, one drawback of the Fisher vector encod-
ing is the size of features generated. Although we only used 13 MFCC compo-
nents (in the literature, 20 and 23 are also common values), also including the
∆s with N = 128 Gaussian components led to 6656 features, while with the ∆∆
values, this increases to 9984. Next, we will show that this feature vector size
can be efficiently reduced by Principal Component Analysis (PCA), while re-
taining the same classification performance. In this experiment, we kept 95% of
the information present in the Fisher vectors. For the sake of comparability, we
used the same N values which proved to be optimal in our previous experiment.

Table 2 lists the accuracy and AUC scores for the Fisher vector features,
obtained with the full feature vectors and after applying PCA. Clearly, the shown
scores are practically identical: while there are insignificant differences in the
AUC values (i.e. ≤ 0.004), the classification accuracy scores remained unchanged
in each case. However, the size of the feature vector was reduced to 3− 16% of
its original length, allowing a more compact SVM model and a faster prediction.

7 Conclusions and Discussion

In this study we showed that Fisher vector encodings are efficient for representing
speech utterances in order to detect Mild Cognitive Impairment, while the i-
vector and x-vector approaches allowed slightly or significantly lower scores. In
the next part of our study, we noted that FVs tend to extract quite large feature
vectors. To decrease the number of attributes, we applied Principal Component
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Analysis; and based on our results, this dimensionality reduction step could be
performed without any real loss in performance.

Evidently, we carried out our experiments on a limited amount of data. Al-
though working with the utterances of 50 subjects (which was also a result of
using demographically aligned groups) is quite normal in the medical speech pro-
cessing area, from a machine learning perspective this is considered a very small
dataset. In the near future we plan to repeat our experiments on the utterances
of more subjects. The sensitivity of the examined methods to acoustic or other
factors (e.g. language) is also an open question. These, however, are clearly the
subjects of future work.
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Abstract. Massless points with respect to a monotone measure are in-
conspicuous, however, they sometimes play important roles. In this ar-
ticle, we try to treat such roles along with standard elements of the
monotone measure space. By using Möbius transform, every inconspic-
uous role can be expressed by a certain element. We provide a method
to construct a null additive space in which inconspicuous elements and
standard elements in the given monotone measure space are mixed. In
this space, a function on the original space corresponds to a certain func-
tion on the null additive space, and Choquet integral values are preserved
under this translation.

Keywords: Fuzzy measure theory, Set functions, measures and inte-
grals with values in ordered spaces.

1 Introduction

In this study, we discuss the null additivity of monotone measures, or set func-
tions more generally. For a set function µ defined on a measurable space (X,B),
we always assume that µ(∅) = 0. We define A ∈ B as a µ-null set (or simply
a null set) if any measurable subset B of A satisfies µ(B) = 0. We define that
µ is null additive if µ(B) = µ(B ∪ A) for any null set A and a measurable set
B ∈ B, and that µ is weakly null additive if A ∪ B is a µ-null set for any null
sets A,B ∈ B. In the case where µ is a monotone measure, the null additivity
is defined in [1] or [2], and these definitions are delicate and differ slightly from
study to study.

The concept of null and weak null additivities are important in analyses of
measurable function on monotone measure spaces. For example, considering the
relation µ({x : f(x) ̸= g(x)}) = 0 (we denote it briefly by µ({f ̸= g}) = 0 in the
sequel) for a pair of measurable functions f, g, a monotone measure µ is weakly
null additive if and only if this relation is an equivalent relation. Moreover, under
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the condition of null-continuity from below, the weak null additivity implies
the existence of completion of the σ-algebra B, and the completion is unique
when µ is null additive. ([3],[4]). For a non-discrete monotone measure space,
equivalent conditions for the null and weak null additivities can be described
by the generalized Möbius transform (for the definition of Möbius transform,
see [5]; for the equivalence conditions, [4]). Using the relation between classical
and generalized Möbius transforms, which we show in this study, we describe
conditions for the null and weak null additivities using the classical Möbius
transform.

A set function with constructive k-additivity (k ∈ N), the definition of which
was given in [6], can be described using a signed measure on the space of finite
subsets with cardinalities not more than k. In the case whereX is a finite set, any
set functions are (constructively) k-additive for some k (k ≤ |X|). Each point
mass of the above measure with respect to a point A (the measure is defined on
a set family) is equivalent with the corresponding Möbius transform τA. Then, if
there is a massless point a ∈ X, some influence factor may be represented using a
Möbius transform with respect to some finite subset of X. Thus, for an arbitrary
monotone measure space, we aim to construct a new non-additive measure space
with no massless point by replacing some points with suitable influence factors,
each of which has a one-to-one correspondence with some subset of X.

The new non-additive measure space inherit certain properties of the original
monotone measure space. As the first step, for a given monotone measure space
(X,µ) (X is a finite set and µ is a monotone measure) and a nonnegative function

f on X, we aim to construct a non-additive measure space(X̃, µ̃) and a function

f̃ on X̃, for which two Choquet integrals
∫ Ch

fdµ,
∫ Ch

f̃dµ̃ are equivalent.

Moreover, the transformed (X̃, µ̃) and a function f̃ also have same distribution
functions. Then, for all distribution function type integrals, the Sugeno integrals
or the Shilkret integrals, two integral values are equivalent.

2 Basic Properties

Let (X,B) be a measurable space and µ be a set function (µ(∅) = 0). We define
the null set, null additivity, and null additivity as follows.

Definition 1. (a) A ∈ B is a µ-null set (simply null set) if µ(B) = 0 for any
B ⊂ A,B ∈ B.

(b) µ is null additive if µ(B) = µ(B ∪A) for any null set A and B ∈ B.
(c) µ is weakly null additive if µ(B ∪A) = 0 for any null sets A and B.

The generalized Möbius transform τ(· · · ) is defined in Definition 2. Consider a
partition D = {Dj}nj=1 of a general measurable space, then a set function can be
regarded as a set function defined on the n-point space D. Under this restriction,
the generalized Möbius transform coincides with the classical one.

Definition 2. ([5])

(a) D = {D = {Dj}nj=1, n ∈ N, Dj ∈ B, Dj ∩Dk = ∅,∀j, k ≤ n, j ̸= k} .
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(b) τ(D) = τ(D1, · · · , Dn), (D → R) is defined by inductively:

1. τ({D}) = µ(D) for any D ∈ B.
2. τ(D) = µ(

⋃
D∈DD)−∑D′⊊D τ(D′).

The null and weak null additivities are described by the generalized Möbius
transform.

Proposition 1. ([4]) Let (X,B, µ) be a non-additive measure space.
(a) µ is null additive if and only if

D ∈ D,∃A ∈ D, A is a null set. ⇒ τ(D) = 0.

(b) µ is null additive if and only if

D ∈ D,∀A ∈ D, A is a null set. ⇒ τ(D) = 0.

Originally, the above proposition was proven for the case in which µ is a mono-
tone measure. The same method is valid for this case.

The classical Möbius transform for a set function on a finite set is well known
(see for example [7]) and it was used in various situations. In the case where X
is a finite set, we consider the classical Möbius transform {τA}A⊂X of a set
function µ : (2X → R). The generalized Möbius transform can be represented
by the classical one.

Proposition 2. Let X be a finite set, µ be a set function with µ(∅) = 0, τ
be the (generalized) Möbius transform, and {νB}B⊂X be the classical Möbius
transform. For an element D = {A1, · · · , An}, we define the family of finite
subsets Γ (A1, · · · , An) as follows.

Γ (A1, · · · , An) = {B ⊂
⋃

j≤n

Aj : ∀j ≤ n,Aj ∩B ̸= ∅}.

Then, we have:

(a) τA = τ({a1}, · · · , {an}), A = {a1, . . . , an}.
(b) τ(A1, · · · , An) =

∑

B∈Γ (A1,··· ,An)

τB

Proof. (a) We can describe the definition of classical Möbius transform by a
similar method with Definition 1, and this may be easily verified using the above
definition. It was also checked in [5]. (b) We prove this formula by induction
on the cardinality |D| = n. For a set A ⊂ X, by the definition of the Möbius
transform,

µ(A) =
∑

B⊂A

τB .

Then, this proves the case n = 1 because τ({A}) = µ(A), and Γ (A) = {B : B ⊂
A, B ̸= ∅}.
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Assume this formula when n is not more than n0 − 1. For any n ∈ N and a
disjoint set family {A1, · · · , An}, the following formula was proven in [5] for any
n.

τ(A1, · · · , An−2, An−1 ∪An)

= τ(· · · , An−2, An−1) + τ(· · · , An−2, An) + τ(· · · , An−2, An−1, An).

Then,

τ(· · · , An−2, An−1, An)

= τ(· · · , An−2, An−1 ∪An)− τ(· · · , An−2, An−1)− τ(· · · , An−2, An).

Set

D0 = {· · · , An0−2, An0−1 ∪An0
}, D1 = {· · · , An0−2, An0−1},

D2 = {· · · , An0−2, An0}, D3 = {· · · , An0−2, An0−1, An0}.

Then,

τ(D3) =
∑

B∈Γ (D0)

τB −
∑

B∈Γ (D1)

τB −
∑

B∈Γ (D2)

τB .

For an element of F ∈ Γ (A1, · · · , An0−2, An0−1∪An0
) satisfies one and only one

of the following (1) ∼ (3).

(1) F∩An0−1 ̸= ∅ and F∩An0 ̸= ∅, that is, F ∈ Γ (A1, · · · , An0−2, An0−1, An0).

(2) F ∩An0−1 ̸= ∅ and F ∩An0 = ∅, that is, F ∈ Γ (A1, · · · , An0−2, An0−1).

(3) F ∩An0−1 = ∅ and F ∩An0 ̸= ∅, that is, F ∈ Γ (A1, · · · , An0−2, An0).

Moreover, Γ (D1), Γ (D2), and Γ (D3) are disjoint from each other. This implies
that ∑

B∈Γ (D0)

τB −
∑

B∈Γ (D1)

τB −
∑

B∈Γ (D2)

τB =
∑

B∈Γ (D3)

τB ,

and this concludes the proof. □
The above proposition asserts that generalized Möbius transform can be

expressed by classical one when |X| <∞. The conditions for the null and weak
null additivities are expressed as follows.

Proposition 3. Let X be a finite set and µ be a set function defined on 2X .
Then, we have the following.

(a) µ is null additive if and only if

A ⊂ X, ∃x ∈ A, µ({x}) = 0,⇒ τA = 0. (1)

(b) µ is null additive if and only if

A ⊂ X, ∀x ∈ A, µ({x}) = 0,⇒ τA = 0.
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Proof. (a) Let D = {A1, · · · , An} be an arbitrary element of D. Then, by
Proposition 1, we have only to prove that

µ(A1) = 0 ⇒ τ({A1, · · · , An}) = 0, (2)

using the condition (1). Because the condition (2) clearly implies (1), then we
have that conditions (1) and (2) are equivalent.

By Proposition 2,

τ(D) =
∑

B∈Γ (D)
τB .

For any element B ∈ Γ (D), there exist a ∈ B ∩ A1. By the assumption of (a),
we have τB = 0 for each B ∈ Γ (D). Hence, τ(D) = 0.

(b) We need only to prove that τ({A1, · · · , An}) = 0 (D = {A1, · · · , An} ∈
D) if Ak is a null set for each k ≤ n, under the assumption of (b).

To do so, we use the Proposition 2 again:

τ(D) =
∑

B∈Γ (D)
τB .

By the definition of Γ (D), any element B ∈ Γ (D) satisfies

B ⊂
⋃

k≤n

Ak.

Hence, each point b ∈ B satisfies µ({b}) = 0 because b ∈ Ak for some k ≤ n and
Ak is a null set for any k ≤ n. Then, we also have τB = 0 for any B ∈ Γ (D),
and this concludes the proof. □

3 Influence Factor

By the arguments in the previous section, a set function on a finite set is null
additive if there are no massless points. The purpose of this section is to construct
a null additive non-additive measure space, by removing massless points and
adding some influence elements.

Definition 3. Let X be a finite set and µ be a set function on 2X . Then, A ⊂ X
is an influence factor if there exists ∃a ∈ A such that

(a) µ({a}) = 0,
(b) τA ̸= 0, and
(c) a ∈ B ⊊ A ⇒ τB = 0.

N denotes the family of all massless points, and A denotes the family of all influ-
ence factors. We consider an influence element ιA corresponding to an influence
factor A ∈ A.

For each B ⊂ X, set

IB = {A|A ∈ A, A ⊂ B},
I = {B : B ∩N ̸= ∅, B = (B \N) ∪

⋃

A∈IB

A}.
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Remarks: For a massless point a satisfies that τA = 0 if a ∈ A, then we can
remove a from X. Then, we assume that, for any point a, there exists A which
satisfies τA ̸= 0 and a ∈ A. An influence factor is a minimal subset satisfying
a ∈ A and τA ̸= 0. However, in general, the relation between a massless point
and an influence factor is not a one-to-one correspondence. The relation between
“factor” and “element” is similar to that between “fuzzy set” and “membership
function”.

Proposition 4. Let X be a finite set , µ be a monotone measure on 2X , and A
be an influence factor. Then, we have τA > 0.

Proof. Let a ∈ A be a point satisfying the condition in Definition 3

µ(A) =
∑

B⊊A

τB + τA

=
∑

B⊊A,a̸∈B

τB +
∑

B⊊A,a∈B

τB + τA

= µ(A \ {a}) + τA.

The last equality holds by the condition (c) in Definition 3. Using the mono-
tonicity, we have τA > 0. □
Proposition 5. Let X be a finite set , µ be a monotone measure on 2X . Then,
we have the following.

(a) If τB ̸= 0, then B = (B \N) ∪⋃A∈A,A⊂B A.
(b) Let B,B′ ⊂ X be any subsets of X. Then B = B′ if and only if (B \N)∪

IB = (B′ \N) ∪ IB′ .

Notation and Remark: Set IB = {ιA, A ∈ A, A ⊂ B} and I is defined by I =
{B : B = (B \N) ∪⋃A∈A,A⊂B}.

(a) of this proposition implies that τB = 0 if B ∩N ̸= ∅ and B ̸∈ I.
Proof. (a) Consider an element a satisfying a ∈ B ∩ N . We prove that

there exist A ∈ A such that a ∈ A ⊂ B. If all proper subsets C ⊊ A with a ∈ C
satisfies τC = 0 then B ∈ A. If there exist C ⊊ B with a ∈ C and τC ̸= 0, by
replacing B with C and iterating this process until we find an element of A.

This property implies that, for all a ∈ B ⊂ N , there exist C ∈ A such that
a ∈ C ⊂ B. Therefore, we have

B = (B \N) ∪


 ⋃

C⊂B,C∈A
C


 ,

and this concludes the proof of (a).
(b) As the “only if” part is clear, and we prove the contrapositive of the

“if” part. Assume that B ̸= B. If B∩N ̸= B′∩N , clearly we have (B\N)∪IB ̸=
(B′ \ N) ∪ IB′ . Then, we consider the case B ∩ N = B′ ∩ N , and this implies
B ∩ N ̸= B′ ∩ N . Assume that ∃a ∈ (B ∩ N) \ B′. Then, there exists A ∈ A
satisfying a ∈ A ⊂ B, because B ⊃ ⋃A∈A,A⊂B A =

⋃
A∈IB

A. Assuming that
A ∈ IB′ then a ∈ A ⊂ B′ contradicts to the assumption a ̸∈ B′. Therefore, we
have IB ̸= IB′ , and this concludes the proof. □
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4 Construction of null additivization space.

Using the argument in previous sections, we define the null addivization of mono-
tone measure space as follows.

Definition 4. Let X be a finite set and µ be a monotone measure on 2X . Set
X̃ = (X \ N) ∪ {ιA : A ∈ A}. We define the transformed set function µ̃ by
defining its Möbius transform τ̃ as follows.

A ∈ A ⇒ τ̃{A} = τA,

B ⊂ X \N ⇒ τ̃B = τB ,

B ∈ I, B =
⋃

C∈IB

C ⇒ τ̃B∪IB = 0,

B ∈ I, B ̸=
⋃

C∈IB

C ⇒ τ̃B∪IB = τB ,

otherwise, U ⊂ X̃ τ̃U = 0.

