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Preface
This volume contains papers that had to be presented at the 20th Interna-

tional Conference on Modeling Decisions for Artificial Intelligence (MDAI 2023)
celebrated in Ume̊a, Sweden, 19 - 22 June, 2023. The rest of papers as well as
invited papers have been separately published in the Lecture Notes in Artificial
Intelligence, Vol. 13890 (by Springer).

This conference followed MDAI 2004 (Barcelona), MDAI 2005 (Tsukuba),
MDAI 2006 (Tarragona), MDAI 2007 (Kitakyushu), MDAI 2008 (Sabadell),
MDAI 2009 (Awaji Island), MDAI 2010 (Perpinyà), MDAI 2011 (Changsha),
MDAI 2012 (Girona), MDAI 2013 (Barcelona), MDAI 2014 (Tokyo), MDAI 2015
(Skövde), MDAI 2016 (Sant Julià de Lòria), MDAI 2017 (Kitakyushu), MDAI
2018 (Mallorca), MDAI 2019 (Milano), MDAI 2020, MDAI 2021 (Ume̊a), and
MDAI 2022 (Sant Cugat).

The aim of MDAI is to provide a forum for researchers to discuss differ-
ent facets of decision processes in a broad sense. This includes model building
and all kinds of mathematical tools for data aggregation, information fusion,
and decision-making; tools to help make decisions related to data science prob-
lems (including, e.g., statistical and machine learning algorithms as well as data
visualization tools); and algorithms for data privacy and transparency-aware
methods so that data processing procedures and the decisions made from them
are fair, transparent, and avoid unnecessary disclosure of sensitive information.

The MDAI conference included tracks on the topics of (a) data science,
(b) machine learning, (c) data privacy, (d) aggregation functions, (e) human
decision-making, and (f) graphs and (social) networks.

The conference celebrates this year the 50th anniversary of graded logic, in-
troduced by Jozo Dujmović in a paper in 1973. In such paper, he also introduced
the concept of andness, a key concept to define adjustable aggregators with a
variable conjunction degree.

The conference was supported by Ume̊a University, the European Society for
Fuzzy Logic and Technology (EUSFLAT), the Catalan Association for Artificial
Intelligence (ACIA), the Japan Society for Fuzzy Theory and Intelligent Infor-
matics (SOFT), and the UNESCO Chair in Data Privacy.

Vicenç Torra, Yasuo Narukawa
June, 2023
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Enrique Herrera-Viedma, Universidad de Granada, Spain
Aoi Honda, Kyushu Institute of Technology, Japan
Van-Nam Huynh, JAIST, Japan
Masahiro Inuiguchi, Osaka University, Japan
Simon James, Deakin University, Australia
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Vicenç Torra, Ume̊a University, Sweden

6



Additional Referees

Sergio Martinez Lluis, Najeeb Moharram Salim Jebreel, Rami Haffar

Supporting Institutions

Ume̊a University
The European Society for Fuzzy Logic and Technology (EUSFLAT)
The Catalan Association for Artificial Intelligence (ACIA)
The Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT)
The UNESCO Chair in Data Privacy

7



8



Table of Contents

Regular Papers

Hand Pose Recognition through MediaPipe Landmarks . . . . . . . . . . . . . . . . . . . . 1
Manuel Gil-Mart́ın, Rubén San-Segundo and Ricardo de Córdoba
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Hand Pose Recognition through MediaPipe Landmarks 

Manuel Gil-Martín1[0000-0002-4285-6224], Rubén San-Segundo1[0000-0001-9659-5464] and Ricar-
do de Córdoba1[0000-0002-7136-9636] 

1 Speech Technology and Machine Learning Group (T.H.A.U. Group), 
Information Processing and Telecommunications Center, E.T.S.I. de Telecomunicación, 

Universidad Politécnica de Madrid, 28040, Madrid, Spain 

Abstract. This paper proposes a framework to recognize hand poses using a 
limited number of landmarks from images. This Hand Pose Recognition (HPR) 
system is composed of a signal processing module that extracts and processes 
the coordinates of specific points of the hand called landmarks, and a deep neu-
ral network module that models and classifies the hand poses. These specific 
points or landmarks are extracted automatically through MediaPipe software. 
Detecting hand poses from these points has two main advantages compared to 
traditional computer vision approaches: the information sent to the recognition 
module is smaller (points’ coordinates vs. a full image) and the classification is 
not affected by additional information included in the images (like the back-
ground). The experiments were carried out over two different datasets using the 
experimental setups of previous works. The proposed framework was able to 
obtain better performance than the best results reported in previous works. For 
example, in case of using the Tiny Hand Gesture Recognition Dataset, we ob-
tained classification accuracies of 98.74 ± 0.08 % and 98.22 ± 0.06 % with 
simple or complex backgrounds, while the best reported accuracies in previous 
works (using the whole image) were 97.10 % and 85.30 % respectively. The 
proposed solution is able to provide high recognition performance independent-
ly of the background where the image is taken. 

Keywords: Hand Pose Recognition, MediaPipe, Hand landmarks, Deep learn-
ing, Convolutional Neural Networks. 

1 Introduction 

Hand Pose Recognition consists in detecting the posture or pose that people perform 
using their hands. This technology could be useful to develop human computer inter-
action systems and could improve the user experience across a wide variety of differ-
ent domains. For example, it could be seen as the basis for sign language understand-
ing and hand gesture control applications. For instance, a person could ask for taking 
a picture using the front camera of a smartphone by opening and closing the hand 
palm. In these applications, it is crucial to accurately recognize the hand pose or ges-
ture to perform specific actions with smart devices, a computer or an automatic 
transmission machine. In this context, computer vision based approaches have been 
applied reaching promising results. 
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However, computer vision based approaches are usually based on feeding the sys-
tems by raw images that include sensitive information like the face or the background 
that people would like not to share. In addition, these images could have large sizes 
and cause strain on bandwidth in real applications. This way, it could be great to study 
solutions that extract the strictly necessary information from the images in order to 
develop lighter systems that could respect the individual’s privacy. 
 

This paper aims to propose a framework to detect hand poses using a limited num-
ber of landmarks from images. The main contributions of the paper are: 

- The proposal of a framework to detect hand poses from specific points of images 
that is not affected by the background of the images nor the people who perform the 
pose. 

- The evaluation of the proposal using two datasets and a comparison to previous 
works that used the whole images as input using the same experimental setups. 

 
This paper is organized as follows. Section 2 reviews the related work on hand 

pose recognition. Section 3 describes the material and methods used, including the 
datasets, the system architecture including the signal processing and deep learning 
approaches and the evaluation details. Section 4 discusses the experiments and the 
obtained results. Finally, Section 6 summarizes the main conclusions of the paper. 

2 Related work 

Multiple previous works have been focused on Human Activity Recognition in order 
to optimize the physical activity classification using wearables or cameras [1-4] that 
could be traditionally applied to sports monitoring purposes [5-7] such as fitness 
tracking, personal incentivizing, or rehabilitation [8]. However, there exist a lower 
number of works focused on detecting hand poses or gestures. Most of these works 
use images as inputs of their systems and follow a hand localization step as first stage. 
Afterwards, they extracted handcrafted features or descriptors [9] from the hand and 
feed an inference algorithm that classifies the different hand poses. As mentioned in 
the introduction, most hand detection systems are based on computer vision ap-
proaches [10-12] which often use raw images. 

 
For example, Wang et al. [13] developed a hand pose recognition system where 

they first obtained a segmented hand map using Kinect software development kit, 
then they extracted a volumetric shape descriptor using the line between the center of 
hand and wrist as polar axis of polar coordinates and finally they used a Support Vec-
tor Machines classifier to perform hand pose recognition. 

 
Another previous work [14] proposed a Convolutional Neural Network based sys-

tem to model ten different hand poses from ten different people. They pre-filtered the 
images using a Gabor filter and used skin color distribution as descriptor of the hand 
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to feed the deep learning architecture. They obtained an accuracy of 97% in the per-
son-independent test. 

 
In the same way, a previous work [15] segmented the image into the hand in dif-

ferent regions and obtained the Histogram of Oriented Gradients and a Local Binary 
Pattern from each region. Afterwards, they combined k-means and Support Vector 
Machines in order to classify the hand poses, obtaining an F1 score near 96% using 
data from 25 subjects and 16 different hand poses. 

 
Similarly a previous work [16] feed a deep Convolutional Neural Network to di-

rectly classify hand poses in images without any previous segmentation. They classi-
fied the hand pose with average accuracy of 97.1% in the images with simple back-
grounds and 85.3% in the images with complex backgrounds. They used a dataset 
with data from 40 subjects and seven different hand poses. 

 
To summarize, existing methods combined a hand segmentation step with a hand-

crafted features extraction step to obtain a descriptive hand pose representation.  Af-
terwards, they fed a machine learning module to model and classify the hand poses. 
The aim of this work is to use a powerful and effective library to directly extract rep-
resentative relevant points from the hand images (landmarks) to model and classify 
hand poses through a deep learning solution. In this sense, it is hypothesized that hand 
pose recognition task could be performed by the combination of landmarks extraction 
and a deep learning architecture offering higher performance without handcrafted 
methods to process the input images. 

3 Material and methods 

This section includes information about the datasets used in this work, the proposed 
system architecture including the signal processing and the deep neural network and 
the evaluation of the system. 
 
3.1 Datasets 

For this work, we have used two publicly available hand pose datasets: Multi-modal 
Leap Motion dataset for Hand Gesture Recognition [15] and Tiny Hand Gesture 
Recognition Dataset [16]. 
 

Multi-modal Leap Motion dataset for Hand Gesture Recognition includes data 
from 25 subjects (8 women and 17 men) that performed 16 different hand poses. Each 
subject was placed in front of a computer with the Leap Motion located on a table 
between the subject and the computer for image collection. Each subject was free to 
move the right hand over the device inside the Leap Motion field of view. The hand 
poses included in this dataset are: L, fist moved,  index, ok, C, heavy, hang, two, 
three, four, five, palm, down, palm moved, palm up, and up. This dataset contains a 
total number of frames of 65,156 related to hand poses. 
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Tiny Hand Gesture Recognition Dataset contains data from 40 subjects (14 women 

and 26 men) that performed seven different hand poses. Half of the subjects were 
recorded with gray simple background and the rest with complex background. The 
considered complex backgrounds are highly cluttered and the illumination undergoes 
large variations. The hand poses included in this dataset are: fist, L, ok, palm, pointer, 
thumb down and thumb up. This dataset contains a total number of frames of 260,796. 

 
3.2 System architecture 

Fig 1 shows a diagram module of the system: a data acquisition step where the images 
are collected, a signal processing module where landmarks are extracted from the 
images and processed, and a deep learning network to model and classify the hand 
poses.

 
Fig 1. System architecture for hand poses recognition using MediaPipe. 