Let µ̃ be the set function with the Möbius transform is τ̃ . Then, (X̃, µ̃) is the
null additivization of (X,µ).

Definition 5. Let (Y, ν) be a (not necessary monotone) non-additive measure
space on a finite set, {τB}B∈2Y be its Möbius transform, and f be a nonnegative
function on Y . Then, we define a Choquet integral of f on (Y, ν) as follows.

∫ Ch

fdν =
∑

B∈2Y

min
y∈B

f(y)τB .

It is well-known that the above Choquet integral is identical with the standard
version, when µ is a monotone measure. Then, the following theorem holds.

Theorem 1. Let (X̃, µ̃) and f̃ be the null additivization of a monotone measure
space (X,µ) and a nonnegative function f on X, which are given in Definition
4. Then, we have ∫ Ch

X

fdµ =

∫ Ch

X̃

f̃dµ̃.

Proof.
By Proposition 5,

∫ Ch

X

fdµ =
∑

B⊂X

min
x∈B

f(x)τB

=
∑

B⊂X\N
min
x∈B

f(x)τB +
∑

B∈I
min
x∈B

f(x)τB

=
∑

B⊂X\N
min
x∈B

f(x)τB +
∑

A∈A
min
x∈A

f(x)τ̃{A} +
∑

B∈I,̸∈A
min

y∈(B\N)∪IB
f(x)τ̃{(B\N)∪IB}

=

∫ Ch

X̃

fdµ̃.
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□

Example 1. Set X = {a, b, c} and define a monotone measure µ on X as follows.

µ({a}) = µ({b}) = 0, µ({c}) = 1,

µ({a, b}) = 1, µ({a, c}) = 2, µ({b, c}) = 3,

µ({a, b, c}) = 3.

Then, the Möbius transform is given by

τ{a} = τ{b} = 0, τ{c} = 1,

τ{a,b} = τ{a,c} = 1, τ{b,c} = 2,

τ{a,b,c} = −2.

In this case, the null addtivization is given by:

X̃ = {c, ι{a,b}, ι{a,c}, ι{b,c}}
= {c, α, β, γ},
N = {a, b}, A = {α, β, γ}.

Then, the translated Möbius transform is calculated as follows.

τ̃{c} = 1, τ̃{α} = 1, τ̃{β} = 1, τ̃{γ} = 2,

τ̃{c,α} = τ̃{c,β} = τ̃{c,γ} = 0,

τ̃{c,α,β} = τ̃{c,β,γ} = τ̃{c,α,γ} = 0,

τ̃{α,β} = τ̃{β,γ} = τ̃{α,γ} = 0,

τ̃{α,β,γ} = 0,

τ̃{c,α,β,γ} = (τa,b,c =)− 2.

Let µ̃ be a set function defined by the above Möbius transform. We have µ̃({α, β, γ}) =
4 and µ̃({c, α, β, γ}) = 3. Hence, this set function is not monotone.

Consider a function f on X, f(a) = 1, f(b) = 2, f(c) = 3. Then,

f(α) = f(a) ∧ f(b) = 1, f(β) = f(a) ∧ f(c) = 1,

f(γ) = f(b) ∧ f(c) = 2.

∫ Ch

fdµ =
∑

B⊂X

min
x∈B

f(x)τB

= f(c)τ{c} + (f(a) ∧ f(b))τ{a,b} + (f(a) ∧ f(c))τ{a,c} +
(f(b) ∧ f(c))τ{b,c} + (f(a) ∧ f(b) ∧ f(c))τ{a,b,c}

= 3× 1 + 1× 1 + 1× 1 + 2× 2 + 1× (−2) = 7.
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On the other hand, Choquet integral of translated function is calculated as
follows.

∫ Ch

fdµ̃ =
∑

U⊂X̃

(min
x∈U

f(x))τ̃U

= f(c)τ̃{c} + f(α)τ̃{α} + f(β)τ̃{β} + f(γ)τ̃{γ} +

(f(α) ∧ f(β) ∧ f(γ) ∧ f(c))τ̃{c,α,β,γ}
= 3× 1 + 1× 1 + 1× 1 + 2× 2 + 1× (−2) = 7.

Thus, two integral values are the same.

The translated set function in the above example is not monotone. Therefore,
this example illustrates that a translated set function is not necessary monotone
even if the original set function is monotone.

Lemma 1. Let X be a finite set, µ be a monotone measure on 2X , and f be a
nonnegative function on X. X̃, µ̃, and f̃ are null addtivization of X, µ, and f
respectively. Then,

(a) If
∫ Ch

fdµ = 0, we have f(x) = 0 for any x ∈ X\N , and minx∈A f(x) = 0
for any A ∈ A, where N is the set of all massless points and A is the set of
all influence factors.

(b) µ({f(x) > r}) = µ̃({f̃(x) > r}) for any r > 0.

Remark: By Lemma 1 (b), the distribution function of f is same with that of

f̃ . This implies that the Sugeno and Shilkret integrals take same values on the
both spaces, where these integrals are defined on (not necessarily monotone)
non-additive measure space using the distribution functions.

Proof. (a) Using the monotonicity of µ and the Choquet integral with re-
spect to µ,

0 =

∫ Ch

f(x)dµ ≥
∫ Ch

f(x)1{b}dµ = f(b)µ({b}) ≥ 0,

0 =

∫ Ch

f(x)dµ ≥
∫ Ch

f(x)1Adµ ≥ (min
x∈A

f(x))µ(A) ≥ 0,

for any b ∈ X \N , and A ∈ A. We have f(b) = 0.

By the definition of A, there exists a ∈ A∩N such that τB = 0 if a ∈ B ⊊ A.
Then,

µ(A) =
∑

B⊂A\{a}
τB + τA = µ(A \ {a}) + τA.

By Proposition 4 and µ(A \ {a}) ≥ 0, we have µ(A) > 0, and this concludes the
proof of (a).
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(b) Fixing r > 0 and setting Ar = {x : f(x) > r}, we have:

µ(Ar) =
∑

B⊂Ar

τB

=
∑

B⊂Ar\N
τB +

∑

B⊂Ar,B∈I
τB

=
∑

B⊂Ar\N
τ̃B +

∑

A⊂Ar,A∈A
τ̃{A} +

∑

B⊂Ar,B ̸∈A,B∈I
τ̃(B\N)∪IB (3)

We remark that:

· on B ⊂ N , f̃ coincides with f ,
· on a one point set {ιA}, A ∈ A, f̃(ιA) = minx∈A f(x), then, ιA ⊂ Ar if

and only if {ιA} ⊂ {f̃(y) > r}, and
· on B \N ∪ IB , y ∈ {f̃(y) > r} if and only if y ∈ B \N or y ∈ IB , f̃(y) =
minx∈y f(x) > r.

Hence, we have:

(3) =
∑

B⊂{f̃(y)>r}\A

τ̃B +
∑

A∈{f̃(y)>r}∩A

τ̃{ιA} +
∑

(B\N)∪IB⊂{f̃(y)>r}

τ̃(B\N)∪IB

= µ({f̃(y) > r}).

□

5 Conclusion

In this study, we have analyzed relations between classical and non-discrete
Möbius transforms, and given equivalence conditions for null and weak null ad-
ditivity for set functions on a finite set. We have also defined a method to con-
struct a null additive set function from a general monotone measure. Along with
a translated function, in the new non-additive measure space, the distribution
function and the distribution function type integrals remain unchanged under
this translation.

Our construction of null additive spaces is based on the argument to express
the target monotone measure by using a certain σ-additive signed measure on
the family of finite subsets of target space. A similar situation can be found
in [2], this provides an expression method to describe a monotone measure by
σ-additive (non-negative) measure on some set family space. Our problem may
be improved or developed by using this idea.
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Abstract. Software Defined Network (SDN) has gained a huge popu-
larity in the world of computer networks for its vast functionalities and
its strength in providing scalability and maneuverability in the network.
However, security challenges have always been among the top concerns
that are required to be addressed. Many approaches regarding the secu-
rity of SDN have been provided that seemed to be effective, approaches
that utilized machine learning for detecting and preventing network at-
tacks. Among them, the Distributed Denial of Service (DDoS) attack has
always been the primary issue in terms of security and reliability. In this
paper, we propose a new method for detecting DDoS attacks in the SDN
environment using the Convolutional Tsetlin Machine (CTM). Moreover,
the data generation process is also another considerable contribution of
this work. We have been able to collect data and create an independent
dataset with 20 novel features in our SDN environment in order to use it
for training the model to detect three types of DDoS attacks; SYN flood
attack, ICMP flood attack and UDP flood attack. Finally, the result of
CTM accuracy and its performance is compared with the Convolutional
Neural Network (CNN) algorithm. The result demonstrated that CTM
with accuracy of 100% had the highest performance and yet the lowest
memory usage compared to CNN.

Keywords: Software Defined Network · Distributed Denial of Service ·
Machine Learning · Convolutional Tsetlin Machine.

1 Introduction

Computer networks have always been evolving and after decades of improve-
ment, Software Defined Network (SDN) [1] and Software Defined Wide Area
Network (SD-WAN) are considered the pinnacle of this evolution by many since
it enhances the network by providing numerous advantages [2] that were con-
sidered almost impossible in traditional networks. Providing a broad overview
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over the network enables the network administrators to easily manage their net-
works via programming and cost-effective applications [3]. Moreover, the idea
of a network that is mainly based on software develops the ability in the net-
work that can create a room for growth and more novel ideas to be implemented
without the unnecessary expenditure on network devices. Hence, a new idea can
be implemented as an application in the network through Network Function
Virtualization (NFV) [4].

In addition, one of the most important aspects of SDN is its integration
with machine learning [5], which gives the network a unique and dynamic ma-
neuverability to fend off cyber security attacks in the network. Not only the
cost substantially reduces but also innovative approaches can leverage machine
learning algorithms to detect network attacks, especially infamous and disrup-
tive threats such as Distributed Denial of Service (DDoS) attacks [6] that can
cause irreparable damage to SDN networks since they are heavily dependent
on SDN controllers [7]. That is why creating a detection mechanism for DDoS
attacks in an SDN environment is imperative.

Numerous detection approaches are proposed to detect DDoS attacks in an
SDN environment [8, 9]. However, classification algorithms and detection meth-
ods have always been among the main concerns of researchers since acquiring an
ideal solution is not easy. Therefore, this work focuses on a new approach that
can acquire a great accuracy as well as maintaining a low memory usage. The
main contributions of this work are as follows:

1. Proposing a new detection approach in SDN environments against DDoS
attack

2. Using Convolutional Tsetlin Machine (CTM) for the classification of the
DDoS attack

3. Providing a new dataset of 20 features in the simulated SDN environment
4. Comparing the outcome of our work with the Convolutional Neural Network

(CNN) algorithm

In the following sections, we are going to discuss the preliminaries, which are
required to understand the main components of an SDN network as well as DDoS
attacks. Afterwards. Furthermore, we will focus on the CTM algorithm and then
we will discuss how we were able to create a novel dataset. We will also deep dive
into all the details in association with the attributes of our dataset and ultimately
we will make a comprehensive comparison between all the other classification
methods and CTM algorithm to understand each algorithm’s accuracy as well
as its performance.

2 Preliminaries

In this section, we will discuss the main concepts and preliminaries in order to
better understand the architecture of an SDN network. Furthermore, we will
discuss the DDoS attack within the SDN environment in order to comprehend
the risks that pose a threat for the network.
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2.1 SDN Architecture

All network devices inside a conventional network function with both the data
plane and control plane [10]. This however has completely changed with the
birth of SDN, which has created room for a remarkable way to provide defensive
mechanisms against numerous types of attacks, especially against DDoS attacks.
The architecture of an SDN network is based upon three separate planes; namely
physical Plane, control Plane and management Plane. This architecture has had
a great impact on security as well [11]. The physical plane is where all the devices
are located. In other words, the separation of control plane and physical plane
leads to a single physical plane that is meant to be for switches, routers and
other network devices. The control plane on the other hand creates a room for
the SDN controller so that it can have an uplifted overview of the entire network.
The softwares and applications are put into the management plane so they can
mount on the SDN controller for management purposes.

The communication of each plane takes place via Application Programming
Interfaces (API) [12] to send and receive data flows between network devices and
the SDN controller as well as data flows between the SDN controller and the
NFVs in the management plane. Devices in the network send packets throughout
the network back and forth via flow tables [13]. This comprehensiveness of the
entire architecture allows the network engineers to shape the network through
softwares to finally be able to perform some of the most challenging function-
alities more easily using applications and NFVs, tasks such as load balancing,
Quality of Service (QoS), security enhancement through software firewalls [14],
Intrusion Detection Systems (IDS) and DDoS attack detections.

In order to detect DDoS attacks in the SDN environment, we must first un-
derstand the threats against the SDN and what parts of the network can be
potentially targeted, so that the DDoS detection can be implemented more effi-
ciently. We discuss the DDoS attack inside the SDN environment in the following
section.

2.2 DDoS Attack in SDN

In spite of all the benefits that SDN provides, the growth of these types of net-
works has created a new paradigm for security researchers to deal with security
threats such as DDoS attacks that can cripple the entire SDN and ultimately
lead to unwanted risks that not only can stop the network from functioning
but it can also cause detrimental damages to the network and cost an unprece-
dented amount of time and money for recovery [15]. That is why it is extremely
paramount to detect DDoS attacks in the SDN environment.

The work of Ali et al. [16] focuses on the vulnerabilities of Openflow protocol
that allows hosts to exploit this weakness and perform DDoS attacks in SDN.
Their approach revolves around analyzing packet headers that are unique in a
compromised host. This forces the switch to forward numerous request packets
towards the controller, which as a result creates a DDoS attack. Their approach
yielded a high number of true positives using MATLAB. Fouladi et al. [17]
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proposed a new approach that utilizes traffic feature forecasting that is combined
with chaos theory to detect DDoS attacks. Although their proposed approach is
complex, the final result yielded 98.82% accuracy using MATLAB as their main
tool and MAWI Working Group Traffic as their training dataset [18].

The work of Kaur and Gupta [19] focuses on optimization of the existing
models. They propose a hybrid approach that takes advantage of multiple ma-
chine learning models that are combined with each other. Their approach uses
these models to implement a real-time dataset. The algorithms are finally im-
plemented in MATLAB and the final results showed higher accuracy compared
to previously mentioned approaches.

In order to understand what parts of SDN network are ideal targets, we need
to specify what those potential targets are. DDoS attacks can target different
planes of SDN and all of them can be categorized into the followings:

1. DDoS Attack in the Data Plane: This type of attack occurs when the attacker
floods the flow table of switches and devices. The ultimate purpose of the
attacker is to over-flow the flow-table and cripple the data plane

2. DDoS Attack in the Control Plane: Since the controller is responsible for
a broad overview of the network, the attacker can send a huge number of
requests from spoofed IP addresses to the controller, which in return forces
the controller to process illegitimate messages in as a result the controller
delays in denies the legitimate requests

3. DDoS Attack in the Application Plane: The attack takes place in the appli-
cation that is on the controller, which as a result leads to resource exhaustion
which in return, legitimate users will not be able to use the proper applica-
tion

4. DDoS attack for Bandwidth Exhaustion: This attack, similar to the attack
in the application plane, is meant to consume all the bandwidth between
the controller and the devices in the network. As a result, the depletion of
bandwidth will not allow any request to respond to messages to be delivered
across the network

As it can be seen, network intruders can perform DDoS attacks to cripple sig-
nificant sections of the SDN environment. These security challenges in SDN need
to be addressed and among the most prominent solutions lies machine learning
models. In the following section we will discuss the CTM and its functionalities
to perform the classification task of DDoS attack detection.

3 Convolutional Tsetlin Machine

3.1 Use Case

Training machine learning models can be an arduous task given the learning pro-
cess and learning algorithms whose memory usage is significantly high. Hence,
we propose using the CTM [20] for detecting DDoS attacks in the SDN, which is
a less computationally intensive model. The CTM algorithm is based upon the
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Tsetlin Machine (TM) [21], which is unique due to certain aspects of its nature.
The most prominent area where CTM is currently used is in image classification
as well as text categorization [22] and Natural Language Processing [23]. Firstly
it solves complex pattern recognition problems. This can be essential for compu-
tationally intensive decisions. Moreover, it is capable of online learning, which
can increase both the test and the training accuracy. Secondly, as the algorithm
deals with boolean data, the memory usage decreases since this method is close
to hardware language, namely binarized bits.

Since CTM algorithm is mostly used in image and text classification tasks,
comparing CTM with CNN can help us understand how performant our pro-
posed approach is since CNN is currently among the top deep learning models.
Moreover, CNN produces high accuracies in classification tasks, which makes it
ideal for us to understand how accurate new models are.

3.2 Scientific Notation

CTM algorithm basically leverages the TM learning process. When it comes to
rule-based filters that are interpretable, the CTM uses filters with spatial dimen-
sions W ×W that uses a Z binary layers and more interestingly, the clauses of
CTM take the role of filters. Each clause in the CTM algorithm is composed of
W×W×Z×2 literals. Each literal in the TM algorithm can be defined as the two
possible forms of a boolean outcome, whether it is true or false. Whatever the
outcome is, TM feedback will affect the outcome based on the type of feedback.
The TM utilizes two kinds of feedback: Type I and Type II. Type I feedback
jointly combats false negatives and overfitting by stimulating recognition of fre-
quent patterns. However, Type II feedback, increases the discrimination power
of the patters learnt in order to suppresses false positives. It is worth mention-
ing that Type I feedback is trickled down into two parts, type Ia and type Ib.
Type Ia reinforces include actions to make the patterns finer. Type Ib feedback
is meant to reinforce excluded actions to stop over-fitting.

As shown in the first formula below, when it comes to recognition in the CTM
algorithm, the basic principles that are used in the TM algorithm are again used
in CTM. For every clause in the CTM, B is used as the output of each clause per
image during the image classification. Moreover, the output of a positive clause
j on a patch b is denoted as cb,+j . Considering multiple outputs c1,+j , · · · , cB,+

j

for clause j, we can turn this into a single input denoted as c+j by using an OR
operator as shown in the Eq. (1):

c+j =

B∨

b=1

cb,+j . (1)

4 The Proposed Method

As we discussed in previous sections, the SDN controller’s ability to have a com-
plete overview of the network has paved the way to implement machine learning
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algorithms inside the SDN environment. The CTM algorithm’s capability has
enabled us to propose a method with low computational power. In this section,
the process of data generation and the features in the outcome dataset as well
as the utilization of the CTM algorithm are discussed.

Figure. 1 illustrates the topology of our work. As it can be seen the SDN
network has 6 switches and 18 hosts. Host 3 and host 14 are meant to send ille-
gitimate data inside the network to cause DDoS attack. 3 hosts are connected to
each switch and each switch is connected to the SDN controller via a datapath
in order to send all the data flows to the controller. The two modules that are in
the management plane are Data Gathering Module and CTM Classifier Module.
Data gathering process took 2 days after creating the intended scenario. It is

Fig. 1. The proposed topology of SDN environment under DDoS attack.

worth mentioning that the legitimate traffic was annotated as 0 and illegitimate
traffic was annotated as 1. Moreover, the simulated DDoS attack covers three
types of attacks, namely ICMP flood attack, UDP flood attack and SYN flood
attack.We started by gathering the statistics of each flow from each switch indi-
vidually through every single datapath. All the flow statistics in association with
event requests and the reply handlers were collected by utilizing OFPFlowStat-
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sRequest and OFPFlowStatsReply methods in the controller. In addition, flow
statistics that were related to port numbers in the network were collected by
utilizing OFPPortStatsRequest method. The dataset contains 763250 records of
data containing 20 features, covering ICMP flood attack, UDP flood attack and
SYN flood attack. Each of these attacks contains about 250 thousand records
of data in the dataset. We split the dataset into three parts in order to im-
plement the detection on each attack separately. For the purpose of preventing
overfitting, we used the 10-fold cross validation technique as well.

4.1 Generated Dataset

As shown in Table. 1, the dataset contains 20 features. We only used 16 of those
features that are src_ip, dst_ip, src_port, dst_port, datapath_id, ip_protocol,
flow_duration_sec, icmp_code, icmp_type, idle_timeout, hard_timeout, flag,
packet_count, byte_count, packet_count_per_sec and byte_count_per_sec.
As the table illustrates the details of each feature, the size and number of packets
as well as timeout attributes have numerical values while attributes such as
source and destination IP have categorical values. This is important to know
because the input for the CTM algorithm must be a binarized dataset in the
end. That is why we used binary feature-encoding methods [24] to normalize the
data.

Table 1. Descriptions of the features of our dataset.

Number Feature Description
1 src_ips Source IP of each host
2 dst_ip Destination IP of each host
3 src_port Source port number
4 dst_port Destination port number
5 datapath_id The datapath of the incoming flow to the controller
6 ip_protocol The type of protocol, TCP, UDP or ICMP
7 flow_duration_sec Duration of the flow in the network
8 flow_duration_nsec Duration of the flow in the network in nanoseconds

9 flow_id A combination of source IP, destination IP, source
port number and destination port number

10 icmp_code Whether ICMP is used or not
11 icmp_type The type of ICMP used
12 idle_timeout The idle timeout of the Host in the SDN environment
13 hard_timeout The hard timeout of the Host in the SDN environment
14 flag Whether or not the flow has any flags
15 packet_count Number of packets per flow
16 packet_count_per_sec Number of packets per flow in seconds
17 packet_count_per_nsec Number of packets per flow in nanoseconds
18 byte_count Size per flow in bytes
19 byte_count_per_sec Size per flow in bytes in each second
20 byte_count_per_nsec Size per flow in bytes in each nanosecond
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5 Experimental Result

Our proposed method was implemented using an Ubuntu 20.04 Focal Fossa with
16 GB RAM and VirtualBox 6.1 to create separate Virtual Machines (VM) to
complete the topology. We used Mininet for implementing the topology of our
SDN environment inside a VM and Ryu as the SDN controller inside another
separate VM. We used Kali Linux as a VM to generate DDoS attack traffic.
Inside Kali we used hping and mgen to generate the UDP, ICMP and SYN flood
traffic along with normal traffic in 3 days. Table. 2 shows the summary of our
infrastructure.

Table 2. Parameters of the our Infrastructure.

Number Parameter
1 Main Operating System: Ubuntu 20.04
2 Hardware: Intel Corei7-4720HQ and 16 GB RAM
3 Virtualization Technology: VirtualBox 6.1
4 SDN Controller: Ryu Controllerr
5 Protocol: Openflow
6 DDoS Traffic Generator: Kali Linux, mgen, hping
7 Emulator: Mininet

5.1 Performance Parameters

In this work we used Accuracy as well as Memory Usage to measure the perfor-
mance of our model. Table. 3 demonstrates the final result of our model. We split
the dataset into three separate parts, namely ICMP flood attack, UDP flood at-
tack and SYN flood attack. As it can be seen in Table. 3, CTM has gained the
highest accuracy in all three attacks and yet it shows far less memory usage.
CNN uses almost three times the memory for gaining less accurate outcomes
compared to CTM.

Table 3. Performance of the Proposed Model compared to CNN.

Algorithm Dataset Accuracy (%) Memory Usage (MB)
ICMP 99.98 205.29

CTM UDP 100 205.15
SYN 99.98 319.60
ICMP 99.91 599.71

CNN UDP 99.88 599.26
SYN 99.97 731.04
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6 Conclusion and Future Work

SDN environments and SDN architecture are on the rise. This signifies the im-
portance of cyber security among these types of networks. As discussed, many
researchers have proposed different solutions to make sure SDN environments
are capable of detecting these threats. In this paper, we proposed a new method
for detecting DDoS attacks within the SDN environment where the network
was under three of the most notorious DDoS attacks; ICMP flood attack, UDP
flood attack and SYN flood attack. We also contributed a new dataset within
the SDN network that consisted of more than 750 thousand rows of data, which
was finally used by CTM algorithm to classify legitimate traffic from illegitimate
DDoS traffic in the network. In the end the results demonstrated that the CTM
algorithm has the highest accuracy while utilizing the lowest memory usage.

Since this algorithm has shown promising results on both accuracy and mem-
ory usage, we will focus on creating more records of data in order to perform the
same attack on a bigger dataset. This allows us to see how the CTM algorithm
will perform on much bigger datasets and how much memory will the algorithm
require when it comes to large datasets. This can also provide insight in order to
see if the algorithm is capable of working in real-time situations. In addition, we
will test the results with a benchmark dataset in order to guarantee the quality
of the dataset that we created.

Moreover, since this algorithm has shown substantial results for optimized
memory consumption, we will also focus on using CTM algorithm on wireless
networks, especially Mobile Ad-hoc Networks (MANETs) and Vehicular Ad-
hoc Networks (VANETS) where wireless devices are in need of such an ideal
algorithm to decrease their computational resources. In that case, the mobility
of such networks will be much more operable under severe conditions.

In addition to those, CTM algorithm can also be used in other types of
networks as well. We hope to use the same algorithm in other types of networks
and compare our results with other machine learning models. This helps us widen
our horizon when it comes to new algorithms such as CTM.
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Abstract. The progressive propagation of misinformation on a large
scale, volume and velocity through social networks has become an immi-
nent problem, impacting the legitimacy of information in social, demo-
cratic and public health instances. Nowadays, one of the most popular
digital tools by the Brazilian population is WhatsApp. WhatsApp has be-
come an easily accessible vehicle for generating disinformation in Brazil
since it contains millions of users worldwide, and any citizen has the
autonomy to publish. Intelligence systems became an alternative to min-
imize the damage caused by the proliferation of misinformation. In this
sense, research on methods for detecting misinformation on WhatsApp
for messages written in Brazilian Portuguese is still scarce among the sci-
entific community. In this paper, we propose a new approach to classify
information and misinformation in WhatsApp. We conducted extensive
experiments using machine learning methods and natural language tech-
niques from FakeWhatsApp.Br. We achieved a more significant F1-score
considering the previous approaches in the literature, up to 14%.

Keywords: Fake News· Machine Learning · Natural Language Process-
ing· Classification

1 Introduction

Nowadays, people generally prefer to use social networks rather than traditional
media as a source of information because social networks represent a more dy-
namic and cheaper way to spread the news and are faster and easier to share
and discuss among friends than television or printed newspapers [12].

Despite the advantages of social media, the quality of the news shared is lower
than that presented in traditional news organizations, such as newspapers, due
to the lack of review and curation of the propagated content. This wide sharing
makes the distribution of the so-called fake news much greater, that is, news
whose content is false and/or without foundation, which aims to deceive and
manipulate the reader, besides producing financial or political gains. Situations
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like these, can negatively influence the authenticity of other news channels, as
well as deliberately persuade those who consume them to accept false beliefs and
change the way real news is perceived by the public [14,12].

As an attempt to minimize the negative impact of fake news, it is necessary
to develop methods that help to detect them on social media, including messag-
ing applications such as WhatsApp. In this context, some works were found in
the literature in this scope, including [4], which aims to detect Fake News on
Brazilian WhatsApp using Natural Language Processing techniques, however,
the best F1-score achieved was 0.7330. In addition, it is worth noting that many
similar articles have been identified, but most of these deal with other languages
or other social networks, for instance, [5] deals with this type of classification,
but focus on posts from the social network Twitter, getting a slightly better
result with an F1-score of 0.7400.

In this paper, we propose an approach to detect whether a text message
written in Portuguese-Brazilian language from WhatsApp groups contains mis-
information or not, focusing on achieving a higher F1-score than those found
in the literature. In order to achieve this goal we applied pre-processing, text
vectorization, data augmentation and attribute selection techniques to prepare
the data for further application in machine learning models. This approach, was
applied to a database of messages collected from public groups of WhatsApp,
labeled as containing misinformation or not. The experiments performed are
available at 3.

The next sections are organized as follows: in Section 2, related works are
presented and the differentials of the present paper are detailed; in Section 3,
the methodology used is explained, more specifically, the Database and the per-
formed processes - Pre-Processing, Vectorization, Data Augmentation, Attribute
Selection, Application of Machine Learning Models and Evaluation Metrics -
were detailed; And, in Section 4, the results and discussions of the experiment
are presented and in Section 5 conclusions and possible future works are pre-
sented.

2 Related Works

In the literature, we investigated works that describe machine learning methods
for fake news classification in Portuguese language using fake news disseminated
in social networks and instant messaging applications. We highlight that few arti-
cles were found considering the context of fake news in Brazil and the messaging
application WhatsApp. These papers are presented below:

Initially we highlight [13], in which the authors describe a series of analysis on
machine learning methods for fake news detection applied to the Fake.Br corpus,
which is a dataset composed by manually labeled news collected from several
news sites, this dataset has 7,200 news (3,600 fake news and 3,600 legitimate
news) [11]. In this work, a Vectorization process was applied, where linguistics-
based attributes, Bag of Words, Word2Vec and FastText were used. Also in the
3 https://github.com/Giganoide01/FakeNews_Wpp_PtBr_Classifier
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paper, the classification was performed using the following algorithms: logistic
regression, support vector machines, decision trees, random forest, aggregation
by bootstrap and adaptive boosting. The best result achieved by the authors was
obtained by stacking logistic regression models for Bag of Words with linguistic-
based attributes, achieving an F1-score of 0.9710.

On the other hand, the authors of the work presented in [5] describe an
example of automatic detection of fake news in social network texts. In this
paper, it is reported the construction of a dataset containing fake and true news
extracted from Twitter and the application of machine learning models to classify
this news. To do this, the authors used the unigram and bigram method with bag
of words, along with several machine learning methods. The best performance
obtained in this work using the Complement Naive Bayes algorithm was an
F1-score of 0.7400.

In the scope of automatic classification of fake news spread by WhatsApp, the
authors of the paper in [10] describe the development of a classifier of fake news
about COVID-19 collected from messages on WhatsApp. For that, the authors
used an architecture based on the BiLSTM neural network (Bidirectional Long-
Short Term Memory) and obtained an F1-score of 0.8340.

Finally, the authors of the paper presented in [4] describe a database of
true and fake news collected from messages in WhatsApp groups and manually
annotated (FakeWhatsApp.Br4). To detect fake news, the authors used Bag-
Of-Words (BOW) and Term Frequency-Inverse Document Frequency (TF-IDF)
along with classical machine learning methods. The results obtained by the au-
thors show that due to the peculiarities of WhatsApp messages, mainly the
predominance of short messages followed by media files (audio, image or video),
purely NLP-based methods using traditional vectorization features have limited
performance. The result obtained by the authors was a F1-score of 0.7330 for
the combination TF-IDF and Linear Support Vector Machine. The error analysis
presented by the authors shows that the classification errors are mainly due to
the predominance of short texts accompanying the media files. When filtering
out texts with less than 50 words, the F1-score rose to 0.8700.

Our work also used the same dataset used in [4]. However, the difference
between this work and ours is that we evaluated new methods of processing and
data handling on the dataset, such as a vectorization technique that considers
the semantic context of words (Doc2Vec), data augmentation, attribute selection
for TF-IDF vectors, and the evaluation of machine learning-based classification
models. With this, we hope that these techniques can result in an improved
approach to the classification of fake news in Whatsapp messages.

3 Proposed Approach

In this paper, we present our approach to the proposed problem and in Figure
1 we have an overview of it. We performed an extensive experimentation ap-

4 https://github.com/cabrau/FakeWhatsApp.Br
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proach using FakeWhatsApp.Br as our case study. The methods used during the
development of the approach are described in the subsections below.

Fig. 1: Overview of the methodology used.

3.1 Database

The large-scale database containing messages from the app WhatsApp in Brazil-
ian Portuguese was developed for the research and study reported in [4]. This
database is composed of anonymous messages sent on WhatsApp in public
groups collected in 2018; these messages include conversations, opinions, hu-
morous and satirical texts, prayers, commercial offers, news, short texts, emojis
and others.

For job comparison issues, we use the same bank made available at 5, which
presents 4588 samples (2041 messages containing disinformation and 2547 mes-
sages without disinformation).