Signal processing module 
 
MediaPipe [17] is a library with the capacity to track hands from input frames or vid-
eo streams. This framework offers a wide variety of solutions, such as face detection, 
face mesh, hair segmentation, object detection or pose and hands tracking. In particu-
lar, we used the MediaPipe Hands software to extract x and y coordinates of 21 land-
marks from the hand. These coordinates are normalized to [0.0, 1.0] interval by the 
image width and height respectively. The 21 landmarks correspond to different loca-
tion of the hand area: wrist and four points along the five fingers. Fig 2 shows the 
landmarks of different hand poses in the datasets used in this work. 
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Fig 2. Original images and landmarks of different examples of the datasets used in this work (a) 
and (b) from Multi-modal Leap Motion Dataset and (c) and (d) from Tiny Hand Gesture 
Recognition Dataset. 

The proposed framework extracts the landmarks from the images using the Medi-
aPipe library. After obtaining the landmarks, a specific normalization of the coordi-
nates is applied in order to help the neural network to model the hand poses. This 
normalization consists in using the lower landmark of the palm (wrist) as reference 
and subtracting their coordinates to the rest of landmarks. Fig 3 shows the original 
and normalized landmarks of an example of class four, where it is possible to observe 
that the reference of the different poses becomes the coordinate origin instead of the 
wrist landmark. 

 
Fig 3. Original and normalized landmarks of an example. 

Deep learning approach 
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The deep learning architecture used in this work was composed of two main parts: 
a feature learning subnet and a classification subnet. The first subnet learnt features 
from the x and y coordinates of the different landmarks, using two convolutional lay-
ers. The second subnet used fully connected layers to classify the learned features as a 
predicted hand pose. The architecture included dropout layers (0.3) after convolution-
al and and fully connected layers to avoid overfitting during training. The last layer 
used a softmax activation function to offer the predictions of each class for every 
analysis frame, while intermediate layers used ReLU for reducing the impact of gra-
dient vanishing effect. We used categorical cross-entropy as loss metric and the root-
mean-square propagation method as optimizer. We adjusted the epochs and batch size 
of the deep learning structure for each dataset: 300 and 500 for the Multi-modal Leap 
Motion dataset for Hand Gesture Recognition and 5 and 500 for the Tiny Hand Ges-
ture Recognition Dataset. The difference between the numbers of epochs in each con-
figuration is related of the number of examples to train the network, which is higher 
in the second dataset. Fig 4 represents the architecture used in this work to model and 
classify the hand poses of the datasets, where C indicates the number of recognized 
hand poses. 

 
Fig 4. Convolutional Neural Network Architecture used in this work for all the datasets. 

 
3.3 Evaluation setup 

In this work, we considered the data distributions of the previous works: specific train 
and test subsets for Multi-modal Leap Motion dataset for Hand Gesture Recognition 
and a cross-validation strategy for Tiny Hand Gesture Recognition Dataset. 

 
In case of training and testing subset, data from the same subject were included in 

both subsets. This methodology provided an optimistic scenario where the system was 
evaluated with recordings from subjects who were processed during the training step. 
This methodology was used for the Multi-modal Leap Motion dataset for Hand Ges-
ture Recognition to follow the same experimental setup of a previous work [15] using 
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this dataset, where the training subset contained 48,436 frames and the testing subset 
contained 16,720 frames. 

 
In case of the cross-validation experimental setup, 25 people were used for train-

ing, 5 subjects for validation, and 10 people for testing. In these experiments, it was 
assured that all the recordings from the same subject are included only in a subset. 
Once the system model is fitted on the training subset, the validation subset was used 
for optimizing the model hyperparameters. Finally, the system was evaluated with the 
testing subset. This process was repeated several times leaving different subjects for 
testing in each iteration. The results were averaged along all trials. This methodology 
simulated a difficult scenario because the system was evaluated with recordings from 
subjects different to those used for training. This methodology was used for the Tiny 
Hand Gesture Recognition Dataset to follow the same experimental setup of a previ-
ous work [16] using this dataset. 

 
As evaluation metrics, we used accuracy, which is defined as the ratio between the 

number of correctly classified samples and the number of total samples. Considering a 
classification problem with N testing samples and C classes, accuracy is defined in 
Equation (1). 

 
 

Accuracy =
1
N
� Pii

C

i=1

 (1) 

 
Considering Ri as the sum of all examples in a column of the confusion matrix, and 

Si as the sum of all examples in a row, precision, recall and F1 score metrics are de-
fined as follows: 

 
precision =

1
C
�

Pii
Ri

C

i=1

 (2) 

   
 

recall =
1
C
�

Pii
Si

C

i=1

 (3) 

   
 F1 score = 2 ·

precision · recall
precision + recall

 (4) 

 
Confidence intervals are used to show statistical significance values and provide 

confidence about the results reliability. These intervals include plausible values for a 
specific metric. We will assure that there exists a significant difference between re-
sults of two experiments when their confidence intervals do not overlap. Equation (5) 
represents the computation of confidence intervals attached to a specific metric value 
and N samples when the confidence level is 95%. 
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CI(95%) = ±1.96�

metric · (100 − metric )
N

 (5) 

4 Experiments and Discussion 

We firstly analyzed the effect of normalizing the coordinates using the lower land-
mark of the palm (wrist) as reference and subtracting their coordinates to the rest of 
landmarks. In this sense, the reference of the different poses becomes the coordinate 
origin. We observed that we could increase the recognition accuracy from 96.45 ± 
0.28 % to 97.25 ± 0.25 % for Multi-modal Leap Motion dataset for Hand Gesture 
Recognition and from 98.52 ± 0.09 % to 98.74 ± 0.08 % for simple backgrounds of 
Tiny Hand Gesture Recognition Dataset. This normalization offers a slight increment 
of performance. However, it is fair to say that this improvement of performance is 
significant even in the difficult situation when performance is high. One of the rea-
sons of this improvement is that thanks to this normalization, the representation of 
examples of the same pose become similar independently of the location of the hand 
in the image. For example, the representation of a hand pose consisting in pointing a 
screen with one finger could differ when the person performs the pose at right of left 
side of the image. However, thanks to normalizing using the wrist landmark, both 
representations become similar since both use the coordinate origin as reference. Re-
garding computational cost, the normalization does not heavily increase the pro-
cessing time thanks to simple operations that are used. 

 
Second, we compared our solution to previous works using the same datasets and 

their data distributions. A previous work [15] using the Multi-modal Leap Motion 
dataset for Hand Gesture Recognition segmented the image into the hand in different 
regions and obtained the Histogram of Oriented Gradients and a Local Binary Pattern 
from each region. Afterwards, the system combined k-means and Support Vector 
Machines in order to classify the hand poses, obtaining an F1 score near 96% using 
specific training and testing subsets. Another previous work [16] used the Tiny Hand 
Gesture Dataset and increased the number of samples by performing synthetic transla-
tions over the whole images, reaching a total number of 500,000 hand gesture samples 
for training. This system used a deep convolutional neural network (composed by 9 
convolutional layers, 4 pooling layers, 3 fully connected layers, interlaced with ReLU 
and dropout layers) to directly classify hand poses in images without any previous 
segmentation. This previous work classified the hand pose with average accuracy of 
97.1% in the images with simple backgrounds and 85.3% in the images with complex 
backgrounds following a cross-validation experimental setup, where 25 people were 
used for training, 5 subjects for validation, and 10 people for testing. Table 1 includes 
the comparison of these previous works and our work using the mentioned normaliza-
tion of landmarks. 
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Table 1. Results considering baseline experimental setups for the datasets. 

Dataset Work Accuracy (%) F1 score (%) 

Multi-modal Leap Motion Dataset 
for Hand Gesture Recognition 

[15] - 96.00 
This work 97.25 ± 0.25 97.23 ± 0.25 

Tiny Hand Gesture Recognition 
Dataset – Simple background 

[16] 97.10 - 
This work 98.74 ± 0.08 98.74 ± 0.08 

Tiny Hand Gesture Recognition 
Dataset – Complex background 

[16] 85.30 - 
This work 98.22 ± 0.06 98.23 ± 0.06 

 
As observed, we obtained better performance than these previous works. One of 

the interesting aspects of using our approach is that the system does not suffer a dec-
rement of performance when dealing with complex backgrounds. One of the reasons 
is that once the landmarks are extracted, the process is the same independently of the 
context and background where the image was taken. Additionally, the system can 
process images of different dimensions: in previous works, the deep neural architec-
ture that directly processes the images requires a specific input image dimensions and 
uses specific convolutional kernel sizes to learn relevant features from them. Never-
theless, as the extraction of landmarks does not depend on the neural architecture in 
the proposed approach, it is not restricted to specific image dimensions. 

 
However, the proposed approach could have some limitations that should be ad-

dress in future works: managing blurred images or images without complete hands. In 
these situations, the MediaPipe tool can have problems extracting the landmarks. 

5 Conclusions 

This paper proposes an alternative framework to detect hand poses using a limited 
number of landmarks from images. This approach for Hand Pose Recognition auto-
matically extracts 21 MediaPipe landmarks (x and y coordinates of specific points) 
from the hand and feeds a deep neural architecture to model and recognize different 
hand poses. This solution obtained better results than previous works using the same 
datasets. For example, in case of using the Tiny Hand Gesture Recognition Dataset, 
classification accuracies of 98.74 ± 0.08 % and 98.22 ± 0.06 % with simple or com-
plex backgrounds, respectively. Moreover, detecting hand poses from these points or 
landmarks has two main advantages compared to traditional computer vision ap-
proaches: the information sent to the recognition module is smaller (coordinates from 
the points vs. a full image) and the classification is not affected by additional infor-
mation included in the images (like the background). In this sense, the proposed sys-
tem could offer a high performance without handcrafted methods to process the input 
images. 
 

As future work, it would be interesting to recognize gestures as a sequence of 
frames using landmarks, study the effect of changing the brightness and contrast of 
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the recorded images before extracting the landmarks, study the effect of including a 
non-gesture class to distinguish when the system is not able to extract landmarks, 
detect which hand is processed to avoid errors when both hands appear in the image, 
perform the hand pose recognition using a Leave One Subject Out Cross Validation 
methodology and automatically compute the remaining landmarks when only a part of 
the hand appears in the original image. In addition, it would be interesting to apply 
this framework for other datasets with wider variety of backgrounds and/or related to 
sign language recognition with a higher number of classes. 
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Abstract. In recent years, there has been tremendous progress in object
detection performance. However, despite these advances, the detection
performance for small objects is significantly inferior to that of large ob-
jects. Detecting small objects is one of the most challenging and impor-
tant problems in computer vision. To improve the detection performance
for small objects, we propose an optimal data augmentation method us-
ing Fast AutoAugment. Through our proposed method, we can quickly
find optimal augmentation policies that can overcome degradation when
detecting small objects, and we achieve a 20% performance improvement
on the DOTA dataset.