3.2 Pre-Processing

For data preparation, the same steps were followed as in the paper [4]. Regarding
the preparation pipeline, respectively: samples that contained media, that is,
audios, videos and images, were removed, keeping only those that exclusively
presented textual content (1); records that did not go viral among the WhatsApp
groups were excluded (that is, showed up two times in two different groups) (2);
instances that had duplicate messages were deleted (3); the samples in which it
was not possible to detect if they are Fake News or Real News were removed - in
the database, there is a feature called “Misinformation”, which is equivalent to 0
when the news is true, 1 for Fake News and -1 for instances where this detection
was not performed (disregarded for the analysis) (4); Subsequently, the laughs
with varying amounts of the letter “k” were all transformed into “kkkk” (5);
and, all links have been shortened to the website domain, discarding the specific
protocols and directories that are usually present in web addresses (6).
5 https://github.com/cabrau/FakeWhatsApp.Br
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Finally, one of the distinguishing factors of this work is the pre-processing
applied that generated 6 subsets of the text messages through different character
filters, in order to find out how much these variations would improve the perfor-
mance of the machine learning models applied later. Namely, in the generated
subsets: emojis, punctuation and stop words were preserved (1); stop words were
removed, but emojis and punctuation were preserved (2); stop words and punc-
tuation were removed, but emojis were preserved (3); stop words and emojis
were removed, but punctuation was preserved (4); emojis and punctuation were
removed, but stop words were preserved (5); and, emojis, punctuation and stop
words were removed (6).

3.3 Vectorization

For this work, We use two vectorization techniques: TF-IDF and Doc2Vec. TF-
IDF is a numerical measure of statistics that expresses how important a word is
to a document. It is a frequency-based method that is not as naive as the Bag
of Words (BoW), since it reduces the importance of words that are frequently
repeated, such as articles, prepositions, and conjunctions are not considered to be
more important than less frequent but important words [1]. We chose this method
as our count-based vectorization method due to it’s better general performance in
comparison to the BoW [3]. Also, we used the uni-bi-trigram extraction because
it was the n-gram pattern that yelled the best results in the work of [4].

The other technique we use is Doc2vec, an NLP tool that serves to represent
documents in the form of vectors, being a generalization of the word2vec model
[9] - which creates numerical vectors for each word, considering semantic rela-
tionships between the words of the document, which are called attribute vectors.
Some of those semantic relationships between words are synonyms, antonyms, or
analogies. We chose this technique to obtain a representation that could encap-
sulate the semantic relationships between the words present in the documents,
in order to try to increase the performance of the system.

3.4 Data Augmentation

One of the distinguishing factors of this work is the use of the Data Augmentation
technique [16], that is, the number of records is increased without collecting more
messages in other WhatsApp groups, but performing operations on the data that
were already present in the database. In other words, the volume of information
has been artificially increased.

In this context, we chose to apply two different strategies: Random Deletion,
which consists of randomly removing each word from the sample with a given
probability p; and Random Swap, in which two words are swapped in document
n times, with n being a parameterized integer value [15].

3.5 Feature Selection

Next, another addition in comparison to the baseline work presented in [4] was
the application of feature selection methods, such as: F-value, Maximum Rel-

47



evance - Minimum Redundancy (MR-MR) [6], mutual information and Chi-
Squared. Those techniques were applied in order to select the most relevant
features according to the target variable.

For the TF-IDF sparse feature matrix, we use Chi-squared and mutual in-
formation as our feature selection methods due to their simple implementation
and their efficiency to deal with TF-IDF sparse matrices [8,3]. For the Doc2Vec
feature matrices we use the ANOVA F-value and MR-MR because they are more
adequate to dense numeric feature matrices [3].

Additionally, after every feature selection method we applied the removal
of perfect collinearity, where attributes are excluded if there is an exact linear
relationship between two features. This allows the mitigation of redundancies
prior to the development of the models.

3.6 Machine Learning Models

For the experiments with the machine learning algorithms, the dataset is split
into 80% for training/validation and 20% for test. Validation is performed using
the stratified 10-fold cross-validation method. The evaluation metric chosen was
the F1-score, as it is the same used by [4], since our partial goal in this work is
to compare the current results with those obtained by the former author.

The library used for the experiments was pycaret [2], which has a list of 16
classifiers that encompass different types of machine learning algorithms. For
each experiment, the test of the best model was performed. At the end of the
experiments, the best model among all underwent a parameter adjustment using
random search and grid search methods in order to obtain the best possible
result.

3.7 Evaluation Metrics

In order to evaluate the performance of the machine learning models, we made
use of accuracy, precision, recall, F1-score, and AUC. The main metric for eval-
uation was the F1-score, due to its reliability as it needs the precision and the
recall to be high to have a high value too [7]. Also, it was the most frequently
used metric in the papers from the Related Works (Section 2).

4 Results and Discussions

Four experiments were carried out to evaluate the performance of different com-
binations of operations for the framework of the classification model, a summary
of those experiments is presented in Figure 1.

4.1 Doc2Vec Vectorization

We started the experiments by applying the Doc2Vec vectorization to a dataset
containing only the relevant words (without stopwords, punctuation, and emo-
jis) and without data augmentation. The result obtained indicates that the al-
gorithms based on boosting performed better, although, the performance was
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poor since it did not reach an F1-score of 0.6000 during the test, as shown in
the first sub-tabel of Table 1.

In order to identify whether this performance could be improved with more
samples, we repeated the configuration of the previous experiment, with the
difference that data augmentation was applied to the training/validation set,
with p = 0.5 and n being half the string’s length. The results of the metrics for
validation indicated an improvement in performance, however, the test indicated
that the data augmentation may have caused an over-fitting scenario, as shown
in the second sub-table of Table 1.

Other attempt in improving the performance of the Doc2Vec based methods
was to apply feature selection methods, we tried the ANOVA F-value (third sub-
table of table 1) and MR-MR (fourth sub-table of table 1). But none of those
strategies enhanced the performance of the F1-score, with both achieving similar
values as those achieved before, 0.6293 and 0.5843 in test, respectively.

4.2 TF-IDF Vectorization

We also experiment with the TF-IDF vectorization plus feature selection meth-
ods (mutual information and Chi-squared), as it was not something we have seen
reported in the Related Works section 2. In order to obtain a fair comparison,
the same pre-processing was used as in the four previous experiments (stopword,
emoji, and punctuation removal).

The vectorization by TF-IDF produced a matrix with 293577 attributes. In
order to reduce the amount of data, we apply the Chi-squared test to select the
10000 best attributes and then remove the attributes with perfect collinearity,
resulting in 3790 attributes at the end. The best result obtained by this approach
was through the Gaussian Naive Bayes classifier, which is superior to previous
experiments both in validation and in testing, as shown in the fifth sub-table in
Table 1.

We also experimented with the mutual information selection method. After
the selection process, 6310 features were selected. The results obtained by this
pipeline were inferior to those obtained by the Chi-squared selection, although,
were far superior from those obtained by the Do2Vec vectorization and similar
to the result obtained in [4], as shown in the sixth sub-table of Table 1.

In order to identify whether punctuation, emojis and stopwords could provide
some additional information to the models, hence enhancing their performance
according to the metrics, we repeat the process of TF-IDF vectorization, Chi-
squared feature selection, and model training for texts containing punctuation,
emojis, and stopwords.

The vectorization by TF-IDF results in 376296 attributes, after the selec-
tion of the top 10000 attributes through the Chi-squared test and removal of
attributes with perfect collinearity, 4731 attributes remained. The results ob-
tained by the Gaussian Naive Bayes classifier were slightly better in validation
and test when compared to the fifth experiment, as shown in seventh sub-table
of Table 1. It is possible to notice that the test performance was superior to the
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validation, which may be caused by luck in the division of the training and test
sets, or lack of tuning of model parameters.

Table 1: Table containing the seven pipelines executed along this project. It
shows metrics of the top-3 models for the validation step and the test of the best
validation model for each experiment, according to the F1-score, with the best
results amongst all in bold.

Pipeline Evaluation Model Accuracy Recall Precision F1-score

A Validation
lightbm 0.7128 0.6026 0.7085 0.6512
catboost 0.7183 0.5824 0.7312 0.6481
xgboost 0.6975 0.5971 0.6842 0.6374

Test lightbm 0.6795 0.5392 0.6687 0.5970

B Validation
knn 0.8735 0.7390 0.8767 0.8019

xgboost 0.7880 0.7015 0.7978 0.7464
catboost 0.7847 0.6529 0.8270 0.7296

Test knn 0.6500 0.6500 0.6400 0.6300

C Validation
catboost 0.7136 0.5805 0.7225 0.6432
xgboost 0.7025 0.5971 0.6927 0.6410
lightbm 0.7046 0.5848 0.7021 0.6377

Test catboost 0.7048 0.5637 0.7121 0.6293

D Validation
lightbm 0.7123 0.5928 0.7133 0.6472
catboost 0.7117 0.5744 0.7215 0.6394
xgboost 0.6951 0.5903 0.6823 0.6324

Test lightbm 0.6590 0.5392 0.6377 0.5843

E Validation
nb 0.8782 0.8512 0.8725 0.8613

svm 0.8044 0.7182 0.8296 0.7630
ridge 0.7940 0.6571 0.8459 0.7391

Test nb 0.8671 0.8064 0.8844 0.8436

F Validation
et 0.7790 0.7006 0.7811 0.7383
rf 0.7700 0.6675 0.7839 0.7205

svm 0.7684 0.6539 0.7989 0.7138
Test et 0.7876 0.7108 0.7902 0.7484

G Validation
nb 0.8883 0.8965 0.8590 0.8772
svm 0.7978 0.6760 0.8427 0.7476
ridge 0.7905 0.6455 0.8476 0.7327

Test nb 0.9074 0.8897 0.9007 0.8952
Descprition

A Stopword, emoji and punctuation removal + Doc2Vec
B Stopword, emoji and punctuation removal + Doc2Vec + Data augmention
C Stopword, emoji and punctuation removal + Doc2Vec + F-value
D Stopword, emoji and punctuation removal + Doc2Vec + MR-MR
E Stopword, emoji and punctuation removal + TF-IDF + Chi-squared
F Stopword, emoji and punctuation removal + TF-IDF + Mutual information
G Keep stopwords, emojis and punctuations + TF-IDF + Chi-squared

4.3 Parameter Fine-tuning

The best result was obtained by the Gaussian Naive Bayes classifier in the last
experiment, therefore, this model is chosen to undergo fine-tuning. Considering
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that other similar Naive Bayes models usually perform well in this type of data,
Complement and Multinomial Naive Bayes classifiers are also evaluated. After
two rounds of fine-tuning, we found, through the F1-score for validation, that
the best model was the Naive Bayes Gaussian with variance smoothing equal to
0.0005, as shown in Table 2.

As shown in Table 3, our model performed better in the task of classifying
fake news from Whatsapp messages written in Brazilian Portuguese than the
models reported in [4]. This difference can be attributed to the feature selection,
given that this was the main difference between the F1-score of 0.8990 obtained
in this paper and the 0.7330 obtained in the article [4], in which the author
used only the 5000 most frequent attributes in the entire vocabulary to train the
classifiers.

Additional information about the performance of the model is provided in
Figure 2. From Figure 2b it is noticeable that the model has a slightly stronger
tendency to let messages with misinformation pass as non-misinformation with
13% being wrongfully labeled as such. From Figure 2a we can observe the model’s
separation ability through the AUC since it is greater than 0.9.

Table 2: Evaluation of the three Naive Bayes models that underwent two rounds
of fine-tuining.

Validation

Model Accuracy Recall Precision F1-score
Gaussian NB 0.9033 0.8990 0.8855 0.8921

Complement NB 0.8480 0.9467 0.7668 0.8472
Multinomial NB 0.8886 0.9149 0.8471 0.8795

Test Gaussian NB 0.9129 0.8725 0.9271 0.8990

Table 3: Metrics comparison between the framework developed here and in the
paper from [4]

Approach Recall Precision F1-score
Ours 0.8720 0.9270 0.8990
[4] 0.7500 0.7170 0.7330

4.4 Error Analysis

In order to understand which text features were causing the model to commit
errors, we analyzed the difference in frequency of occurrence of tokens between
texts that were misclassified and correctly classified. We noticed that the terms
most associated with Type I Errors were “lgbt”, “as fraudes” (the frauds) and
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(a) AUC (b) Confusion Matrix

Fig. 2: AUC and Confusion Matrix for test performance of the tuned Gaussian
Naive Bayes model.

(a) Type I error

(b) Type II error

Fig. 3: Bar graph of the percentages of the twenty main attributes (words in
Portuguese) with the greatest difference in the frequency of occurrence between
texts misclassified by type I (a) and type II (b) errors and texts classified cor-
rectly.

“para fraudar” (to defraud) (Figure 3a), which indicates that the model associ-
ated these terms with the occurrence of fake news whenever they occur in the
text, independently of the other words it contained.
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By this same metric, it is possible to notice that the terms most associated
with type II errors were “do presidente” (from the president) and “sexo” (sex)
(Figure 3b), which were representative of political and moral agendas. This type
of error may indicate that the model had difficulty distinguishing a true com-
munication associated with the President of the Republic from a false speech or
campaign piece associated with him.

5 Conclusions and Future Work

Our work contributes with an approach that has superior performance in the fake
news classification task in the FakeWhatsApp.Br database, and with the explo-
ration and evaluation of data science methods applied to this database, which
can contribute to other fake news classification tasks in the Portuguese-Brazilian
language. Achieving the goal of overcoming the F1-Score value reported so far in
the literature for the FakeWhatsApp.Br database. We accomplished this objec-
tive though an extensive exploration of combinations of pre-processing methods,
such as data augmentation, vectorization, feature selection and machine learning
model evaluation.

At the end of the process, we identified that the result with the highest F1-
Score was obtained by the approach composed of: a pre-processing that kept
stopwords, emojis and punctuation; vectorization by TF-IDF, attribute selec-
tion by Chi-squared test with perfect collinearity removal, training of a Gaus-
sian Naive Bayes classification model and parameter tuning by Random Search
and Grid Search. The F1-Score obtained was 0.8990, which represents a 16.6%
increase in F1-Score over that obtained previously in the literature for the clas-
sification of fake news from the FakeWhatsApp.Br dataset [4].

However, we emphasize that, despite being successful, the proposed approach
can be modified to become even more robust, with the exploration of more data
agumentation methods, and also with the addition of other methods such as
random insertion and synonyms swap in combination with random swap and
random deletion, which may be able to improve the performance of classifiers on
small databases [15]. Other improvements that can be made and that we intend
to perform as future work are: to make use of embedding vectorizations, and to
evaluate deep learning methods in future trials of the approach.
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Abstract. The research on the automation of the knowledge discovery
process, usually known as AutoML, has been pursued in the last few
years. There methods are one of the most promising ways for democ-
ratizing the use of data science. Its success will allow data science to
be used as a universal tool over any data from any domain, available to
anyone. However, its improvement is threatened by the difficulties on the
automation of the data preparation step. Being the longest of the process
stages, it requires domain knowledge to enrich the data, and hopefully
improve models’ results. In this paper, we propose DANKFE, a new al-
gorithm for feature generation based on domain knowledge, represented
through extended entity-relationship (EER) diagrams. It works by ef-
ficiently exploring the domain knowledge available regarding the data,
and using a set of operators to increase the feature space and conse-
quently increase the performance of the learnt models. The algorithm is
validated over a COVID-19 dataset, comparing the models learnt with
and without automatic generated features, along with its performance
study.

Keywords: Feature Engineering · Feature Generation · AutoML · Do-
main Knowledge · Entity-Relationship diagrams.

1 Introduction

Throughout the years, the amount of data that is collected and processed has
increased exponentially. Treating data manually has become intractable, which
is why development in machine learning has also increased massively. In this era
of Big Data, the more data that can be processed by a system, the better the
information that can be retrieved from it and the more robust it can get [4].
Processes for turning raw data into functional knowledge have been defined and
refined into what is known nowadays as Data Science. This growth is leading
to the use of data science and machine learning in more and more domains,
as every industry races to use data-driven approaches to find the best insights.
This is leading to a large demand for data scientists that have experience in such
domains and in handling large amounts of data [23]. To counteract this, research
is inclining towards the automation of the data science pipeline in order to be
able to gather valuable insights without the need for human intervention.
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These Automated Machine Learning (AutoML) tools can be a solution to
the high demand and low supply of data scientists, and are already tackling
important parts of the pipeline, such as model selection and hyperparameter
optimization. However, in the area of feature engineering, and especially fea-
ture generation, current AutoML frameworks are still lacking in automation,
employing only simple or no solutions. These frameworks also try to remain
domain agnostic. They frequently employ black-box approaches that work for
a variety of data types and datasets, but can also cause some mistrust among
data scientists in AutoML [26]. Nevertheless, harnessing domain knowledge can
improve the performance of these frameworks, as models tend to be more robust
with useful information [1].

In this paper, we propose an algorithm for the automation of the feature
generation stage, making use of domain knowledge represented in the form of an
extended entity-relationship (EER) diagram. These diagrams have been the de
facto standard for representing databases’ logic models, and are plenty available
and easy to define. From a dataset containing the original features describing
the problem and the corresponding EER diagram, the algorithm generates a new
feature for each relation in the diagram and computes its values for each record
in the dataset.

In order to validate our algorithm, we study both its efficacy and efficiency.
First, we measure efficacy by comparing the performance of similar classifiers
trained over the original dataset and over the dataset enriched by the features
generated by the new algorithm, and then against the classifiers trained through
auto-sklearn [8]. Second, we compare the time spent with each one of those ap-
proaches to assess their relative efficiency. Experimental results show an increase
in model performance with the generation of features, with negligible time spent,
especially when compared to an AutoML framework.

The rest of the paper is structured as follows: next (section 2), we provide
some background on the automation of the knowledge discovery process, pre-
senting a brief overview of automatic feature generation procedures. Following
this, in section 3, our algorithm is described, addressing its main advantages
and difficulties. Section 4 evaluates the new algorithm, either its efficiency and
efficacy, by comparing the models learnt over the original data, and datasets en-
riched with the features automatically generated. The paper concludes in section
5, where a summary of the new approach and its results are presented, along
with some guidelines for future work.

2 Background

Knowledge Discovery in Databases (KDD) is the predecessor term to what is
nowadays usually called data science, and it represents the entire process of ex-
tracting and using valuable information from raw data. The process begins with
understanding the domain and defining a goal, followed by finding a dataset.
The data is then cleaned and pre-processed and manipulated through feature
engineering. After having the right variables to describe the data, a goal is then
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matched to the dataset, specifying the task to perform (classification, regres-
sion, clustering...), from which results a model. The process is then repeated
iteratively, until the model is good enough to be deployed into production, doc-
umented and further optimized.

Features are the variables describing the data, and in order to ensure that
our models are able to achieve strong results, they are transformed, reduced and
extended. Feature selection techniques remove redundant and irrelevant vari-
ables, avoiding an exceeding number of features, which can lead to overfitting
and high variance [12].The data can also be rearranged in some new space [18]
through supervised or unsupervised methods, where the variables are combined
or transformed from the original space to a new one. This is known as feature ex-
traction. Variables can also be added to the original dataset, either by exploring
or not domain knowledge. Unlike feature extraction, feature generation analyzes
relations among features, augmenting the feature space [18].

Feature engineering is usually the most time-consuming step of the KDD pro-
cess [27], especially since it requires human interaction and intuition to obtain
the best results. This can be subjective, costly and limits the process’ repeata-
bility. To counteract this, there have been numerous works on automating the
generation of features, either with or without the use of domain knowledge to
improve induction. Without domain knowledge, feature generation can follow a
data-driven approach, that only uses the input data for guidance, and works by
applying some operators to features (such as logarithm, exponential or extraction
of certain parts of the value, like year and month from a date), by combining fea-
tures of the same data types through n-ary operators (such as sum and average),
or making aggregations (for example count, max, min) [13]. hypothesis-driven
use an induced hypothesis for ranking the new features accordingly. Decision
trees have been used as the majority of situations [20]. Other methods for fea-
ture generation without knowledge domain have been used, namely: hierarchical
greedy search [16], neural networks [28], reinforcement learning [15],or genetic
programming [19].

Several works have been published throughout the years researching the in-
corporation of domain knowledge into feature generation. This knowledge does
not need to be complete. As it has been proven, fragmentary knowledge can
still be applied for searching new features, narrowing down the feature space
[5]. These approaches go from asking for expert’s domain knowledge [20], to the
embedding of that knowledge into dedicated algorithms [21] or by exploring ex-
ternal knowledge representation formalisms. Some authors used a graph-based
language for feature generation in linked data, by querying the relations inside
the data. Those frameworks allow for extracting information from knowledge
bases such as YAGO and DBPedia [3,11]. There are also examples of feature
generation regarding textual data [10]. Other approaches use already available
knowledge repositories, such as ontologies, finding candidate terms that match
the dataset to increase the feature space [9,25].

The increase interest on the automation of the KDD process, usually called
AutoML, led to a huge increase in AutoML frameworks in recent years, which all
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have the goal of returning the best approach for a dataset with as little human
intervention as possible [14]. In this context, Auto-sklearn [8] uses embeddings,
clustering, matrix decomposition and one-hot encoding, as well as meta-features.
Auto-Gluon [7] only uses simple data preprocessing techniques, as well as H2O
[17]. TPOT [24] uses meta-features and polynomial combinations.

We can see that AutoML still has much room to improve, especially in feature
generation based on domain knowledge. Indeed, explanation is one of the key
topics to solve, and providing models easier for human interpretation is a path
to explore. One way to achieve this, is through the generation of richer variables,
able to describe interesting properties for the problem under analysis. [26].

3 DANKFE algorithm

The automatic exploration of domain knowledge requires one of two approaches:
either embedding it in a dedicated algorithm or by using any external source.
Ten years ago, domain driven data mining algorithms were proposed as the first
approach, but despite their effectiveness, they required a different algorithm for
each problem. The use of external sources, however, are general enough to be
applied to any context. The choice of the knowledge representation formalism
depends strongly on the domain knowledge available and need for expressiveness.
For smaller domains, more expressive formalisms, like ontologies or higher-order
logic, can be used as their performance will not become a hindrance. Larger
domains demand simpler formalisms, without losing too much expressiveness.

Databases are the most usual data sources, and they are mostly designed
through entity-relationship (ER) [2] or extended entity-relationship (EER) [6] di-
agrams and then formalized as relational schemas. ER diagrams have three main
elements: rectangles to define concepts, named entities, ellipses for attributes and
diamonds for relations among concepts. As an extension of ER, EER uses the
same elements and allows for the representation of special relations such as in-
heritance and aggregation. In a certain way, we can look at those diagrams as
graphical representations of simple ontologies, since they are able to express their
simplest elements: concepts (entities), attributes and relations. Beside these, on-
tologies allow for representing inheritance through their taxonomies, which EER
is also able to express. The exception is that these diagrams are not expressive
enough to represent axioms. Nevertheless, their generalized use guarantees their
availability for a large number of situations, but even if they do not exist in
advance, they are very easy to create.

In this paper, we propose an algorithm, DANKFE (DomAiN Knowledge
Feature Engineering), that given an EER diagram and a dataset, transforms
the relations between entities into new variables to populate the dataset. The
algorithm works as follows:

Given a dataset D described by a set of d variables, F = {v1, ..., vd} and an
EER diagram, KB = (E ,R), where for each v ∈ F exists an e ∈ E such as e
represents v, the algorithm generates a new variable v′ for each relation r ∈ R,
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extending the set of features to F’ and the given dataset to D’.

Therefore, in order to generate the new variables, the EER diagram has to
be perfectly aligned with the dataset at hand. Indeed, the EER diagram defines
each variable in the dataset as an entity, characterised by its name (used as
an identifier), type (to help on determining the operations to perform over it),
description (optional description of the entity) and possible constraints. We
decided to represent every variable in the dataset as an entity in the diagram
since in this manner we are able to manipulate and reason about them [22].

The diagram also has to specify the known relations between entities. To
allow for the generation of new variables from them, each relation is described
by its name (again to be used as an identifier), inputs (the list of entities to
combine), operations corresponding to the sequence of operations to perform
over its inputs to generate the new variable, and the constraints its inputs have
to satisfy to make the generation possible.

Algorithm 1 DANKFE algorithm

procedure DANKFE(D, F , KB)
queue← KB[′relations′]
while queue is not empty do

current relation← pop(queue)
inputs← current relation[′inputs′]
constraint← get constraint(current relation[′constraint′])
operations← reverse(current relation[′operations′])
if inputs ∈ F then

args← D[inputs]
for operation in operations do

for row in args do
if satisfies(row, constraint) then

row ← operation(args)
else

row ← null
end if

end for
end for

else
queue← append(queue)

end if
end while

end procedure

The DANKFE algorithm is illustrated in 1, and it works as follows: the
relations are read from the EER model, and stored as a queue to be processed.
The relations are processed one by one, if the inputs are already available. If part
of the input is not yet available (is also generated and in the queue) that relation
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is sent to the end of the queue. If the inputs are already available, the list of
operations specified in the diagram for that relationship, is applied to any row
in the dataset that satisfies the constraints imposed for the relation. Whenever
any row does not meet the constraints, a null value is imputed. When all rows
are processed, the relation is removed from the queue.

Since the operation used to generate the new variable is specified in the
diagram, we could think this can be any operation imaginable. Unfortunately,
that is not the case, since in order to do that we would need an interpreter
to decode the operations to apply. Moreover, that would introduce additional
processing time and complexity, which we shall avoid.

Nevertheless, whenever the operation only encompasses a single record (just
one row in the dataset), we are able to directly implement it through a lambda
function in Python. In this case, the function applies each operation in the list
of operations in reverse (similarly to a composition of operations) sequentially
over the corresponding inputs - the values assumed by each input variable in the
record, and return the output value - the value to assign to the new variable for
the given record. The input columns are fed to the algorithm for each relation,
processing the defined operation row by row.

Let D be a dataset, F ′ = {v1, ..., vd} the set of d variable describing D and
KB = (E ,R) be a EER diagram, as defined before. Let also r = (Ξ,Γ, Ψ) be
any relation in R, with Ξ the set of input variables, Γ the set of operations
to perform and Ψ the set of constraints to be satisfied. For each r ∈ R a new
variable vr is generated and added to F ′. Then, for each record x = x1...xd in
D, vr assumes a value as follows:

1. if x does not satisfy some constraint ψ ∈ Ψ , a null value is assigned;

2. otherwise, the first operation γ1 ∈ Γ is applied over the values assumed by x
over all variables in Ξ; then its result is submitted to the following operations
in Γ in the given order, and so on.

Among the operations specified by relations in the EER diagram, we may
consider the following ones:

– Unary operations: any operation with a single argument of any type, such as
square root or absolute value for numeric variables, or extraction functions
(year/month for dates, surname for extracting the last name, etc.);

– Binary operations: any operation with two arguments from the same type,
such as difference, division, etc.;

– Preparation operations: any operation usual in the data preparation step,
such as dummification, scaling, and missing value imputation.

The EER diagram was internally represented as a JSON file, since the algo-
rithm was implemented in Python. Any other similar language such as XML,
RDF or even OWL could be used.
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3.1 Illustration

To better understand the proposed algorithm, consider the knowledge base rep-
resented by the EER diagram represented in Fig. 1.

Fig. 1. Example of the EER diagram for feature generation.

Additionally, consider the data D on Table 1, which is described by the set of
variables F={current date,cases,deaths, country,population,first date,high risk 2w}.

current date cases deaths country population first date high risk 2w

2021/02/23 1032 63 PT 10295909 2020/03/03 TRUE

2022/02/14 20360 78 UK 10718565 2020/02/23 TRUE

2021/08/12 223 2 PL 37958138 2020/03/07 FALSE

2020/06/11 22 0 AT 8901064 2020/02/26 FALSE

Table 1. Illustration dataset, labeled by high risk 2w

We can see that all variables in F are present in the EER diagram as entities
(represented as light blue rectangles). Beside them, we found six relationships
(green diamonds) and seven additional entities (dark blue rectangles), corre-
sponding to the variables to generate. Note, that each relationship is linked to a
set of entities, where the lighter ones correspond to their inputs, and the darker
ones to the new variables to generate.

Fig. 2 shows the definition of two relations ratio and nr months. Here are
specified the inputs for each relations and the list of operations for each one
of them. The ratio relation divides cases by deaths whenever the second one is
different from zero, imposed by its constraint. The relation nr months applies
the composition of a division by thirty (the average number of days per month),
after computing the difference between and current date and first date.
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Fig. 2. Specification of ratio (left) and nr months (right) relations.

current date current year current season current holiday nr months ratio cases per 100k current risk

2021/02/23 2021 winter FALSE 11 16.4 10.023 FALSE

2022/02/14 2022 winter FALSE 24 261.0 189.951 TRUE

2021/08/12 2021 summer FALSE 17 111.5 0.587 FALSE

2020/06/11 2020 spring TRUE 3 null 0.247 FALSE

Table 2. Generated variables, indexed by current date.

Table 2 summarizes the variables generated by our algorithm when applied
to the data in D, shown in the previous table, and using the EER diagram
in Fig. 1. Beside ratio and nr months explained above, current year is com-
puted by extracting the year over the current date variable and similarly for
current season, but using a given function to extract the yearly seasons. The
current holiday variable is computed by consulting a calendar for each country.
Moreover, cases per 100k is just the number of cases by one hundred thousand
population, and current risk is derived from the previous one, just verifying if
it is above 120 cases per one hundred thousand population.

4 Validation

In order to validate our proposal, we compared the quality of classification mod-
els trained over a given dataset and models trained over an extension of it,
described both by the original and generated variables, using the algorithm pro-
posed. Beside the performance, we studied the impact on the time spent pro-
cessing the train (fit) and prediction (pred) of those models. Additionally, we
compared those results with the resulting from training a model for the same
problem through AutoSklearn [8], which uses a variety of model selection and
hyperparameter optimization methods to return an ensemble of models, as well
as some data preparation (meta-features, embeddings, one-hot encoding).

The dataset was collected from the European Centre for Disease Prevention
and Control 1. The dataset was labeled by a new variable, high risk 2w, using the
level of risk recorded fourteen days later (implying the loss of the first fourteen
days registered). In this manner, the set of variables describing the dataset was

1 https://www.ecdc.europa.eu/en/publications-data/data-daily-new-cases-covid-19-
eueea-country, from which we ignored the redundant variables (year, day, month,
countriesAndTerritories, countryterritoryCode and continentExp).
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just F={dateRep, cases, deaths, geoID (country), popData2020 (population),
high risk 2w}.

We can state the analysis goal as to find the best model able to predict the
level of risk at each country in two weeks. So, given the current date, its corre-
sponding number of cases and deaths, we want to know which of the countries
will be in high risk in fourteen days.

Fig. 3. Class distribution (left) and correlation among variables (right).

The original dataset is composed of 22211 records, one per country per day,
containing the number of registered number of covid-19 cases and deaths. It is
important to note the class is balanced, with 41% of the records representing a
low risk day in 2 weeks, and 59% representing high risk, as seen in Fig. 3 (left).

From this dataset and the EER diagram depicted in Fig. 1, ten variables
were generated (current year, current month, current day, current season, cur-
rent holiday, current weekday, nr months, ratio, cases per 100k and current risk),
where the variables have the semantic described before. Fig. 3 (right) shows the
correlation between the original and generated variables. We can see that the
most correlated pair is month and season.

Results in Fig. 4 (left) show that all the techniques improve their performance
over the extended dataset (original+generated), with the largest improvement
reached by the ensembles tested (random forests and gradient boosting).

Additionally, we can see that the time spent also increases, as seen in Fig. 4
(right). For almost all techniques, the increase was equal to the amount of time
spent on generating the variables (around 28.5 seconds), with the difference of
time on dealing with the extra variables being neglectful. Only gradient boost-
ing doubles the time spent by exploring the new variables. Another important
remark is that the extended dataset shows as a good performance as the model
trained by AutoSklearn, while also completing faster, since the time spent by
the latter is constant and equal to one hour (3600 seconds).