Keywords: Object Detection · Small Object · Optimal Data Augmen-
tation

1 Introduction

Through the recent development of deep learning technology, various computer
vision tasks have been solved and studied. Among them, object detection is a
very important task in computer vision. Object detection has been applied in
many areas, including robot vision, autonomous vehicles, satellite image analy-
sis, and medical image analysis, and there have been many advances. However,
despite these advances, the problem of detecting small objects has emerged. As
shown in Fig. 1, detecting a small object tends to be more difficult than detect-
ing large object or medium object. even in the top submission for the MS COCO
[1] Object Detection challenge, the performance of detecting small objects is sig-
nificantly lower than that of detecting large objects. However, detecting small
objects is often a more critical task than detecting large objects. For example,
if a small forest fire is detected on a real-time mountain CCTV, the spread of a
large forest fire can be prevented early, and in the case of self-driving cars, small
pedestrians or traffic signs must be detected. Satellite data taken at high altitude
should detect small objects, and small defects and objects should be detected
in image analysis automation equipment at industrial sites. Moreover, medical
images should be able to detect small-sized malignant tumors. Thus, objects
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Fig. 1. An inference sample of Faster R-CNN in MS COCO. The first row is an image
consisting of a large object and a medium object instance, and the second row is an
image consisting of a small object instance. Despite its clear visibility, small objects
have lower detection performance compared to large object detection performance.

that should be detected in the real world are often represented by small pixels
in the image. In this paper, there are three perspectives on the degradation of
small object detection performance. First, the area of a small object pixel differs
from a large object by several times to several tens of times. This data imbalance
problem can cause object detection models to be biased towards large objects
during training. Second, most data augmentation methods are not effective on
small objects. Data augmentation can create models that prevent overfitting and
improve generalization performance by adding diverse distributions to training
datasets, and consequently contribute significantly to improving the performance
of the models. Various augmentation techniques have also been studied in object
detection. Pixel-Level transform authorization, which changes pixel values such
as RGBSshift, Blur, Random Contrast, and Random Brightness, and geometry
transform authorization such as Flip, Shift, and Rotate improve classification
or large object detection performance, but not small object detection perfor-
mance. RandomErase [2] and Cutout [3] erase or fill parts of the image with
specific values, contributing significantly to performance improvement, allowing
the model to predict only parts of the image without looking at the entire part
of the image, but applying it to small objects is problematic. This is because
the operation of erasing a part of the image or filling it with a certain value
may be applied to the whole, not to a part of a small object. MixUp [4] improves
training performance by blending two images, but does not contribute to improv-
ing small object detection performance. CutMix [5] cuts and pastes the image
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Fig. 2. Samples from DOTA. It consists of Google Earth, satellite, and aerial images.

to another image patch. Similarly, it improves overall training performance but
does not contribute to improving small object detection performance. The third
is the absence of an optimal augmentation policy. Research on the augmenta-
tion method of small objects is being conducted steadily. However, most studies
do not apply optimal augmentation policies. We propose a novel optimal small
object augmentation search method based on the above three perspectives. To
evaluate the performance on small object detection, we use the prestigious Fast
R-CNN [6] for object detection and perform a quantitative analysis on DOTA
[7] Dataset. We have improved the small object detection performance by 20%
compared to before.

2 Related Works

2.1 Object Detection

The object detection framework of previous studies is a two-step detector struc-
ture, consisting of a region proposal stage that is presumed to have an object and
an object classification stage that classifies which category the object is. R-CNN
[8] and Fast R-CNN were proposed based on a two-stage detector structure, and
later a one-stage detector structure that performs region proposal and object
classification at once in a convolution network, representatively YOLO [9], SSD
[10], and RetinaNet. Usually, in a two-stage detector structure, the recognition
is performed on an ROI with a specific object, so the accuracy is high but the
speed is slow. Conversely, the one-stage detector structure has the advantage of
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Table 1. GPU hours comparison of Fast AutoAugment and AutoAugment, PBA.
AutoAugment measured computation cost using an NVIDIA Tesla P100, while PBA
measured computation cost using a Titan XP, and Fast AutoAugment estimated com-
putation cost using an NVIDIA Tesla V100.

Dataset AutoAugment[14] PBA[15] Fast AutoAugment[16]
CIFAR-10 5000 5 3.5

SVHN 1000 1 1.5

low accuracy but high speed. because region proposal and object classification
are performed on the entire image with multiple objects.

2.2 Small Object Detection

Several methods have been proposed to improve the performance of Small Ob-
ject Detection. Scale-Transferrable Object Detection [11] proposed a method to
generate high-resolution feature maps using the Pixel Shuffler method, which is
commonly used in Image Super-Resolution, for small object detection. STDnet
[12] proposed a Region Context Network (RCN) that enhances the detection of
small objects in high-resolution feature maps. Augmentation for Small Object
Detection [13] improved small object detection performance by proposing an
algorithm that copies and pastes small objects.

2.3 Small Object Detection in Aerial Images

The DOTA dataset includes images from Google Earth, GF-2, and aerial(see Fig.
2). DOTA-v2.0 contains 18 common categories, with a total of 11,268 images and
1,793,658 instances. The dataset is divided into four subsets: train, valid, test-
dev, and test-challenge. The train subset consists of 1,830 images and 268,627
instances, while the valid subset includes 593 images and 81,048 instances. The
test-dev subset has 2,792 images and 353,346 instances, and the test-challenge
subset has 6,053 images and 1,090,637 instances. However, ground-truth anno-
tations are not provided for the test-dev and test-challenge subsets.

2.4 Optimal Augmentation

Data augmentation has become essential in most machine learning fields. How-
ever, determining the appropriate augmentation for dataset is a difficult problem.
Although the developer determines the augmentation based on Manual Search
or Grid Search, it is not the optimal augmentation suitable for dataset. As a
result, active research is being conducted to find the optimal augmentation pol-
icy. AutoAugment [14] based on reinforcement learning, explored the optimal
augmentation policy by giving the child model a test set loss according to the
augmentation policy as a reward and achieved state-of-the-art in the classifica-
tion field. However, this method is time-consuming and costly because the child

15



model must be repeatedly trained to update the policy searching controller (us-
ing RNN in AutoAugment). On the other hand, Population Based Augmentation
[15] is based on the Population Based Training (PBT) algorithm among hyperpa-
rameter optimization techniques. Population Based Augmentation(PBA) train
several models with different augmentation at the same time, and compare the
performance of each model in the middle of training to replicate the parameters
of the high-performance model to the parameters of the low-performance model
and give some variations of the applied augmentation technique. As shown in
Table 1, Unlike AutoAugment, time was reduced by 1/1000 because repetitive
re-training was not required. Also, Fast AutoAugment [16] uses a trained model
without augmentation to obtain an augmentation data loss according to the aug-
mentation policy. It obtains an optimal policy by reducing the density between
the original data and the augmented data. Since policy search is conducted us-
ing the trained model without repeating re-training, the time is also reduced by
1/1000 compared to AutoAugment.

3 Method

In this section, we describe augmentation algorithms for small objects and pro-
pose methods and implementations for finding optimal policies.

3.1 Augmentation Algorithm

The augmentation algorithm for small objects is based on copy-pasting strategies
used in [13]. The algorithm is to copy a small object and paste it to another
location. There are three types of methods.

Copy and paste a single object Select one small object from the image and paste
it to a random location.

Copy and paste multiple objects Select two or more small objects from the image
and paste them to a random location.

Copy and paste all objects Select all small objects from the image and paste
them to a random location.

The copy-pasting algorithm ensures that the pasted object does not overlap
with any existing objects. However, the edge of the copied object may appear
unnatural against the background. According to [13], they tested using Gaussian
blurring on the edge, but the performance actually declined and the unnatural
appearance was still maintained.
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Fig. 3. An overall procedure of augmentation policy search by Fast AutoAugment
algorithm.

3.2 Searching Policies

Searching for the optimal augmentation policy is based on Fast AutoAugment.
Fast AutoAugment is a method of searching for an augmentation policy that is
most suitable for the characteristics of Dataset by estimating density similarity
between original data and augmented data. The methodology proposed by Fast
AutoAugment for density similarity estimation is that if the augmented data
applied with the augmentation policy for the model trained with the original
data has a low loss, the optimal augmentation policy. In other words, the lower
the loss for the model trained without augmentation, the more similar the den-
sity to the original data, and the most appropriate augmentation policy for the
characteristics of the dataset.

3.3 Searching Small Object Augmentation Policies

SOA [13] found the optimal algorithm policy in a way close to Manual search or
Grid search by changing the parameter coefficient to improve the performance of
small object detection. In this paper, the policy for three copy-pasting algorithms
is explored with the Bayesian Optimization TPE [17]. As a result, the optimal
copy-pasting policy for small object detection is searched.

3.4 Implementation

Using the Kfold method in the Sklearn [18], the train data is split into DK
M and

DK
A (see line 1 in Algorithm 1). After that, the model is trained in parallel on

each DK
M without augmentation (line 3). After training, augmentation policies

are searched for using the HyperOpt function in Ray [19], which is a library
for hyperparameter optimization (line 5-7). The search method is based on the
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Algorithm 1 Implementation pseudo code
Require: Train Dataset D, numSearch, K, N
1: Split D into Kfold data DK

M , DK
A

2: for k = 1, . . . ,K do
3: Train Model Mk on Dk

M

4: for t = 0, . . . , numSearch− 1 do
5: Tt = Search operation, p, m
6: BayesianOptim(Tt, Loss(Mk|Tt(DA)))
7: T k

t = T k
t ∪ Tt

8: T∗ = Tt ∪ (select top N policies in T k
t )

9: Train Model M on T∗(D)

Bayesian optimization TPE [17], and the searching parameters are operation, p,
and m(line 5-7). Operation is the copy-pasting algorithm explained in Subsection
3.1, p is the copy-pasting probability, and m is the parameter of how many times
to paste. In the case of m, the parameter is optimized based on the number of
times 1 to 3. Then, the searched policy is applied to DA to obtain the loss
for the augmentation policy(lines 6-7). For each search, the top N policies with
the lowest loss are added to the final policies T∗ (line 8), and one of the T∗
policies is randomly chosen and applied as the augmentation policy for each
iteration during the final model training. Finally, model is trained by applying
the searched policies T∗(line 9). Fig. 3 shows the overall procedure.