The 28.5 seconds wasted on generating the variables, however, are not equally
distributed. Fig. 5 shows that different variables required different amount of
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Fig. 4. Comparison of accuracy (left) and processing times (right) for different models.

Fig. 5. Time comparison per variable generated against other procedures required,
with (left) and without (right) holiday variable.

Fig. 6. Average feature importance for Random Forests on original (left) and origi-
nal+generated variables (right).

time to be computed. It is clear that the current holiday variable waste almost
all the time required (5-left), spending more than 24 seconds. This is due to
the need to access to Python calendars, in order to check if all given days are
holidays in each country. Analyzing the remaining variables, we can see that
only nr months (5-right) spent more than 1 second, and all the others require as
much as the time needed to save the dataset. Note that nr months implements
a composite function, requiring to apply two operations instead of one, which
justifies the extra time. Results also show, that the time needed to generate all
variables is less then the time required for training the gradient boosting models.
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Another important result, is that models trained over the extended dataset
favor the generated variables. Fig. 6 shows features’ importance according to
Random Forests, for both original and extended dataset, but similar results were
obtained for the remaining models. In particular, the cases per 100k variable
replaces both variables cases and population, according to the domain practices.
Beside it, the new models also explore the nr months and ratio.

5 Conclusion

The results show that the use of domain knowledge to generate new features via
the EER diagram has improved the performance of all models. Not only this
generation of features helped increase the robustness of models (as seen by the
performance increase) but also doing so without a significant time increase. Ad-
ditionally, when compared to an AutoML framework, the use of domain knowl-
edge to increase the feature space achieved better classifications results while
also taking significantly less time.

As for the majority of related work, the features proposed were derived from
a single record, which does not allow for making single aggregations, like the ones
performed by group by clauses in SQL (average, min and max, for example). The
next steps to follow are in two directions. First, to enlarge the operations to allow
for aggregation operations; and second, to automatically propose some opera-
tions, instead of requiring the entire specification in the ER diagram. Preliminary
results show the first line of work is accomplished without major problems and
without hindering the algorithm performance.
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Abstract. In this study, a fuzzy clustering algorithm is proposed for
spherical data, developed as an extension of a conventional algorithm, q-
divergence-based fuzzy clustering for spherical data (QFCS), by increas-
ing the number of fuzzification parameters from two to three. Through
numerical experiments, the effects of the parameters of the proposed algo-
rithm are clarified, In addition, two real datasets are used, to demonstrate
that the proposed algorithm outperforms the conventional algorithm in
terms of clustering accuracy.

Keywords: Fuzzy Clustering, Spherical Data, Parametric Extension

1 Introduction

Some clustering tasks, such as document clustering, can be reduced to the clus-
tering of spherical data, where all of the objects are of unit length. In this situa-
tion, the cosine correlation is used to measure an object and a cluster prototype.
The algorithm typically used for clustering spherical data is the spherical k-
means algorithm [1], which is a hard clustering framework, in which each object
belongs to a single cluster. Other algorithms, namely the Kullback-Leibler (KL)
divergence-based fuzzy clustering for spherical data (KLFCS) [2], and Bezdek-
type fuzzy clustering for spherical data (BFCS) [2], employ a fuzzy clustering
framework, in which each object belongs to two or more clusters; the degree to
which an object belongs to a given cluster is termed its membership in that clus-
ter. Higashi et al. proposed the q-divergence-based fuzzy clustering for spherical
data (QFCS) [3], and showed that QFCS outperforms the KLFCS and BFCS
methods in terms of clustering accuracy. QFCS is a two-parameter model (that
is, it has two fuzzification parameters), whereas the BFCS and KLFCS objective
functions are one-parameter models. With the value of one parameter specified,
QFCS reduces to KLFCS, and with the value of the other parameter speci-
fied, QFCS reduces to BFCS; thus, QFCS is a two-parameter extension of both
KLFCS and BFCS. By controlling these two fuzzification parameters in QFCS,
flexible clustering results are obtained, resulting in higher clustering accuracy.
Extending QFCS further by increasing the number of fuzzification parameters
has the potential to produce clustering results that are still more flexible, result-
ing in a further improvement in clustering accuracy.
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In this study, we propose a fuzzy clustering algorithm for spherical data,
developed as an extension of QFCS by increasing the number of fuzzification
parameters. In the proposed method, which we call the revised QFCS (RQFCS)
method, we distinguish the fuzzification parameter in the second term of the
QFCS objective function from that in the first term. The proposed model is
thus a three-parameter extension of QFCS and therefore, has the potential to
produce clustering results that are more flexible than those produced by QFCS.
Decoupling the fuzzification parameter in fuzzy clustering has been discussed in
[4], where two different values are used for fuzzification parameter; one for com-
putation of cluster centers, the other for computation of the final memberships,
whereas in the proposed method the fuzzification parameter is decoupled at the
optimization problem. Then, the proposed method uses both the two different
fuzzification parameter values through all the steps. We conduct numerical ex-
periments using an artificial dataset to clarify the effects of the fuzzification
parameters in the proposed method. In addition, we conduct numerical exper-
iments using two real datasets to compare the proposed algorithm with QFCS
in terms of clustering accuracy.

The remainder of this paper is organized as follows. In Section 2, we briefly
describe BFCS, KLFCS, and QFCS, which are the conventional algorithms
for fuzzy clustering of spherical data. In Section 3, the proposed algorithm is
described. In Section 4, we presents the results of the numerical experiments
conducted to clarify the effects of the fuzzification parameters in the proposed
method, and to evaluate the performance of the proposed algorithm relative to
QFCS in terms of clustering accuracy. In Section 5, we concludes the work.

2 Preliminaries

Let X = {xk ∈ RM | ∥xk∥2 = 1, k ∈ {1, · · · , N}} be a set of (M−1)-dimensional
spherical data. We consider a partitioning of X into C clusters. We introduce a
representative point for each cluster, called the cluster center. The set of such
cluster centers is denoted by V = {vi ∈ RM | ∥vi∥2 = 1, i ∈ {1, · · · , C}}. Let
U = ui,k (i ∈ {1, · · · , C}, k ∈ {1, · · · , N}) be the membership of xk in the i-th
cluster. The membership U has the constraint

C∑

i=1

ui,k = 1, ui,k ∈ [0, 1]. (1)

Further, we introduce the cluster size controller, denoted by A = {αi ∈ (0, 1)}Ci=1.
The the cluster size controller A has the constraint

C∑

i=1

αi = 1. (2)
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The BFCS, KLFCS, and QFCS algorithms are obtained by solving the respective
optimization problems

minimize
U,V,A

C∑

i=1

N∑

k=1

(ui,k)
m (

1− xT
kvi

)
, (3)

minimize
U,V,A

C∑

i=1

N∑

k=1

ui,k

(
1− xT

kvi

)

+ λ−1
C∑

i=1

N∑

k=1

ui,k ln

(
ui,k

αi

)
, (4)

and

minimize
U,V,A

C∑

i=1

N∑

k=1

(αi)
1−m(ui,k)m

(
1− xT

kvi

)

+
λ−1

m− 1

C∑

i=1

N∑

k=1

(αi)
1−m(ui,k)m, (5)

which are based on Eq. (1), Eq. (2), and

∥vi∥2 = 1 for i ∈ {1, . . . , C}. (6)

and in which λ > 0 and m > 1 are the fuzzification parameters. As it has previ-
ously been shown [3] that the QFCS algorithm outperforms KLFCS and BFCS
in terms of clustering accuracy, this study considers only the QFCS algorithm
for the comparison with the proposed algorithm; the KLFCS and BFCS opti-
mization problems are compared with the proposed one in the later section. The
QFCS algorithm is summarized as follows:

Algorithm 1 (QFCS)

Step 1. Given the number of clusters C and the fuzzification parameters
(m,λ), where m > 1 and λ > 0, let the set of initial membership be u.

Step 2. Obtain v using

vi =

∑N
k=1(ui,k)mxk

∥∑N
k=1(ui,k)mxk∥2

(7)

for i ∈ {1, . . . , C}.
Step 3. Obtain {di,k}(C,N)

i,k)=(1,1) using

di,k = 1− xT
kvi (8)

for i ∈ {1, . . . , C}, k ∈ {1, . . . , N}.
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Step 4. Obtain α using

αi =

(∑N
k=1(ui,k)m (1− λ(1−m)di,k)

)1/m

∑C
i′=1

(∑N
k=1(ui′,k)m (1− λ(1−m)di′,k)

)1/m
(9)

for i ∈ {1, . . . , C}.
Step 5. Obtain u using

ui,k =
αi (1− λ(1−m)di,k)

1/(1−m)

∑C
i′=1 αi′ (1− λ(1−m)di′,k)

1/(1−m)
(10)

for i ∈ {1, . . . , C}, k ∈ {1, . . . , N}.
Step 6. Check the stopping criterion for (u, v, α). If the criterion is not satis-

fied, go to Step 2.

3 Proposed Method

As mentioned in the previous section, the QFCS objective function is a two-
parameter model, having the two fuzzification parameters m and λ. (By contrast,
the BFCS and KLFCS objective functions are one-parameter models.) As QFCS
with m↘ 1 reduces to KLFCS, and as QFCS with λ→ +∞ reduces to BFCS,
QFCS is a two-parameter extension of both KLFCS and BFCS. Controlling
these two fuzzification parameters of QFCS produces flexible clustering results,
resulting in higher clustering accuracy.

Extending QFCS further by increasing the number of fuzzification parameters
has the potential to produce clustering results that are still more flexible, result-
ing in a further improvement in clustering accuracy. In the proposed method,
which we call the revised QFCS (RQFCS) method, we distinguish the fuzzifica-
tion parameter m in the first term of the QFCS objective function from that in
the second term, denoting them as m1 and m2, respectively, as follows:

minimize
U,V,A

C∑

i=1

N∑

k=1

(αi)
1−m1(ui,k)m1

(
1− xT

kvi

)

+
λ−1

m2 − 1

C∑

i=1

N∑

k=1

(αi)
1−m2(ui,k)m2 , (11)

subject to Eqs. (1), (2), and (6), where m1 > 1, m2 > 1, and λ > 0 are the fuzzi-
fication parameters. The proposed model is thus a three-parameter extension
of QFCS. It reduces to the KLFCS method with m1 = m2 ↘ 1, to the BFCS
method with λ → +∞ or m2 ↘ 1, and to the QFCS method with m1 = m2.
Thus, the proposed method, RQFCS, is a three-parameter extension of QFCS,
KLFCS, and BFCS.
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The Lagrange function of RQFCS, L(U, V,A), is defined as

L(U, V,A) =
C∑

i=1

N∑

k=1

(αi)
1−m1(ui,k)m1

(
1− xT

kvi

)

+
λ−1

m2 − 1

C∑

i=1

N∑

k=1

(αi)
1−m2(ui,k)m2

+
C∑

i=1

ηi

(
1− ∥vi∥22∥

)

+ θ

(
1−

C∑

i=1

αi

)

+
N∑

k=1

ζk

(
1−

C∑

i=1

ui,k

)
(12)

with Lagrange multipliers (ζ1, . . . , ζN , θ, η1, . . . , ηC). The conditions for optimal-
ity are described as

∂L(U, V,A)

∂ui,k
=0 (i ∈ {1, . . . , C}, k ∈ {1, . . . , N}), (13)

∂L(U, V,A)

∂vi
=0 (i ∈ {1, . . . , C}), (14)

∂L(U, V,A)

∂αi
=0 (i ∈ {1, . . . , C}), (15)

∂L(U, V,A)

∂ζk
=0 (k ∈ {1, . . . , N}), (16)

∂L(U, V,A)

∂θ
=0, (17)

∂L(U, V,A)

∂ηi
=0 (i ∈ {1, . . . , C}). (18)

The set V of optimal cluster centers is obtained from Eqs. (14) and (18), and is
described as

vi =

∑N
k=1(ui,k)m1xk∥∥∥

∑N
k=1(ui,k)m1xk

∥∥∥
2

(19)

for i ∈ {1, . . . , C}. This formula is the same as those for BFCS and QFCS because
the optimization problems for RQFCS, BFCS, and QFCS have the same form
with respect to V .

The optimal membership condition, given in Eqs. (13) and (16), is equiva-
lently written as

m1(αi)
1−m1di,k(ui,k)m1−1 +

λ−1

m2 − 1
m2(αi)

1−m2(ui,k)m2−1 = ζk (20)
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for i ∈ {1, . . . , C} and k ∈ {1, . . . , N}, along with Eq. (1). We fix k ∈ {1, . . . , N}
and consider obtaining the values u1,k, . . . , uC,k, ζk satisfying Eqs. (20) and (1).
In general, this nonlinear equation is difficult to solve analytically; hence, we
solve it numerically. Here, we define

fi(µ) = m1(αi)
1−m1di,k(µ)m1−1 +

λ−1

m2 − 1
m2(αi)

1−m2(µ)m2−1 (21)

for i ∈ {1, . . . , C}. Since this function f is strictly increasing and since ui,k is
bounded as ui,k ∈ [0, 1], we can obtain the optimal membership by the bisection
method with a given ζk value as follows:

Algorithm 2

Step 1. Set (u−
i,k, u+

i,k) = (0, 1).

Step 2. Set ui,k = (u−
i,k + u+

i,k)/2. If
∣∣∣u+

i,k − u−
i,k

∣∣∣ is sufficiently small, then

terminate the algorithm with the optimal ui,k being ui,k.
Step 3. If fi(ui,k) < ζk, let u−

i,k = ui,k; otherwise, let u+
i,k = ui,k. Go to

Step 2.

The optimal value for ζk can be obtained using the bisection method, as follows.
First, we can determine the upper and lower bounds of ζk as

ζk =m1(αi)
1−m1di,k(ui,k)m1−1 +

λ−1

m2 − 1
m2(αi)

1−m2(ui,k)m2−1

≤m1

(
α−)1−m1

d+
k +

λ−1

m2 − 1
m2

(
α−)1−m2

, (22)

ζk =m1(αi)
1−m1di,k(ui,k)m1−1 +

λ−1

m2 − 1
m2(αi)

1−m2(ui,k)m2−1

≥0, (23)

where α− = min1≤j≤C{αj}, and d+
k = max1≤j≤C{dj,k}. Thus, the algorithm for

obtaining the optimal ζk value can be consolidated as follows.

Algorithm 3

Step 1. Set (ζ−
k , ζ+

k ) = (0,m1 (α−)
1−m1 d+

k + λ−1

m2−1m2 (α−)
1−m2).

Step 2. Let ζk be (ζ−
k +ζ+

k )/2. If
∣∣ζ+

k − ζ−
k

∣∣ is sufficiently small, then terminate

the algorithm with the optimal ζk being ζk.
Step 3. Obtain ui,k using Algorithm 2.

Step 4. If
∑C

i=1 ui,k < 1, let ζ−
k = ζk; otherwise, let ζ+

k = ζk. Go to Step 2.

The optimal conditions for the cluster size controller, given in Eqs. (15) and
(17), are equivalently written as

(m1 − 1)

{
N∑

k=1

(ui,k)m1di,k

}
(αi)

−m1 + λ−1

{
N∑

k=1

(ui,k)m2

}
(αi)

−m2 = θ (24)
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for i ∈ {1, . . . , C}, along with Eq. (2). In general, this nonlinear equation is
difficult to solve analytically; hence, we solve it numerically. Here, we define

gi(a) = (m1 − 1)

{
N∑

k=1

(ui,k)m1di,k

}
(a)−m1 + λ−1

{
N∑

k=1

(ui,k)m2

}
(a)−m2 (25)

for i ∈ {1, . . . , C}. Since this function g is strictly decreasing and since αi is
bounded as αi ∈ (0, 1), we can obtain the optimal cluster size controller by the
bisection method with a given θ value as follows:

Algorithm 4

Step 1. Set (α−
i , α+

i ) = (0, 1).
Step 2. Set αi = (α−

i + α+
i )/2. If

∣∣α+
i − α−

i

∣∣ is sufficiently small, then termi-
nate the algorithm with the optimal αi being αi.