4 Experiments and Results

In this section, we conduct experiments to compare the performance of our pro-
posed methods with the Baseline and SOA, in DOTA-v2.0 valid. Here, baseline is
the result of training with the setting and DOTA setting proposed in the object
detection model papers, and SOA is the result of applying the best augmentation
policy in the SOA paper. The comparison method is Average Precision (AP). The
AP scores are calculated separately for four categories: All, Small (object size 0 to
32×32), Medium (object size 32×32 to 96×96), and Large (object size 96×96 or
larger). Our proposed method demonstrated a significant improvement in mAP
performance, as shown in Tables 2 and 3. Compared to the baseline, our method
achieved a 9% increase in mAP performance in Table 2, and a 11% increase in
Table 3. Furthermore, for small objects, our method showed a substantial 20%
improvement in mAP performance in Table 2, and a 17% improvement in Table
3. These results highlight the effectiveness of our proposed method in object
detection tasks, particularly for detecting small objects. The searched optimal
policies are depicted in Fig. 4, showing the distribution of probability(p) and
magnitude(m). As can be seen from the distribution, probability and magnitude
tend to be inversely proportional.
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Table 2. Results of our experiments using Faster R-CNN based on RPN(resnet50
backbone). Experimental results are based on AP(Average Precision) metric.

mAP mAPL mAPM mAPS

baseline [6] 0.491 0.591 0.543 0.402
SOA [13] 0.517 0.579 0.572 0.461
Ours 0.538 0.573 0.578 0.485

Table 3. Results of our experiments using RetinaNet(MobileNetV3 backbone). Exper-
imental results are based on AP(Average Precision) metric.

mAP mAPL mAPM mAPS

baseline [20] 0.323 0.555 0.374 0.122
SOA [13] 0.346 0.544 0.433 0.132
Ours 0.359 0.586 0.447 0.143

Fig. 4. The distribution of probability and magnitude of the top 20 policies using
Faster R-CNN, where the x-axis represents the type of copy-pasting and the y-axis
represents the sum of the parameters p and m. Examining the parameter values, it can
be observed that they exhibit an inverse relationship, and that optimal performance is
achieved when the values are inversely proportional.
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5 Conclusion

We investigated the problem of small object detection. On most datasets, small
objects are much smaller than large or intermediate objects, which negatively
affected small object detection performance. We introduced a small object aug-
mentation strategy to address this problem and proposed a method to improve
small object detection performance by finding an optimal augmentation pol-
icy. Our experiments show a mAP 9% and small object mAP 20% performance
improvement of the proposed method in DOTA-v2.0.
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Abstract. Over the past decades, there has been a surge in the vol-
ume of textual data derived from various sources. As the abundance
of text carries valuable information and knowledge, summarizing it is
extremely desirable. Text summarization is one of the extensively stud-
ied and current topics in Natural Language Processing (NLP). Many
text summarization techniques have been developed to correctly extract
significant and focused information from long text documents such as
news articles. Pre-trained language models are among the most effec-
tive methods that automatically filter out redundant information from
text. However, most existing models do not summarize textual docu-
ments with respect to the key aspects of focus. In this paper, we propose
a novel aspect-based text summarization model based on learning arbi-
trary, non-pre-designed aspects from data and with no reference to any
auxiliary, external resources. We studied the effectiveness of the incorpo-
ration of the aspects learned from data when augmented into the baseline
transformer-based and other summarization methods. Three benchmark
datasets were used to validate the effectiveness of our model. Our ex-
periments show improvements over the baseline methods when arbitrary
aspects are added to the learning of the text summarization process.

Keywords: Text summarization · Deep learning · Aspect analysis.

1 Introduction

Text summarization is vital in natural language understanding and it has ap-
plications in information retrieval [15]. The process of text summarization is
implemented using both text extraction and generation [3, 23]. Effective text
summarization can benefit a wide range of downstream natural language tasks.
Moreover, it can achieve difficult tasks while reducing expert efforts and avoid-
ing inconsistencies in the summaries [24]. Current research focuses on reducing
an overwhelming amount of text to a shorter, more digestible form while retain-
ing the important information and key aspects. One of the challenges of text
summarization is that the token embeddings learned from the documents give
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biased representations of sentences in terms of their real semantic content when
averaging high-frequency words [11]. In addition, the availability of domain-
specific corpora is limited [21]. The lack of resources is a considerable obstacle
to fine-tuning. Moreover, as the raw data from social media contain abundant
information, the unrelated information can be combined with influential data
which carry the evidence parts of news like aspects and topics. This irrelevant
information will disturb the attention to the evidence in news [9].

In this paper, we propose a new text summarization approach based on ar-
bitrary aspects, which are unknown and learned from data. Aspects are usually
a word or a few terms within sentences that contain some key information.
For instance, in the sentence “He made the comments in a statement disas-
sociating himself from a new exhibition of his artistic creations that have been
removed from walls.”, there are at least two aspects, “comments” and “artistic
creations”. These aspects carry important information of the sentence which
will contribute to the creation of a summary that will represent the sentence.
The approach is designed as an unsupervised model to collect the words related
to the content of the current document collection. Aspects are extracted using
neural word embeddings to map words that appear in similar contexts to simi-
lar positions in the embedding space. Then, the attention mechanism is used to
generate word embeddings in the sentences. The aspect embedding training pro-
cess is similar to an autoencoder which uses dimension reduction to extract the
common factors in the embedded sentences, and then uses a linear combination
of the aspect embeddings to reconstruct the sentences. The main contribution
of this work is that the new proposed architecture extracts summaries while
integrating arbitrary aspects into the model. The aspects provide latent key in-
formation that is extracted from within given documents without reference to
any external data.

2 Related Work

Text summarization works can be categorized into two major groups, extractive
summarization and abstractive summarization. Extractive summarization ap-
proaches [25, 13] focus on scanning the whole document, filtering major words,
and concatenating important elements in the source text. Meanwhile, abstractive
summarization approaches [16, 2] target modifying the original text by generat-
ing new summaries, which include paraphrases of the primary text. The first
category of approaches can ensure grammatical correctness and achieve high ac-
curacy. However, the second category requires the models to have the ability to
represent the semantic content of the original text and use this information for
generating summaries. This is a challenging task as it requires that models im-
prove their ability to use words creatively or make inferences from the source text.
With recent advances in NLP and the availability of large pre-trained language
models, research related to text summarization has progressed significantly [23,
22]. Most of them rely on attention mechanisms. GPT [16] from OpenAI and
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Bidirectional Encoder Representations from Transformers (BERT) [1] are two
well-known models in the community.

GPT [16] is a pre-trained language model based on the decoder of a trans-
former. It is widely used for many text summarization and generation tasks.
As an autoregressive model, GPT will only encode the forward information and
hence will lose some of the information from the input. In addition, GPT re-
quires an encoder to capture the dependency relationship encoder to the news
claim and the retrieved facts. A Pseudo-self-attentive (PSA) [26] is proposed
to capture bi-directional information among the inputs. PSA incorporates the
conditioning input as a pseudo-history to a pre-trained transformer.

Apart from GPT-related models, there are some works using BERT proposed
by Devlin et al. [1]. A variant of BERT named BERTSUM for summarization
tasks was proposed by Liu. [13]. BERTSUM is built on top of BERT with addi-
tional summarization layers. Lewis et al. [10] proposed a pre-training sequence-
to-sequence model, BART, which can be applied to the text summarization task.
Compared to GPT and BERT, the BART model adopts the overall structure of
the Transformer.

The aspect-based analysis is widely used in sentiment analysis, text genera-
tion, recommendation, etc. It provides a fine-grained analysis through text. The
identified aspects can be used to generate a summary of long documents more
accurately and comprehensively. In the work of Frermann et al. [4], an aspect-
focused summarization is proposed. It produces a one-to-one summary of the
target aspect based on the given documents. Tan et al. [22] designed a weakly
supervised summarization model by using external aspects from Wikipedia or
other external sources based on BART. In contrast to these previous works, the
proposed architecture focuses on learning aspects from the internal content of
existing documents.

Related to aspect-based summarization, there are some works based on topic-
based summarization [14, 18]. In the work of Ma et al. [14], a topic-related
text summarization model, called T-BERTSUM, is built. The authors built T-
BERTSUM with three parts, Representation, Neural Topic Model (NTM), and
Summarization. Inspired by the previous works on text summarization, we de-
veloped an aspect-based summarization technique that takes advantage of dis-
covered aspects from documents to generate textual summaries. Different from
the works in the literature, in this work, aspect information is learned and ex-
tracted from word embeddings in an unsupervised way. Besides, there is no data
from external resources used.

3 Aspect-Based Text Summarization

The following proposed architecture is designed to address the problem of find-
ing the aspects from the input news. To verify the effectiveness of introducing
aspects, three state-of-art summarization models are used, PSA, BERTSUM,
and BART. These architecture are shown in Fig. 1 and Fig. 2 which will be
introduced in Sections 3.2 and 3.3. It can be seen that the proposed architec-
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ture are built of mainly two components, an external aspect extraction, and a
language model:

– The aspect extractor is built based on a self-attention mechanism which can
give more weight to aspect information.

– Pre-trained language models PSA [26], BERTSUM [13], and BART [10]
are trained to filter out redundant information from documents.

Unlike the baseline models, the proposed architecture learns and extracts la-
tent aspect embeddings at the word level from each sentence. With an attention-
based aspect extractor, latent aspect embeddings are obtained for a more nu-
anced understanding of the document. The pre-trained language model is fed
with original input and latent aspect embeddings, and trained for the down-
stream text summarization task.

3.1 Aspect Learning and Extraction

The aspect extractor is used to learn a set of aspect embeddings so that each
aspect can be explained by representative words in the embedding space [6].
Firstly, each word w is represented by a feature vector ew ∈ Rd. Word embed-
dings are used to construct feature vectors, and map words that often occur
together in the context to closer points in the embedding space. The feature
vector associated with the word corresponds to the row of the word embedding
matrix E ∈ RV×d, and V represents the number of words in the vocabulary.
The embeddings of aspects matrix MA ∈ RK×d can be learned as aspects, and
words share the same embedding space. Here, K represents the number of as-
pects, and it is smaller than V . Aspect embeddings are used to approximate the
aspect words in the vocabulary, and are filtered by the attention mechanism. To
remove or pay less attention to irrelevant words and improve the coherence of
the filtered aspects, reconstructing sentences with aspects can be achieved with
the following steps:

– Map to feature vector ewi for each word wi, i = 1, ..., n;
– Construct sentence embedding Zs to capture the most relevant information

at the sentence level: Zs =
∑n

i=1 aiewi
, where ai is the weight of wi.

Next, we calculate pt and reconstruct sentence embedding rs. Here, pt are
the weight vectors of K aspect embeddings. It represents the probability that
the sentence belongs to this aspect. It can be computed by reducing Zs from d
dimension to K dimension, and then softmax is used to normalize the outputs,
pt = Softmax(W · Zs + b), where W is the weighted matrix parameter, b is
bias, and rs is the reconstruction vector which can be considered as a linear
combination of aspect embeddings, rs = M⊤

A · pt.