Step 3. If gi(αi) < θ, let α−
i = αi; otherwise, let α+

i = αi. Go to Step 2.

The optimal value for θ can be obtained using the bisection method, as follows.
First, we can determine the lower bound of θ using ui,k ≥ 0, m1 > 1, m2 > 1,
and αi ≤ 1, as well as the decreasing (αi)

−m1 and (αi)
−m2 , as

θ =(m1 − 1)

{
N∑

k=1

(ui,k)m1di,k

}
(αi)

−m1 + λ−1

{
N∑

k=1

(ui,k)m2

}
(αi)

−m2

≥(m1 − 1)û−(αi)
−m1 + λ−1ũ−(αi)

−m2

≥(m1 − 1)û− + λ−1ũ−, (26)

where û− = min1≤j≤C{
∑N

k=1(uj,k)m1dj,k} and ũ− = min1≤j≤C{
∑N

k=1(uj,k)m2}.
The upper bound of θ, however, cannot be obtained analytically but can be ob-
tained using the following algorithm.

Algorithm 5

Step 1. Set θ− = (m1−1)û− +λ−1ũ−. Set the candidate for the upper bound
of θ, θ+ > θ−.

Step 2. Obtain {αi}Ci=1 from Algorithm 4 with θ = θ+. If
∑C

i=1 αi < 1, then
terminate this algorithm with the upper bound of θ being θ+. Otherwise,
set θ+ ← κθ+ with κ > 1, and return to the beginning of Step 2.

Using the upper bound of θ obtained from Algorithm 5 and the lower bound of θ
given by Eq. (26), the algorithm for obtaining the optimal θ value is consolidated
as follows.

Algorithm 6

Step 1. Let the upper bound of θ, θ+, be that obtained from Algorithm 5.
Let the lower bound of θ, θ−, be that given by Eq. (26).
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Step 2. Set θ = (θ− + θ+)/2. If |θ+ − θ−| is sufficiently small, then terminate
the algorithm with the optimal θ being θ.

Step 3. Calculate {αi}Ci=1 using Algorithm 4.

Step 4. If
∑C

i=1 αi < 1, let θ+ = θ; otherwise, let θ− = θ. Go to Step 2.

Based on the above discussion, we propose the following algorithm, as the
RQFCS method:

Algorithm 7 (RQFCS)

Step 1. Fix the fuzzification parameter (m1,m2, λ) and the number of clusters
C. Initialize the membership U .

Step 2. Obtain V using Eq. (19).
Step 3. Obtain θ using Algorithms 5 and 6, along with the cluster size con-

troller A, using Algorithm 4.
Step 4. Obtain ζk using Algorithm 3, along with the membership U , using

Algorithm 2.
Step 5. If the criterion for (U, V,A) is satisfied, then terminate the algorithm.

Otherwise, go to Step 2.

4 Numerical Experiment

In this section, we present some numerical examples to observe the fuzzification
effect of the proposed method using an artificial dataset, and to compare the
clustering accuracy of the proposed method with the QFCS method using two
real datasets.

In the first experiment, we use an artificial dataset consisting of 150 points
on the 2D unit sphere, each of which belongs to one of three clusters (50
points per cluster), as shown in Fig. 1. We observe that the proposed method
produces appropriate clustering results with all combinations of the fuzzifica-
tion parameter values. The fuzzy classification functions (FCFs) for the cluster
#1 are shown in Figs. 2–5 with (m1,m2, λ) = (1.05, 1.1, 10), (m1,m2, λ) =
(10.0, 1.1, 10), (m1,m2, λ) = (1.5, 1.001, 10), and (m1,m2, λ) = (1.5, 2.3, 10), re-
spectively. Figs. 2 and 3 show that the larger the fuzzification parameter value
m1, the fuzzier is the FCF. Figs. 4 and 5 show that the larger the fuzzification
parameter value m2, the fuzzier is the FCF. We note that the fuzzification effects
of m1 and of m2 differ as follows. We observe that in Fig. 3 the FCF as a whole
is blue except the region neighboring v1, which is red, and the regions v2 and
v3, which are black. This implies that the effect of m1 is to fuzzify the FCF as a
whole except in the regions neighboring cluster centers, where the FCF remains
crisp. We observe in Fig. 4 that the FCF values around the area of G1 are red,
and those around the area of G2 and G3 are blue. This implies that the effect of
m2 is to fuzzify the FCF around each cluster uniformly. Furthermore, the fuzzi-
fication by m2 also brings the positions of the cluster centers closer together.
The mechanism of this difference and its effect on clustering accuracy will be
investigated theoretically in future work. Fig. 6 shows the FCFs for the first

75



cluster obtained using the proposed method with (m1,m2, λ) = (1.2, 1.2, 10),
and Fig. 7 shows the FCFs for the first cluster obtained using the QFCS method
with (m,λ) = (1.2, 10). A comparison of these two figures confirms that the
proposed method with m1 = m2 produces the same result as the QFCS method.

For the second experiment, we used two real datasets, called “Cora” and
“CiteSeer,” obtained from [5]. In the Cora dataset, 2708 documents are classified
into seven topics. Each document is represented by a 1432-dimensional binary-
valued vector, each element of which corresponds to a unique word and indicates
whether or not that word appears. In the CiteSeer dataset, 3312 documents are
classified into six topics. Each document is represented by a 3703-dimensional
binary-valued vector, each element of which corresponds to a unique word and
indicates whether or not that word appears. In the experiment, these datasets
were clustered using the RQFCS and QFCS methods. The number of clusters,
C, was set to the correct number of topics for each dataset. For each algorithm,
the fuzzification parameter λ was set from λ ∈ {100×5+1, 101×5+1, . . . , 103×5+1}.
The fuzzification parameters m1 and m2 for the RQFCS and m for QFCS were
set from m,m1,m2 ∈ {1 + 10−1, 1 + 10−2, . . . , 1 + 10−4}. The initial object
memberships were set according to the actual class labels. Clustering accuracy
was measured using the adjusted Rand index (ARI) [6]. ARI values lies within
[−0.5, 1], and higher values are preferred. The highest ARI value for each method
and the parameter values at which this was achieved are shown in Tables 1 and
2; the higher of the ARI values given by the two methods is underlined. As
shown in these tables, RQFCS outperformed QFCS in terms of accuracy with
both datasets; therefore, it can be concluded that separating the fuzzification
parameter m of QFCS into the two parameters m1 and m2 of RQFCS leads to
more accurate clustering.

5 Conclusion

In this paper, we have proposed the RQFCS algorithm, extending the two-
parameter QFCS method to create a three-parameter model. The effects of the
fuzzification parameters were investigated by numerical experiments using an
artificial dataset. In addition, through numerical experiments using two real
datasets, it was demonstrated that the proposed method produced results hav-
ing greater clustering accuracy than those produced by the QFCS method.

In our future research,

– The two fuzzification parameters m1 and m2 will be further investigated
theoretically to characterize their fuzzification mechanism and their differing
effects on clustering accuracy.

– The clustering accuracy of the proposed algorithm will be compared with
that of conventional methods using large numbers of real datasets.
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Fig. 1: Artificial dataset.
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Fig. 2: FCF of the RQFCS method:
(m1, m2, λ) = (1.05, 1.1, 10).
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Fig. 3: FCF of the RQFCS method:
(m1, m2, λ) = (10.0, 1.1, 10).
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Fig. 6: FCF of the RQFCS method:
(m1, m2, λ) = (1.2, 1.2, 10).
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Fig. 7: FCF of the QFCS method:
(m, λ) = (1.2, 10).

Table 1: Highest ARI value for each method and the corresponding parameter value;
for the “Cora” dataset.

Method ARI Parameter Value

QFCS 0.175945 (m,λ) = (1 + 10−5, 1000)
RQFCS 0.176728 (m1,m2, λ) = (1 + 10−5, 1 + 10−1, 1000)

Table 2: Highest ARI value for each method and the corresponding parameter value;
for the “CiteSeer” dataset.

Method ARI Parameter Value

QFCS 0.332952 (m,λ) = (1 + 10−5, 1000)
RQFCS 0.333434 (m1,m2, λ) = (1 + 10−5, 1 + 10−4, 1000)
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Abstract. Hesitant fuzzy sets were introduced as an extension of fuzzy
sets. Its motivation is that membership degrees are not just a value
in [0,1] but a set of values in this interval. This is to account for the
uncertainty in assigning these numbers.

Membership functions for hesitant fuzzy sets make that the elements in
the reference set are not fully comparable with respect to membership.
That is, membership functions define only partial order. Score functions
permit to build total orders from membership functions.

In this paper we study aggregation for hesitant fuzzy sets, and we discuss
their role for score functions.

1 Introduction

Among the existing extensions [6] for fuzzy sets [33] we find hesitant fuzzy sets,
which we introduced in 2009 [25, 26]. While in fuzzy sets membership values are
in [0,1], hesitant fuzzy sets have membership defined as subsets of [0,1]. Typically,
these sets are finite. These are typical hesitant fuzzy sets.

We have showed in previous papers their relationship with other types of
extensions, including Interval-valued and Atanassov’s intuitionistic fuzzy sets [3,
4], and type-n fuzzy sets [12] for details. Note that there is a discussion on the
terminology related to intuitionistic fuzzy sets (see e.g. Dubois et al. [11]).

In this paper we study aggregation for hesitant fuzzy sets, and how they can
be used for defining score functions for hesitant fuzzy sets. We also present some
results about weak orders for these sets. Some of our results are applications of
fuzzy integrals and some of their generalizations (e.g., the generalized t-conorm
integral).

The structure of this paper is as follows. After providing some definitions in
Sections 2, 3, and 4 that we need later, we introduce results related to score
functions for hesitant fuzzy sets, and, more particularly, about orders induced
by the score functions. These results are in Sections 5 and 6. Then, we propose
(Section 7) the use of a generalized t-conorm integral, providing some additional
results for this type of integral. The paper finishes with a conclusions section.
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2 Hesitant Fuzzy Sets

Let us introduce in this section hesitant fuzzy sets on a reference set X .

Definition 1. [25] Let X be a reference set, then a hesitant fuzzy set on X is
defined in terms of a function h that for each x ∈ X returns a subset of [0, 1].

The function h(x) is called a hesitant fuzzy element by Z.S. Xu [32]. Note
that for typical hesitant fuzzy sets, h(x) is a finite set of values (see e.g. [1, 5]).
For examples and relationships to other types of fuzzy sets see e.g. [25, 22, 21].

The following basic operations where proposed for hesitant fuzzy sets.

Definition 2. [25] Let h, h1, and h2 be hesitant fuzzy sets. Then, the following
operations are defined:

– Lower bound:
h−(x) = min h(x)

– Upper bound:
h+(x) = max h(x)

– α-upper bound:
h+

α (x) = {h ∈ h(x)|h ≥ α}
– α-lower bound:

h−
α (x) = {h ∈ h(x)|h ≤ α}

– Complement:
hc(x) = ∪γ∈h(x){1 − γ}

– Union:

(h1 ∪ h2)(x) = {h ∈ (h1(x) ∪ h2(x))|h ≥ max(h−
1 , h−

2 )},

or, equivalently
(h1 ∪ h2)(x) = (h1(x) ∪ h2(x))+α

for α = max(h−
1 , h−

2 ).
– Intersection:

(h1 ∩ h2)(x) = {h ∈ (h1(x) ∪ h2(x))|h ≤ min(h+
1 , h+

2 )},

or, equivalently,
(h1 ∩ h2)(x) = (h1(x) ∪ h2(x))−

α

for α = min(h+
1 , h+

2 ).

The definition of the union of two hesitant fuzzy sets is based on the following
rationale: if a hesitant fuzzy set is understood as a set of possible alternatives,
it is clear that, for a given x, the lower bound of the h1 ∪ h2 is the largest of the
two h−

1 , h−
2 . The definition of the intersection follows a similar approach.

80



Example 1. Let us consider the problem of evaluating “good” papers, expressed
by hesitant fuzzy sets h1, h2.

Let us consider the set of attributes X := {x1, x2, x3}. E.g. x1: Originality,
x2: Significance, x3: Presentation.

Then, let us consider that one referee evaluates a paper h1 using the lines
below (for the three attributes above).

x1
0 1

x2
0 1

x3
0 1

This information can be represented using hesitant fuzzy sets as follows:

– h1(x1) = [0.4, 0.7]
– h1(x2) = [0.7, 0.8]
– h1(x3) = [0.2, 0.4]

3 Binary operations for hesitant fuzzy sets

Let us review some binary operations. We define first t-norm and t-conorm. We
denote t-norms and t-conorms, respectively, by ⊤ and ⊥.

Definition 3. A t-conorm is a binary function [0, 1] × [0, 1] → [0, 1] such that

– (i) ⊥(a, 0) = a,
– (ii) for b ≤ c then ⊥(a, b) ≤ ⊥(a, c),
– (iii) ⊥(a, b) = ⊥(b, a),
– (iv) ⊥(a, ⊥(b, c)) = ⊥(⊥(a, b), c).

A t-norm is a binary function [0, 1] × [0, 1] → [0, 1] such that

– (i) ⊤(a, 1) = a.
– (ii) for b ≤ c then ⊤(a, b) ≤ ⊤(a, c),
– (iii) ⊤(a, b) = ⊤(b, a),
– (iv) ⊥(a, ⊥(b, c)) = ⊥(⊥(a, b), c).

We say that a t-conorm ⊥ is Archimedean if and only if x⊥x > x for all
x ∈ (0, 1).

For details see e.g. [2, 16].
Examples of t-conorms include the maximum and the bounded sum. We

denote the former by ⊥ = ∨ and the latter by ⊥(a, b) = +̂(a, b) = min(1, a +
b). We will also consider Sugeno family of t-conorms. They are defined by the
following expression ⊥λ(a, b) = 1 ∧ (a + b + λab) for (−1 < λ < ∞). We will
denote these t-conorms by a+λb. Sugeno t-conorms are Archimedean t-conorms.

Next we define the binary operation on a hesitant fuzzy set.
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Definition 4. Let X be a reference set, ⊥ a t-conorm, x1, x2 ∈ X and h be a
hesitant fuzzy set on X.

Define a binary operation ⊕ on h(X) by

h(x1) ⊕ h(x2) = {a1⊥a2 | a1 ∈ h(x1), a2 ∈ h(x2)}.

The next proposition is immediately from the definition.

Proposition 1. Let X be a reference set, x1, x2, x3 ∈ X and h be a hesitant
fuzzy set on X.

Then we have (h(x1) ⊕ h(x2)) ⊕ h(x3) = h(x1) ⊕ (h(x2) ⊕ h(x3))

It follows from the proposition above that we can write

h(x1) ⊕ h(x2) ⊕ h(x3) = (h(x1) ⊕ h(x2)) ⊕ h(x3).

Therefore we define

⊕n
k=1h(xk) = h(x1) ⊕ h(x2) ⊕ · · · ⊕ hn

for x1, x2, . . . xn ∈ X .
Next we define a scalar multiplication.

Definition 5. Let X be a reference set, x ∈ X, ⊡ a t-norm, and h be a hesitant
fuzzy set on X and let 0 ≤ α ≤ 1.

Define α ⊡ h(x) by

α ⊡ h(x) = h(x) ⊡ α = {α ⊡ a|a ∈ h(x)}.

.

4 Aggregation functions and fuzzy integrals

This section introduces some concepts related to fuzzy integrals that are needed
later on in this paper. We begin reviewing the concept of aggregation function.
We understand them as functions that combine n values in the [0,1] interval and
return another value in the same interval. We will denote them by C. A function
C : [0, 1]n → [0, 1] is an aggregation function if it is monotonic, and satisfies
unanimity. Some authors (e.g., [27]) require unanimity for all a ∈ [0, 1], while
others require unanimity only for 0 and 1.