3.2 Aspect-Based PSA

Fig.1 shows the structure of the proposed Aspect-Based PSA. Once the relevant
words are filtered with aspect extraction in Section 3.1, PSA language model [26]
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is launched to capture the bi-directional information. PSA can be formulated
as: PSA(Y,X,A) = Softmax(QY KY KXK⊤

A )VY VXVA, where Q is the query, K
is the key, and V is the value in the self-attention mechanism. Y ∈ T × D
represents the input sentence, X ∈ S × D is the length of input sentence S,
and A is the extracted aspects. The objective function of PSA [19] is LPSA =

−∑M
i=1(log P(yi|y1, ...yi−1;X,A)), where yi, i = 1, ..,M is the generated content

based on X and A.
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Position Embeddings

Aspect
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Text input

Aspect Embeddings

Pseudo-Self
Attention
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X Y

Feed Forward
Network

Softmax

x N 

Attention-based
Encoder

Fig. 1. The overall architecture of aspect-based PSA for text summarization.

3.3 Aspect-Based BERTSUM

To better understand the benefits of aspects of text summarization tasks, we
consider another state-of-the-art method, BERTSUM [13]. Fig. 2 illustrates the
proposed architecture. The multi-sentence input is split by adding the [CLS]
token at the beginning of each sentence and adding the [SEP] token at the end
of each sentence. Segment embeddings, EA and EB, are used to discriminate the
order of the sentence in the text. Position embeddings, E0, E1 ... , En, show the
positions of the token in the input. Token, segment, and position embeddings are
summed and treated as the input into BERT to generate sentence embeddings
Tn. The learned aspect embeddings ATn from aspect extraction in Section 3.1
are concatenated with sentence embeddings and fed into the summarization layer
to predict the probability of each sentence in the original document being a part
of the extracted summary, and finally, the optimal top-n sentences are selected
as the document summary.

3.4 Aspect-Based BART

As discussed earlier, BART adopts an encoder-decoder structure, where the in-
put at the encoder side is a noise-added sequence, the input at the decoder side
is a right-shifted sequence, and the target at the decoder side is the original
sequence. Aspect-Based BART takes the aspect embeddings from aspect extrac-
tion in Section 3.1 as the additional inputs. It can preserve the autoregressive
properties while exploiting the bi-directional modeling capability of the encoder
side for generative tasks.
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Fig. 2. The architecture of aspect-based BERTSUM.

4 Experiments

4.1 Experimental Settings

For all experiments, we used the original, published language models of GPT-2,
PSA, BERTSUM, and BART. For aspect extraction, the number of aspects was
500 for the CNN DailyMail and MA-News datasets, and 140 for the GossipCop
dataset. An analysis was conducted to find the optimal number of aspects per
dataset, which will be discussed in Section 4.4. We adopt the standard parameter
settings of the methods which are listed in Table 1.

Models Optimizer Learning
Rate

Epochs Layers Heads per
Layer

Hidden
Size

GPT-2 Adam 1e-3 5 12 12 768
PSA Adam 1e-3 5 12 12 768
BERTSUM Adam 1e-4 5 12 12 768
BART Adam 3e-5 5 12 12 768

Table 1. Experimental parameter settings.

4.2 Datasets

Following previous works [17, 13, 26], we evaluate proposed architectures on the
CNN DailyMail [7], MA-News [4] and GossipCop [20] datasets.

– CNN DailyMail ismade up of online news articles from CNN and Daily Mail
websites. There are 93,000 articles that are collected from CNN1 from April
2010 to April 2015 and 220,000 articles from Daily Mail2 between June 2010
to April 2015 [7]. The whole dataset contains 287,266 examples for training,
13,368 examples for validation, and 11,490 examples for testing.

1 https://edition.cnn.com/
2 https://www.dailymail.co.uk/auhome/index.html
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Model R-1(%) R-2(%) R-L(%) JSD KLD

GPT-2 29.34 8.27 26.58 0.0984 0.0598
PSA 40.23 17.73 37.27 0.1035 0.0653
PSA+aspects∗ 40.35 15.01 38.34 0.1048 0.0667

BERTSUM 43.31 20.15 39.58 0.1536 0.0760
BERTSUM+aspects∗ 43.89 20.70 39.51 0.1603 0.0892

BART 44.16 21.28 40.90 0.1543 0.0754
BART+aspects∗ 44.59 21.14 41.03 0.1634 0.0826
Table 2. Summarization performances of the baseline and aspect-based models on
the CNN DailyMail dataset. Note: ∗ denotes aspects learned through the proposed
model. The number of aspects∗=500.

– MA-News is a synthetic dataset from CNN DailyMail [4]. Documents are
pre-learned into 6 different aspects. The dataset contains 280,000 training
samples, 10,000 validation samples, and 10,000 testing samples.

– GossipCop is one of the datasets from FakeNewsNet. It contains news articles
from the GossipCop website. We adopt the same settings with Shu et al. [20].
The dataset contains 7,331 training samples, 1,459 validation samples, and
974 testing samples.

4.3 Evaluation

For evaluating the performance of the proposed architecture, ROUGE [12] is
applied which is one of the standard evaluation metrics for text summariza-
tion. We considered the coverage of one word, two words, and the longest term
(ROUGE-1, 2, L) between the gold summary from the dataset and the summary
generated by the models [12]. Additionally, Jensen-Shannon Divergence (JSD)
[5] and Kullback-Leibler Divergence (KLD) [8] were considered for performance
evaluation. JSD and KLD compute divergence between ground-truth summary
with the generated summary at the token level.

Table 2 summarizes the results on the CNN DailyMail dataset. The pro-
posed models outperform the baseline models while achieving higher ROUGE
and JSD/KLD scores for text summarization. Aspect-based PSA outperforms
GPT-2, and PSA. Basides, aspect-based BERTSUM shows improvements com-
pared to BERTSUM for ROUGE-1, ROUGE-2, JSD, and KLD respectively. In
the last section of Table 2 where BART is used as the language model, the aspect-
based BART achieves 44.59, 41.03, 0.1634, and 0.0826 in ROUGE-1, ROUGE-L,
JSD, and KLD that outperform the baseline BART model.

From Table 3, it can be observed that on the GossipCop dataset, the aspect-
based models outperform their counterpart models in terms of ROUGE-L, JSD,
and KLD.

Table 4 shows the experimental results on the MA-News dataset. The experi-
ments on the baseline models are without the pre-defined aspects in the dataset.
For both BERTSUM and BART, we designed four types of experiments: i) lan-
guage model without any aspects, ii) language model with given aspects in the
dataset only, iii) language model with our aspects learned from the dataset only,
and iv) language model with both given aspects and our aspects learned from
the dataset. In Table 4, PSA with aspects achieves improvements on Rouge-1, 2,
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Model R-1(%) R-2(%) R-L(%) JSD KLD

GPT-2 15.58 5.37 17.23 0.1253 0.0651
PSA 20.84 9.71 18.89 0.1327 0.0802
PSA+aspects∗ 21.05 9.37 20.01 0.1384 0.0815

BERTSUM 21.41 9.87 20.17 0.1439 0.0853
BERTSUM+aspects∗ 21.32 9.91 20.44 0.1592 0.0862

BART 23.57 10.05 22.89 0.1485 0.0875
BART+aspects∗ 23.45 10.07 23.15 0.167010.0883
Table 3. Summarization performances of the baseline and aspect-based models on
the GossipCop dataset. Note: ∗ denotes aspects learned through the proposed model.
The number of aspects∗=140.

Model R-1(%) R-2(%) R-L(%) JSD KLD

GPT-2 25.91 6.89 22.01 0.1051 0.0514
PSA 34.89 13.62 33.43 0.1392 0.0539
PSA+aspects∗ 35.15 14.25 33.83 0.1457 0.0572

BERTSUM 38.86 18.14 38.07 0.1350 0.0685
BERTSUM+MA-News aspects 40.34 19.51 38.67 0.1395 0.0672
BERTSUM+aspects∗ 40.18 19.93 39.07 0.1571 0.0678
BERTSUM+MA-News aspects+aspects∗ 41.17 20.76 39.95 0.1584 0.0715

BART Sup 280K 40.07 18.78 37.83 0.1505 0.0701
BART Sup 280K+MA-News aspects [22] 41.98 20.65 39.64 0.1538 0.0717
BART Sup 280K+aspects∗ 42.39 21.28 39.59 0.1611 0.0782
BART Sup 280K+MA-News
aspects+aspects∗

42.73 21.56 40.63 0.1615 0.0790

Table 4. Summarization performances of the baseline and aspect-based models on
the MA-News dataset. Note: ∗ denotes aspects learned through the proposed model.
The number of aspects∗=500.

L, JSD, and KLD, compared with PSA. For BERTSUM and BART, the learned
aspects can improve the summarization performance.

One can conclude from these improved scores that adding aspect embed-
dings to the model is indispensable. The embeddings of aspect information can
facilitate the process of classifying and identifying the text so that an accurate
summary can be formed from the original. It should be noted that with our im-
proved model, we not only encode and decode the text but also embed the text
from the perspective of text interpretation and inference while incorporating the
different contexts (aspects) of the text within the embedding process.

4.4 Analysing the Effect of the Number of Aspects

To investigate the impact of the number of aspects, we designed experiments
on the variation of the ROUGE-1, ROUGE-2, ROUGE-L, JSD, and KLD scores
with varying numbers of aspects. For these experiments, BERTSUM is used, and
the study was conducted on the CNN DailyMail and GossipCop datasets. The
results of these experiments are shown in Table 5 and Table 6 with 14, 140, 200,
500, 1000, and 5000 aspects.

In Table 5, with the setting of aspect number as 500, the best performance
scores on CNN DailyMail are achieved, except in the case of JSD where the
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utilization of 1000 aspects results in a better JSD performance. For the Gossip-
Cop dataset, 140 aspects outperform all the other aspect numbers in Rouge-2,
JSD, and KLD as shown in Table 6. The other best performances (Rouge-1 and
Rouge-L) are at 14 aspects.

#Aspects R-1(%) R-2(%) R-L(%) JSD KLD

14 43.27 20.01 38.93 0.1017 0.0756
140 43.57 20.52 39.02 0.1359 0.0855
200 43.38 20.51 39.25 0.1478 0.0863
500 43.89 20.70 39.51 0.1603 0.0892
1000 43.52 20.37 39.34 0.1675 0.0874
5000 40.15 18.83 35.24 0.1326 0.0880
Table 5. The analysis of the impacts of the number of aspects on the text summariza-
tion performance of BERTSUM+aspects on the CNN DailyMail dataset where aspects
are learned through the proposed model.

#Aspects R-1(%) R-2(%) R-L(%) JSD KLD

14 21.35 9.89 20.47 0.1439 0.0811
140 21.32 9.91 20.44 0.1592 0.0862
200 21.33 9.56 20.35 0.1485 0.0857
500 21.15 9.84 20.19 0.1327 0.0803
1000 20.95 9.79 20.07 0.1384 0.0810
5000 20.58 9.23 20.01 0.1253 0.0715
Table 6. The analysis of the impacts of the number of aspects on the text summariza-
tion performance of BERTSUM+aspects on the GossipCop dataset where aspects are
learned through the proposed model.

The aspect-based BERTSUM model on CNN DailyMail dataset performs
better with a larger number of aspects while on GossipCop, a smaller number
of aspects leads to better performance. Given the size difference between the
CNN DailyMail and GossipCop datasets (312,124 text documents vs. 9,764,
respectively), the different optimal number of aspects is attributed to the number
of text documents in the dataset.

4.5 Case Study and Discussion

In Table 7, there is an example of summaries from CNN DailyMail. It contains
the generated summaries of the proposed architecture, PSA + Aspect and base-
line models, GPT-2, and PSA as compared to the ground-truth summary. It is
encouraging to see that the summary generated through our aspect-based model
contains the keywords related to the document aspects, e.g., ‘Italian frigate’. This
aspect is extracted from the Aspect Extraction stage. Then, it is concatenated
with input embeddings from the document and inserted into the following sum-
marization model. The extracted aspect is one of the keywords in the document
that should be contained the generated summary. This keyword while present
in the ground-truth summary is missing within the summary texts generated
by the two baseline models GPT-2 and PSA. Besides, the word ‘Wednesday’
describe the date of the reported sighting of a suspected missile. This word is

30



Original Article LRB- CNN -RRB- A Libyan government spokesman said
Thursday that forces loyal to embattled leader Moammar
Gadhafi did not fire a missile at NATO warships, as he had
told reporters a day earlier. The Italian frigate Bersagliere
reported spotting a suspected missile about 19 kilometers
-LRB- 12 miles -RRB- off the port city of Zlitan on Wednes-
day. The weapon had fallen harmlessly into the sea, ac-
cording to Italy’s defense ministry and NATO. Government
spokesman Moussa Ibrahim told reporters that government
forces were responsible for the attack, but said Thursday that
his comment was a “ misunderstanding. ” Ibrahim told CNN
that military officials later told him they hadn’t launched
a missile at the NATO fleet currently off Libya. “ We did
not fire any missiles into the sea against the ship, ”Ibrahim
told CNN. Gadhafi’s forces have been battling a nearly six-
month-long revolt that has split Libya roughly in half. NATO
planes and warships joined the fight in March, pounding gov-
ernment troops under a U.N. mandate to protect civilians
from reprisals by Gadhafi loyalists. Though most of the al-
lied campaign has been conducted from the air, NATO war-
ships reported fighting at least two brief sea engagements
with pro-Gadhafi forces off the port city of Misrata in May.
CNN’s Jomana Karadsheh contributed to this report.

Ground-Truth
Summary

Libya now says it didn’t fire a missile at an Italian frigate.
The warship reported spotting the missile on Wednesday.
The weapon landed harmlessly.

GPT-2 Libyan military says it did not launch missiles at NATO war-
ships. The weapon fell harmlessly into the sea, according to
the Italian navy. NATO planes and warships joined the fight
in March, pounding government troops under a U.N. man-
date to protect civilians

PSA Libyan says not launch a missile at the NATO on Wednesday.
Planes and warships protect civilians.

PSA + aspects∗ Libyan government says it did not fire a missile at NATO
warships. Spokesman told reporters that his comments were
a misunderstanding. The Italian frigate reported spotting a
suspected missile off Libya on Wednesday.

Table 7. Sample generated summaries of the proposed architecture and baseline mod-
els compared with the ground-truth summary on a CNN DailyMail document. Note: ∗

denotes aspects learned through the proposed model. The number of aspects∗=500.

missing in the generated summary from GPT-2. When compared with the out-
put summaries of the baseline models, the proposed aspect-based model is able
to learn aspects from the documents that carry the important information. The
proposed model does not lose sight of the important information within the doc-
ument. Our model is able to capture the main aspects and even dispersed aspects
within the long document.

5 Conclusion

In this paper, we proposed a novel aspect-based text summarization model that
leverages textual aspects to improve upon the state-of-the-art text summariza-
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tion effectiveness. Our approach does not rely on any external data or any pre-
designed set of aspects; instead, arbitrary aspects are directly learned from the
data. With the experimental results, it was demonstrated that this arbitrary
aspect learning process can improve the quality of the generated contents in
text summarization tasks. Our aspect-based text summarization models outper-
formed both extractive and abstractive baseline, state-of-the-art summarization
models on several benchmark datasets with varying numbers of textual docu-
ments. Our analyses of the number of aspects to be learned from the data showed
that the larger datasets with longer documents (and larger vocabularies) tend to
have a larger number of aspects that can optimally enhance the summarization
effectiveness. The latter finding may require further analysis with other datasets
in future work. We also plan to study the transferability of aspects among differ-
ent datasets and to further confirm the need for within-domain aspect learning.
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Abstract. Methods for identifying homogeneous groups with varying
characteristics in longitudinal data have been receiving increasing at-
tention in recent years, especially in the medical domain. Exploiting
electronic health records (EHRs) to infer patient subtypes can support
practitioners in improving the decision-making process. In this paper, we
propose a dynamic method for clustering multivariate longitudinal data,
which constitutes a transparent solution for patient subtyping and mod-
eling disease progression. Based on the assumption that subjects with
similar disease trajectories share the same patterns, we subtype patients
based on their medical history then learn the disease progression model.
We cluster data periodically, and maintain the results and update the
deduced subtypes by applying a borrowed approach from the data in-
tegration domain, namely entity matching. We test our method on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) real-world dataset.
We demonstrate how our results can facilitate the early detection of de-
mentia two years on average before the actual diagnosis, and therefore
assist in the development of support and prevention procedures for pa-
tients. We compare our clustering with the state-of-the-art data stream
clustering algorithms, and show that our method exhibits higher effec-
tiveness in terms of both internal and external validation metrics.

Keywords:

Multivariate longitudinal clustering · Subtyping · Disease progression
modeling · Alzheimer’s disease

1 Introduction

Longitudinal data consists of repeatedly measured observations for the same sub-
jects at multiple time points, hence the existence of a time dimension. Patients
with severe medical conditions undergo frequent monitoring. Therefore, medical
data is longitudinal. It is often stored in electronic health records (EHRs), which
comprise patient demographic and medical information [28].

? This project has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 875171.
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Chronic diseases can be partitioned into different stages, where each stage
is characterized by the level of progression. Researchers have been exploring
machine learning and data mining methods in order to understand the history
of disease, and estimate disease paths [18]. The problem has been modeled with
varying objectives, such as predicting the future diagnosis [6], estimating survival
rates [7], subtyping patients [3], and modeling disease progression [25].

Patient subtyping aims to derive and detect groups of patients with similar
traits and patterns. It can be applied to distinguish between mild and severe
stages of a disease [21]. Subtyping patients can be performed by clustering [16].
However, the longitudinal property of medical data necessitates a dynamic ap-
proach to avoid reinterpretation and repetition of cluster analysis.

A successive application of subtyping is modeling disease progression. It is
concerned with finding an ordered sequence of stages of the progressive disease,
and a qualitative estimate of prognosis probabilities between these stages. It can
be modeled using a Markov decision process, where a state represents the disease
stage, and the transition matrix reflects the probabilities of advancing between
stages [15]. Markov model has been used to represent breast cancer, although
the stages were predefined and not automatically determined from the data [5].

Alzheimer’s disease (AD) is widely studied for the purpose of early detec-
tion [20]. Nonetheless, most approaches focus on improving the accuracy of the
prediction with disregard for model transparency.

In this work, we propose an approach for clustering multivariate longitudinal
datasets, which constitutes an interpretable method for subtyping patients. Our
approach divides the dataset using a time window, and optimally clusters each
division. Each cluster corresponds to a subtype. We define the subtype as an en-
tity, characterized by the size of the cluster, in addition to the input variables as
properties with the values corresponding to the center of the cluster. Afterwards,
we borrow the concept of entity matching from the data integration domain in
order to find the same subtype entity across different times. Finally, we model
the disease progression as a Markov process.

It should be noted that, while our method is generic enough to be applied
to any dataset, in this paper, we assess the proposed model on the real-world
dataset of Alzheimer’s disease. We show that our method outperforms state-of-
the-art data stream clustering algorithms in terms of both internal and external
cluster validation metrics. In addition, our model was able to perform an early
detection of dementia two years on average before the real diagnosis. This early
discovery of Alzheimer’s, or any other disease, can support prevention and treat-
ment planning and improve patients’ lives.

2 Related Work

Clustering algorithms seek groups of instances that share distinct internal simi-
larities. It is intuitively a subtyping approach [16]. When applied to medical data
for subtyping patients, clustering divides patients into groups sharing similar
characteristics, which can reveal valuable information, and improve the diagno-
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sis ability. Clustering has been widely used for subtyping and aiding the diagnosis
of different diseases such as breast cancer [29], Parkinson [19], and Alzheimer’s
disease [10]. However, follow-up information are collected periodically in differ-
ent time steps, which makes medical data longitudinal. This means clustering
should be performed repeatedly with maintenance to infer robust subtypes. This
process can be computationally expensive, and will require repetition of cluster
analysis and result interpretation.

The research on data streams has flourished with the development of devices
that captures measurements over time. Data streams are often unlabeled, which
makes it inevitable to resort to unsupervised learning methods for analysis pur-
poses. Moreover, data stream processing needs to address the possible change in
the properties of the data instances over time. Authors in [1] argue that holistic
clustering over the entire stream is insufficient to capture the change in clus-
ters over time. Therefore, they proposed clustering evolving data in two stages:
i. Micro clustering: that processes the data online efficiently by grouping data
points into micro clusters, and composing statistic summaries at snapshots in
time. ii. Macro clustering is performed offline using the aforementioned summary
together with additional user input in order to produce the final clustering. The
authors also state that using a time window allows a better understanding of
the underlying evolving patterns of the data.

The evolution of data stream clustering was built on algorithms that process
large datasets. BICO [11] is a clustering algorithm designed to process stream-
ing data. It summarizes the data by computing corsets of the stream to rapidly
process the arriving points, and then runs K-means++ on the set of corsets. The
state-of-the-art algorithm for data stream clustering is evoStream [4]. It summa-
rizes the input online into micro clusters using a variant of DBSTREAM. A micro
cluster is described by its center, last update time, and weights. Clusters that
fall within a radius threshold r are merged at every time gap. After establishing
γ micro-clusters, the algorithm takes samples from γ to generate the macro clus-
ters. The offline clusterer performs evolutionary steps by merging and modifying
existing solutions randomly to improve the final clusters. The experimental eval-
uation produced state-of-the-art quality while reducing the computational cost.
However, the algorithm requires six different parameters, namely: radius, decay
rate, cleanup interval, initialization threshold, population size, and the number
of clusters.