Following the notation above, we use X to denote the reference set. Then, let
B denote a subset of the power set of X (i.e., 2X) such that ∅ ∈ B. An element
of B is said to be a fuzzy measurable set and, then, (X, B) is a fuzzy measurable
space. In addition, we say that a function f : X → R is measurable when

{x|f(x) > r} ∈ B

for all r ∈ R. We denote the class of measurable functions by M. In addition,
we denote by M+ the class of non-negative measurable functions.
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Definition 6. A fuzzy measure (also known as non-additive measure and ca-
pacity) µ is a real valued set function µ : B −→ [0, 1] that satisfies the following
properties:

1. µ(∅) = 0 (boundary condition)
2. µ(X) = 1 (boundary condition)
3. A ⊂ B for A, B ∈ B implies µ(A) ≤ µ(B) (monotonicity condition)

Among the different families of fuzzy measures, some are of interest in this
work. We define them below.

Definition 7. Let X be a set, then we consider fuzzy measures on (X, B).

1. Probability measures. A measure P is a probability measure if it satisfies the
additivity axiom. That is, for all A ∩ B = ∅ we have that

P (A ∪ B) = P (A) + P (B),

and, in addition,
P (X) = 1.

2. Possibility measures. A measure Pos is a possibility measure if it satisfies
the following axiom

Pos(A ∪ B) = max(Pos(A), Pos(B))

for all A, B. These measures were introduced by Zadeh [34] in the context
of fuzzy sets.

3. Necessity measure. A measure Nec is a necessity measure if it satisfies

Nec(A ∩ B) = min(Nec(A), Nec(B))

for all A, B. These measures were also introduced by Zadeh [34] and they
can be defined as conjugate of possibility measures.

4. The 0-1 possibility measure PosA focused on a set A ⊆ X. Given a set A we
define the measure as follows.

PosA(B) =

{
1 if A ∩ B 6= ∅
0 if A ∩ B = ∅

5. The 0-1 necessity measure NecA focused on a set A ⊆ X. This measure is
defined as follows, and corresponds to the unanimity game [15].

NecA(B) =

{
1 if A ⊆ B
0 if A 6⊂ B

6. Distorted probabilities. A fuzzy measure µ is a distorted probability if it can
be described in terms of a function Q and a probability distribution P as
µ(A) = Q(P (A)) for all A, and Q is a non-decreasing function Q such that
Q(0) = 0 and Q(1) = 1. When P is just the Lebesgue measure, then we call
the measure µ a distorted Lebesgue measure. We will denote the Lebesgue
measure by λ as usual.
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Let us now introduce fuzzy integrals. They permit to integrate a function
with respect to a fuzzy measure. We will consider functions f : X → R. Then,
a fuzzy integral of f with respect to a fuzzy measure µ will provide a value
in R that combines the values f(x) for x ∈ X taking into account µ. When
µ(X) = 1, these integrals can be seen as aggregation functions, where the values
being aggregated are the values f(x).

Definition 8. [9] Let X be a set, let f be a function on X as above, and let
µ be a fuzzy measure on (X, B). Then, the Choquet integral of f ∈ M+ with
respect to µ is defined by

(C)

∫
fdµ =

∫ ∞

0

µf (r)dr,

where µf (r) = µ({x|f(x) ≥ r}).
We also need to consider the restriction of the integral on a set. Let A ∈ B

be such set. Then, the Choquet integral of f with restricted domain A is defined
as follows:

(C)

∫

A

fdµ =

∫ ∞

0

µ(A ∩ {x|f(x) ≥ r})dr.

From the above definitions, it is obvious the next theorem.

Theorem 1. Let (X, B) be a measurable space, let f be a nonnegative measur-
able function on X and A ∈ B. Then,

1. (C)

∫
fdPosA = sup

x∈A
f(x) where PosA is the 0-1 possibility measure focused

on A.

2. (C)

∫
fdNecA = inf

x∈A
f(x) where NecA is the 0-1 necessity measure focused

on A.

Sugeno integral is another integral that also permits to integrate a function
with respect to a fuzzy measure.

Definition 9. [23] Let X be a set, let f be a function on X as above, and let µ
be a fuzzy measure on (X, B). Then, the Sugeno integral of a function f ∈ M+

with respect to µ is defined by

Sµ(f) := sup
r∈[0,1]

[r ∧ µf (r)],

where µf (r) := µ({x|f(x) > r}).

These two definitions lead to different outcomes for the same pair f and µ.
The generalized t-conorm integral [24, 17] generalizes both integrals exploiting
the similarities between the two definitions.

Let us begin the definitions with the one of a t-system, and then the one of
generalized t-conorm integral.
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Definition 10. [17] A t-conorm system for integration (or t-system for short)
is a quadruplet (F, M, I,⊡) where the first objects are continuous t-conorms F :=
([0, 1], ⊥1), M = ([0, 1], ⊥2), I = ([0, 1], ⊥3), where ⊥i i = 1, 2, 3 which are ∨ or
Archimedean, and the fourth object is a non decreasing operator ⊡ : F ×M → I,
and where these operators satisfy the following conditions:

– (M1) ⊡ is left continuous on (0, 1].
– (M2) a ⊡ x = 0 if and only if a = 0 or x = 0.
– (M3) if x⊥2y < 1 then a ⊡ (x⊥2y) = (a ⊡ x)⊥3(a ⊡ y).
– (M4) if a⊥1b < 1 then (a⊥1b) ⊡ x = (a ⊡ x)⊥3(b ⊡ x).

When there are generators of the t-conorms ⊥i for i = 1, 2, 3, then we use
use gi for i = 1, 2, 3 to denote them.

For the sake of brevity, we will also use (⊥1, ⊥2, ⊥3,⊡) to denote the t-
system. For example, we denote by (+λ, ∨, +̂, ·) the system with ⊥1 = +λ,
⊥2 = ∨, ⊥3 = +̂,⊡ = ·. Here, · represents the ordinary multiplication. Similarly,
(∨, ∨, ∨, ∧) denotes ⊥1 = ⊥2 = ⊥3 = ∨, and ⊡ = ∧.

As the definition requires the t-conorms to be either Archimedean t-conorms
or the maximum operator ∨, the following four types of t−systems are consid-
ered:

1. ⊥i for i = 1, 2, 3 are Archimedean,
2. ⊥1 = ⊥2 = ⊥3 = ∨,
3. ⊥3 is Archimedean and at least one of the other is ∨,
4. ⊥3 = ∨ and at least one of the other is Archimedean.

Sugeno and Murofushi [24, 17] (see also [27] for details) discuss and prove that
among these four types of t-systems only types (1) and (2) have a rich structure.
Taking this into account, here we only consider Archimedean t-systems (i.e.,
type (1) above) and t-systems of ∨ type (i.e., type (2) above).

Let us now introduce another operation related to a given t-conorm ⊥. It is
defined as follows a −⊥ b = inf{c|a⊥b ≥ c}.

A fuzzy measure ⊥ is decomposable if µ(A∪B) = ⊥(µ(A), µ(B)) for disjoint
A, B. Then, a ⊥-decomposable fuzzy measure µ with generator g is called normal
when ⊥ = ∨ or g ◦ µ is an infinite additive measure or g ◦ µ is a finite additive
measure.

Now we introduce the integrals. We consider first the integrals for simple
functions. A function f is a simple function if f = ⊥1

n
i=1ai1Di , where Di∩Dj 6= ∅

for i 6= j.

Definition 11. [17] Let (X, 2X , m), (⊥i,⊡) for i = 1, 2, 3 as above. Let m be a
normal ⊥2− decomposable fuzzy measure. Then, for a simple function f : X →
[0, 1], the t-conorm integral is defined as follows:

(T )

∫
f ⊡ dm := ⊥3

n
i=1ai ⊡ m(Di).
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Suppose that f = ⊥1
n
i=1(ai −⊥1 ai−1)1Ai where Ai = ∪n

j=iDj), we can define
another integral.

Definition 12. [17] Let (X, 2X , m), (⊥i,⊡) for i = 1, 2, 3 as above. Then, for
a function f : X → [0, 1] the generalized t-conorm integral is as follows.

(GT )

∫
f ⊡ dm := ⊥3

n
i=1(ai −⊥1 ai−1) ⊡ m(Ai).

We will defne another generalized t-conorm integral.

Definition 13. Let (X, 2X , m), (⊥i,⊡) for i = 1, 2, 3 as above. Then, for a
function f : X → [0, 1] the generalized t-conorm integral (GT2) is as follows. If
f is a simple function

(GT 2)

∫
f ⊡ dm := ⊥3

n
i=1ai ⊡ (m(Ai) −⊥2 m(Ai−1)).

We provide now definitions constrained to a set A.

Definition 14. [17] Let (X, 2X , m), (⊥i,⊡) for i = 1, 2, 3, and f as above.
Then, for A ⊂ X, the generalized t-conorm integral on A is defined as follows:

(GT )

∫

A

f ⊡ dm := ⊥3
n
i=1(ai −⊥1 ai−1) ⊡ m(Ai ∩ A).

Definition 15. Let (X, 2X , m), (⊥i,⊡) for i = 1, 2, 3, and f as above. Then,
for A ⊂ X, the generalized t-conorm integral GT 2 on A is defined as follows:

(GT 2)

∫

A

f ⊡ dm := ⊥3
n
i=1ai ⊡ (m(Ai ∩ A) −⊥2 m(Ai−1 ∩ A)).

The following lemma links the generalized t-conorm integral with Choquet
and Sugeno integrals.

Lemma 1. 1. For ⊥1 = ⊥2 = ⊥3 = +̂ and ⊡ = ·, the generalized t-conorm
integral is a Choquet integral (i.e., Def. 8).

2. For ⊥1 = ⊥2 = ⊥3 = ∨ and ⊡ = ∧, the generalized t-conorm integral is a
Sugeno integral (i.e., Def. 9).

5 Score function for a hesitant fuzzy set

We now define two score functions. The first one is based on the Choquet integral
and the second one is based on the generalized t-conorm integral. These score
functions compute a value for a given element x of the reference set X by means
of considering the membership values in h(x). The definition requires a fuzzy
measure.
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Definition 16. Let HX be the set of all hesitant fuzzy sets on X and µ be a
fuzzy measure on ([0, 1], B) where B is a class of Borel sets.

The CI-score function sCI
µ (hx) of h ∈ HX for x ∈ X with respect to a fuzzy

measure µ is defined by

sCI
µ (hx) := (C)

∫

hx

rdµ|hx
(r).

where µ|hx
(A) = µ(A∩hx)

µ(hx) .

Similarly, the GI-score function is defined by

sGI
µ (hx) := (GT )

∫

hx

r ⊡ dµ|hx
(r)

where µ|hx
(A) = µ(A∩hx)

µ(hx) .

Let us consider that the range of a hesitant fuzzy set is the closed interval
[a, b] ⊂ [0, 1]. In this case, we will study the score function sCI

µn
(hx) of h(x) with

respect to a distorted Lebesgue measure λα [20]. Observe that λα means that
λα(A) = (λ(A))α. We will consider α ∈ (0, ∞).

(C)

∫

[a,b]

rdλα(r) =

∫
λα([a, b] ∩ {x|1 ≥ x ≥ r})dr

=
(b − a)α(αa + b)

(1 + α)
,

the following proposition holds.

Proposition 2. Let X be a reference set, let h ∈ HX be a hesitant fuzzy set,
and assume that h(x) is a closed interval [ax, bx] for all x ∈ X. Then,

sCI
λα (hx) :=

αax + bx

(1 + α)
.

From the last equation it is easy to see that for α = 1,

sCI
λ (hx) :=

(ax + bx)

2
.

That is, for α = 1, the score function of hx is the center of the closed interval (or
the centroid). Using the equation above, we can also prove the following result.

Proposition 3. Let X be a reference set, let h ∈ HX be a hesitant fuzzy set,
and assume that h(x) is the closed interval A ⊂ [0, 1]. Then we have

– sCI
PosA

(hx) := limα→0 sCI
λα (hx)

– sCI
NecA

(hx) := limα→∞ sCI
λα (hx).
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6 On weak orders in HFS

We define now the order induced by the score function sµ(hx).

Definition 17. Let h be a hesitant fuzzy set on X and x1, x2 ∈ X, and let µ be
a fuzzy measure on ([0, 1], B) where B is a class of Borel sets.

Then, the order ≺sµ induced by the score function sµ(h(x)) is defined by

h(x1) ≺sµ h(x2)

if and only if
sµ(hx1) < sµ(hx2).

If µ = λα, we denote h(x1) ≺sµ h(x2) by h(x1) ≺α h(x2).
In particular, h(x1) ≺0 h(x2) means h(x1) ≺Pos h(x2), and h(x1) ≺∞ h(x2)

means h(x1) ≺Nec h(x2).
Next we define the incomparable relation by

h(x1) ∼sµ h(x2)

if and only if
sµ(hx1) = sµ(hx2).

∼α, ∼0 and ∼∞are similary defined.

In the following, we suppose that h(x) is a closed interval A ⊂ [0, 1], that is,
A = [ax, bx].

Let x1, x2 ∈ X and α > 0. If h(x1) ∼α h(x2), generally h(x1) 6= h(x2).
Suppose h(x1) ∼α h(x2) and h(x1) ∼0 h(x2) or h(x1) ∼∞ h(x2) then h(x1) =

h(x2).
Therefore we can define the total order ≺tα.

Definition 18. Let h be a hesitant fuzzy set on X, x1, x2 ∈ X and α > 0.
If h(x1) ≺α h(x2), then h(x1) ≺tα h(x2).
If h(x1) ∼α h(x2) and h(x1) ≺0 h(x2) , then h(x1) ≺tα h(x2).
If h(x1) ∼α h(x2) and h(x1) ∼0 h(x2) , then h(x1) ∼tα h(x2).

The following proposition can be proven for ∼tα.

Proposition 4. Let h be a hesitant fuzzy set on X, x1, x2 ∈ X and α > 0.
If h(x1) ∼tα h(x2), then h(x1) = h(x2).

Definition 19. Let h be a hesitant fuzzy set on X, x1, x2 ∈ X and α > 0.
h(x1) �tα h(x2) denotes h(x1) ≺tα h(x2) or h(x1) ∼tα h(x2).

Using ≺tα, we can define a weak order for hesitant fuzzy sets.

Definition 20. Let h1, h2 be hesitant fuzzy sets on X and α > 0.
h1 ≺tα h2 denotes h1(x) ≺tα h2(x) for all x ∈ X.
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7 Aggregation for a hesitant fuzzy set using a generalized
t-conorm integral

In this section we consider a generalized t-conorm integral. We begin with its
definition.

Definition 21. Let X = {x1, x2, . . . , xn} and ν be a fuzzy measure on (X, 2X).
Let h ∈ HX be a hesitant fuzzy set and α ≥ 0.
We will define the aggregation of h with respect to the fuzzy measure ν using

a generalized t-conorm integral by

(GT 2)

∫

α

h ⊡ dν = ⊕n
k=1h(xk) ⊡ (ν({xk, xk+1, . . . , xn}) −⊥2 ν({xk+1, . . . , xn}))

where X = {x1, x2, . . . , xn} is rearranged so that h(x1) �tα h(x2) �tα · · · �tα

h(xn).

We illustrate this definition with an example.

Example 2. Let ⊥1 = ⊥2 = +̂ and ⊡ = ·, then (GT 2)
∫
α

h ⊡ dν is the extended
Choquet integral to a closed interval, that is:

(C)

∫

α

h · dν = ⊕n
k=1h(xk)(̇ν({xk, xk+1, . . . , xn}) − ν({xk+1, . . . , xn}))

where X = {x1, x2, . . . , xn} is rearranged so that h(x1) �tα h(x2) �tα

· · · �tα h(xn).

The following proposition follows from the properties of the generalized t-
conorm integral.

Proposition 5. Let X = {x1, x2, . . . , xn} and ν be a fuzzy measure on (X, 2X).
Let h, h1, h2 ∈ HX be a hesitant fuzzy set and α ≥ 0.

1. h1 ≺tα h2 implies

(GT 2)

∫

α

h1 · dν ≤ (GT 2)

∫

α

h2 · dν

2. If h(x) = [a, b] for all x ∈ X, then

(GT 2)

∫

α

h · dν = [a, b].

8 Conclusion

In this paper we have studied score functions for hesitant fuzzy sets. We have
underlined the role of aggregation functions for this type of problem, and shown
how fuzzy integrals can be used to define score functions. We have provided some
mathematical results about orders inferred from the score functions.
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