Similar to the data stream clustering procedure, we propose clustering lon-
gitudinal data in two steps: i. Clustering at each time window optimally by
choosing the algorithm and parameters that optimize the cluster structures. Af-
terwards, we summarize each cluster as an entity defined by its center and size.
ii. For two consecutive time steps; we apply entity matching to find correspond-
ing clusters, merge the matching clusters, and maintain the result by updating
the summary representation with the new size and center.

Entity matching (EM) is a fundamental task in data integration. It aims
to recognize varying descriptions of the same object. An entity is defined by an
identifier and a set of attributes of the form key-value pairs. Unsupervised EM is
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usually performed by calculating pairwise matching scores to create a similarity
graph, where a node corresponds to an entity, and an edge between two nodes is
weighted by their matching score. This graph is then divided into different par-
titions, such that all nodes in one partition correspond to matching entities [17].
Markov clustering (MCL) for entity matching [8] was evaluated in Stringer du-
plicate detection system [14] and produced a high-quality performance.

Disease progression modeling is a prosperous topic of research that has been
receiving increased attention in the last two decades. It defines the sequence
of possible phases or stages and transitions throughout the disease. It is often
initiated at the time of diagnosis, and advances to reflect the evolution of the
health status of patients with a chronic illness such as Alzheimer’s or cancer [2].

A Markov process consists of a set of states and the transition probabilities
among them. It can naturally model a disease trajectory, by representing each
phase or stage by a state. Multiple works proposed Markov processes to model
disease progression. An HMM [15] used predefined stages of abdominal aortic
aneurysms to estimate the rates of progression between four stages of the disease.
In [25], authors discussed the continuous progression of a disease. They used a
Markov Jump Process to model transitions between disease states. The method
yields possible variables associated with the transition probabilities.

Alzheimer’s disease (AD) is an irreversible chronic neurodegenerative disease
in the brain, causing a decline in memory, thinking, language, as well as behav-
ioral changes leading to dementia. There is no known treatment or recovery from
AD. Furthermore, Mild Cognitive Impairment (MCI) is an intermediate state be-
tween age-associated impairment and AD. Distinguishing between stable MCI
caused by aging and progressive MCI caused by AD is of critical importance for
early care planning and delaying progression [9].

There is an evident gap between research outcomes and their utilization
in medical practices. Most studies focus on optimizing accuracy metrics while
neglecting explainability issues [23]. Therefore, we propose a comprehensible
and transparent method for subtyping patients, modeling disease progression,
and early forecasting of disease progression.

3 Methodology

Given a longitudinal medical dataset, we want to subtype patients, and then
model disease progression with a Markov process. Our overall approach is illus-
trated in Figure 1. Before we delve into the details of our approach, we define
some notations used in this paper.

3.1 Preliminaries

The input D is a longitudinal medical dataset of a group of patients Q =
{q1, q2, .., qb}, collected at multiple points in time (follow-up visits). The first
visit is referred to as baseline bl. The record of a patient ι at time t is denoted
rιt = {χ1t, χ2t, · · · , χnt}. It consists of a set of values that indicates the medical
status using information such as lab test results, or treatment data.
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Fig. 1. Cluster Matching for Modelling Dis-
ease Progression

The set of records for all patients
in Q at time t is Rt =

⋃b
ι=1 rιt.

The dataset contains multiple follow-
up visits with equal intervals (for ex-
ample every 3 months), D =

⋃
tRt.

It is important to note that some pa-
tients might skip some follow-ups, or
drop out of the study, i.e., |Rbl| = b,
however, |Re| ≤ b,∀e 6= bl. A time
window w = [ts, tf ] is a time interval
employed to divide the data D into
multiple batches B, a batch might
contain multiple visits Br =

⋃e=f
e=s Re.

An entity is a description of an
object which consists of an identifier,
and a set of properties. Entity match-
ing (EM) is the task of finding multiple representations of the same entity. Cluster
ci matches cj written, ci ≈ cj , means they refer to the same subtype.

3.2 Clustering Longitudinal Data

Term Description

D Longitudinal dataset

Q Set of patients

b Number of patients

bl First visit

rιt Record of patient ι at t

Rt Set of records at t

w Time window

Bi Data batch

Ci Set of clusters of Bi

pptik
|cik|
|Bi| Size of of cik.

µik Center of cik
θ Graph threshold

τι Trajectory of qι
π Initial states distribution

P Transition matrix

Fig. 2. Table of notations

Our approach to cluster evolving data and in-
fer Markov states that represent patients sub-
types can be summarized as follows:

1. PrepareD by imputing missing values and
selecting relevant features.

2. Divide D using w into multiple batches
D = {B1, B2, · · ·Bh}, such that h =
study duration

w . Let C = {} be the subtyp-
ing result, updated incrementally until the
final batch.

3. For each batch Bi:
– Find optimal clustering algorithm

with its parameters by optimizing Sil-
houette index. Determine k by detect-
ing the knee point using [22].

– Cluster Bi into Ci = {ci1, · · · , cik}.
– Calculate the center of each cluster
µik using average, and its size pptik =
|cik|
|Bi| . Then, define each cluster as an

entity: cik = (pptik, µik).
4. For two sequential batches Bi, Bi+1, apply EM on all pairs of clusters in
Ci × Ci+1 :

– If matching clusters cix ≈ cjy are found, fuse their points to create a
unified cluster entity cix−jy = (pptix−jy, µix−jy).
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• Give the same label l to all points in cix, cjy.

• pptix−jy =
|cix|+|cjy|
|Bi|+|Bj | , µix−jy =

µix+µjy

2 .

• C = C
⋃{cix−jy}.

– C = C
⋃{ciϑ}, for all clusters ciϑ with no match.

5. Repeat step 4 on C and the following data batch, until the final batch Bh.

To find matching clusters using EM in two consecutive batches Bi, Bi+1: First,
create a similarity graph for cluster entities in Ci × Ci+1, where the nodes of
the graph are the cluster entities, and the edges are weighted with the match-
ing scores of the adjacent nodes. For a pair of clusters (x, y), the matching score is
calculated from euclidean distance using:m(x, y) = 1

1+
√

(pptx−ppty)2+
∑n

o=1(µxo−µyo)2

Then, remove the edges with matching scores less than a threshold θ. Fi-
nally, find matching subtypes using graph partitioning by flow simulation [8].

3.3 Modeling Disease Progression

We formulate disease progression as a longitudinal clustering problem of patients
data. Thus, the clusters correspond to the disease stages.

A Markov process (MP) is defined by < S, π, P > such that: S is a finite set of
states. π is the initial state distribution. And P is a state transition probability
matrix: Psŝ = P [St+1 = ŝ|St = s].

We deploy a Markov process to represent disease progression. To define the
MP, the states S correspond to the disease stages S = C. The transition matrix
P approximates the probabilities of progressing from one stage to the subsequent
one. Let |S| = ℵ, and nȧḃ the number of observed transitions between states ȧ,

and ḃ, we deploy the following steps:

1. Give a unique label lv for each state in S.
2. For each patient, extract the predicted trajectory of labeled states, such that:
∀qι ∈ Q, τι = [l1, · · · , le].

3. From the set of trajectories τ = {τ1, · · · τb}, estimate the initial states
distribution π, and the transition probability between two states ȧ −→ ḃ
p̂ȧḃ = p[St+1 = ḃ|St = ȧ] =

nȧḃ

Σℵ
x=1nȧx

.

The resulting Markov process represents the model of disease progression.

4 Experiments

We conduct our experiments on a real-world dataset of Alzheimer’s disease. The
goals of our experimental evaluation are manifold: 1. Assessing the performance
of our approach as a data clustering method over multivariate longitudinal in-
put, and comparing with the state-of-the-art approaches of data stream clus-
tering in terms of internal and external cluster validation metrics. 2. Subtyping
Alzheimer’s disease patients, and inferring the characteristics of each subtype.
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3. Demonstrating the capability of the model to distinguish between stable and
progressive patients.

Experimental Setup: Our approach is implemented in Python 3.91. For
clustering, we use the implementation in sklearn2. For entity matching, we use
the original source code of Markov clustering by Stijn van Dongen3. For baseline
methods, we use the implementation in the R package "stream" [12]4.

4.1 Alzheimer’s Disease Dataset

Variable Number Patients
Age

[54, 64] 175
]64, 74] 702
]74, 84] 701
]84, 92] 143

Gender
Male 954

Female 767
Diagnosis at Baseline

Normal 521
MCI 864

Dementia 336

Fig. 3. Demographic & Diagnosis Details

We conduct our experiments on
the data originating from The Alzheimer’s
Disease Neuroimaging Initiative(ADNI)
[26]5. The dataset has been collected
over 10 years for subjects with in-
herited risk of developing Alzheimer’s
disease, with an interval of 6 months
between two follow-up visits.

At each visit, the patient’s mea-
surements are registered in their
record, along with a diagnosis of ei-
ther Normal, Mild Cognitive Impair-
ment (MCI), or Dementia. Mild Cog-
nitive Impairment (MCI) is an inter-
mediate state between age-related de-
cline in memory and thinking, and the
more alarming deterioration caused
by Alzheimer’s disease. Classifying
MCI subjects between stable patients (sMCI), and patients progressing towards
Alzheimer’s (pMCI) is crucial for early planning of AD treatment [2].

We use the average for imputing the missing values. Normalization is done
using min-max. Patients with missing diagnosis were excluded. The number of
retained observations after standard data cleaning was 8332 records for 1721
patients, with an average of 5 records per patient. Age, gender, and baseline
diagnosis details of the cohort are shown in Figure 3. We select a set of variables
known in the literature to be informative for Alzheimer’s. The choice of features
is crucial for calibrating the performance of the model. The selected features
also include a unique identifier for each patient used to extract the trajectories,
and a visit code indicating the number of months after the baseline visit used
to split the data into batches. Age and gender were only included to report the
demographic information. The clustering input features with their descriptions
are shown in Table 1.
1 https://github.com/Loujainl/Longitudinal-Clustering
2 https://scikit-learn.org/stable/modules/clustering.html
3 https://github.com/GuyAllard/markov clustering
4 https://github.com/mhahsler/stream
5 For more details, please refer to: https://adni.loni.usc.edu/
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Table 1. Selected Features from ADNI Dataset

Variable Description Type

Entorhinal Brain region where AD damage appears MRI

Hippocampus Brain complex structure MRI

CDRSB Clinical Dementia Rating Scale Sum of Boxes Cognitive score

ADAS 11& 13 Alzheimer’s Disease Assessment Scale Cognitive score

MMSE Mini-Mental State Exam Cognitive test

FAQ Functional Assessment Questionnaire Cognitive test

RALVT immediate Rey Auditory Verbal Learning Test Cognitive test

FDG-PET F-fluroDeoxyGlucose-Positron Emission Tomography Imaging

Using a time window w of two years, the data was divided into 5 batches.
|B1| = 6119, |B2| = 1293, |B3| = 511, |B4| = 276, and |B5| = 133.

To find the optimal clustering for each data batch, we test the following al-
gorithms ; KMeans for partitional clustering, DBSCAN for density, and agglom-
erative for hierarchical clustering. KMeans centroids were initialized randomly,
K was determined by detecting the knee point of the average Silhouette curve
obtained for different values of K. For DBSCAN eps = 0.5 and minPts = 5.
Finally, we used ’ward’ linkage criterion in hierarchical clustering. The best
performance on Alzheimer’s data with respect to silhouette index was consis-
tently obtained by KMeans with K=2 over all batches. We use a graph threshold
θ = 0.7.
In order to assess the performance of our approach for clustering longitudinal
evolving patient data, we compare it with the state-of-the-art data streaming
algorithms: evoStream [4] and BICO [11]. We also combine two stages; a sliding
window [13] which represents each point as a micro cluster with KMeans as a
macro clusterer. For all baselines, we use the default values of the parameters.
We use the same number of clusters found by our approach i.e., K=2.

4.2 Results

We measure the silhouette coefficient as a validity criterion for compactness and
separation of resulting clusters, as it showed robustness and better performance
against various clustering criteria [24,27].

In order to assess the performance of the methods, we compare the evolution
of the quality while progressing with the consecutive batches. The resulting
performance of our approach and all baselines with respect to the silhouette index
is illustrated in Figure 4(a). Evidently, our approach outperforms all baselines
albeit by just ∼ 2% over BICO.

The external quality validation with Normalized Mutual Information (NMI)
is computed using the available diagnosis as the true label. The results of our
approach and baselines are shown in Figure 4(b). We can see that the accuracy of
our approach improves steadily with every step and achieves similar accuracy to
evoStream and window-kmeans. Although BICO yields a good silhouette score,
it outputs poor performance with respect to NMI.
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Fig. 4. Cluster Quality of Our Approach in Red and Baselines

Fig. 5. Heat map illustration of the
subtypes results

The two subtypes found by our ap-
proach are illustrated with a heat map in
Figure 5, with the label 0 referring to No
Alzheimer’s disease (No-AD), and 1 cor-
responding to AD. The values represent
the cluster mean after normalisation. The
most significant feature that distinguishes
between the two subtypes is FAQ, which
is a questionnaire with an outcome in the
range [0, 30], where 0 indicates no impair-
ment, and higher values reflect severe im-
pairment. Similarly, CDRSB ranges be-
tween 0 (cognitively normal), and 18 (se-
vere impairment). This indicates that the
results of our approach correspond with
the scores assigned by the cognitive tests.

We report the confusion matrix for all records with the two discovered sub-
types: No-AD, and AD, against the actual diagnosis (Normal, MCI, Dementia)
in Figure 6.

Diagnosis No-AD (0) AD (1)
Normal 2668 0
MCI 3496 436

Dementia 194 1538

Fig. 6. Confusion Matrix

We calculate the accuracy on Normal
and Dementia diagnosis using standard
metrics: precision, recall and F1 score:
P = tp

tp+fp , R = tp
tp+fn , F1 = 2× P×R

P+R .

P[Normal] = 2668
2668+194 = 0.932,

R[Normal]= 2668
2668+0 = 1, F1[Normal] =

2× 0.932×1
0.932+1 = 0.965.

P[Dementia] = 1538
1538+0 = 1, R[Dementia]= 1538

1538+194 = 0.888, F1[Dementia]

= 2× 1×0.8879
1+0.888 = 0.941.
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4.3 Forecasting MCI Progression to Dementia

We study here the ability of our approach to distinguish between stable and
progressive MCI, represented by the subtypes No-AD (0), and AD (1) respec-
tively. We retrieve 929 unique patients with MCI diagnosis, and extract the real
diagnosis trajectories and the clustering trajectories from the first to the last
visit. The trajectories were summarized into length three τ =[start, middle,

final], such that start refers to the baseline visit entry, the middle entry refers
to the first change in diagnosis/cluster, and the final entry denotes the last visit
diagnosis/cluster in the original trajectory. We assess our results as follows:

– True positive instances: 733 patients in total. We distinguish three cases:
• No Alzheimer’s, representing stable MCI patients, with no Dementia

diagnosis at any visit. For example : the real trajectory is: [MCI, MCI,

MCI], and clustering is: [0,0,0]. We detected 536 patients.
• Synchronized forecasting, is when the detection of the subtype AD oc-

curs at the same time of diagnosing Dementia. For example, the real
trajectory is: [MCI, MCI, Dementia], and clustering is: [0, 0, 1]. We
detected 79 patients.

• Early forecasting, is when the detection of AD subtype occurs before
diagnosing Dementia. For example, the real trajectory is: [MCI, MCI,

Dementia], and the clustering is: [0, 1, 1]. We detected 118 patients.
Our model was able to detect Alzheimer’s progression before the real
diagnosis with an average of 2 years.

– False positive, is when we detect AD subtype, yet the real diagnosis is con-
sistently MCI. For example, real trajectory is: [MCI, MCI, MCI], and the
clustering is: [0, 0, 1]. We detected 178 patients.

– False negative, is when the forecasting is No-AD, while the actual diagno-
sis is progressing to Dementia. For example, real trajectory is: [MCI, MCI,

Dementia], and the clustering is: [0, 0, 0]. We detected 18 patients.

We can calculate the accuracy on MCI: P[MCI] = 733
733+178 = 0.805, R[MCI]=

733
733+18 = 0.976, F1[MCI]=2× 0.805×0.976

0.805+0.976 = 0.882.
Overall, we conclude that our approach yields high accuracy for forecasting

Alzheimer’s disease progression.

4.4 Sensitivity Analysis

The only configuration parameter that influences the performance of our method
is θ threshold, whose value can impact the graph partitioning of entity matching
and consequently, the resulting stages. To evaluate its effect on the results, we
test the values in [0.5, 1] with a step of 0.05. The result is shown in Figure 7.

We observe that up to 0.8, the performance is not affected by the value of θ.
However, for θ > 0.85, the silhouette index decreases. This is due to the fact that
excessive values demand the entities to be almost identical, which is unlikely to
be found in clusters of longitudinal data.

Overall, we can conclude that our approach is robust with respect to the
threshold, with θ = 0.7 constituting a reliable default value.
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Fig. 7. Cluster Quality with Varying Graph Threshold θ

5 Conclusions

We propose a transparent approach to cluster multivariate longitudinal data
which can be deployed for patient subtyping and modelling chronic disease pro-
gression. Our method is based on optimised clustering to infer subtypes within
a time window, then finding matching subtypes in subsequent visits using a
borrowed technique from data integration. We conducted experiments on a real-
world dataset of individuals at risk of developing Alzheimer’s disease, compared
with the state-of-the-art data stream clustering methods, and evaluated the ca-
pacity of our approach for early forecasting of the disease.

For future work, we plan to test the approach on modeling cancer progression
based on real-world data of patients undergoing immunotherapy treatment.
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Abstract. With the multiplication of successful deep learning tech-
niques for the detection of objects in images and since the ImageNet
project, the need for massively annotated data has continued to grow.
But how to deal with situations in which these annotations are not avail-
able, or worse, the input data themselves do not exist, preventing any
self-supervision or learning? In this paper, we focus on the particular
case of text extraction from French national ID cards. Current Optical
Character Recognition (OCR) techniques based on deep learning show
great success in the field of text extraction, but their results can be mit-
igated if the scan is done from a smartphone due to the great variability
of angles of view, lighting, camera quality... We propose an approach
based on the projection of simulated data into a 3D environment, which
allows us to return to a supervised learning framework. However, even
if we control all the parameters of the simulation, we cannot guaran-
tee that the generated data is representative of real-life pictures. This is
why we guide the creation of examples using active learning to explore
the simulation space where card readability is limited. We detail the ap-
proach and show empirically its interest with a synthetic evaluation on
the simulated datasets and a qualitative evaluation on real ID cards.

1 Introduction

The ImageNet project [1] has allowed for considerable progress in terms of image
classification and object identification, thanks to models based on deep learning
techniques. However, to achieve these results, a large amount of data had to be
manually annotated. Specifically, almost 15 million images were annotated by
more than 25,000 crowd workers via Amazon Mechanical Turk. This extraordi-
nary annotation effort is costly and may need to be repeated depending on the
task at hand, which is not feasible in most cases.

In this work we are interested in extracting information from structured doc-
uments. OCR systems exist to automatically extract text from such documents,
but in the case where the scanning is done by a smartphone, the performance of
the OCR deteriorates because it is disturbed by several factors such as the qual-
ity of the camera, the ambient brightness, the distance, the angle of the shot,
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etc. It would be useful to train the OCR systems with real data representing
these different difficulties encountered in real cases. It would be useful to train
OCR systems on real data representing these different difficulties encountered
in real cases. But how can we do this if such data does not exist?

In the absence of data, we propose to create a simulation that allows the
projection of any synthetic structured document in a 3D environment. This way
we can reproduce and control the different difficulties that would be encountered
with a real picture of a document. We choose to focus on the case of image
segmentation of French national ID cards, since as far as we know there is no
dataset of ID card scans available online, making them a perfect use case to
study learning with no real data. Such model could be used for automatic field
filling of digital forms or databases for fast identification. Another application
is ID authentification on applications offering peer to peer services that require
identity verification.

However, by fully simulating the data, we face the problem of the represen-
tativeness of the generated examples. In order to minimise this risk, we propose
to use an active learning procedure guided by readability to automatically set
the different parameters of the simulation and to cover the most realistic places
of the simulation space as well as possible. The main contributions of this work
are the following: (1) Building a pipeline to create a fully annotated realistic
dataset of synthetic images to train models for information extraction in struc-
tured documents. (2) Creation of a model capable of localizing an ID card in an
image, allowing the cropping and straightening of the card for improved OCR
text extraction. (3) Sharing of a reusable public dataset of realistic synthetic
French ID cards fully annotated in terms of textual content as well as position
information allowing other researchers to train their own models.

The structure of the paper is as follows: we start by discussing the state of
the art in Section 2, then we present our approach in Section 3. We then present
an experimental protocol in Section 4, discuss our results in Section 5 and end
with our conclusions and perspectives.

2 Related works

Close to our work, the DeepFlash paper [2], presents a U-Net model to trans-
form a phone photo with flash into a qualitative portrait photo. Similarly, the
edge-sensitive approach of Fan’s paper [3] trains its models with a wide range
of luminosity and background examples in the synthetic images, as in [4]. To
this day there already exist multiple physical systems able to decipher the in-
formation on an ID card. These systems are very efficient at localizing the cards
different parts and collecting their textual information, as in [5]. Some of them
even permit the optical reading of punched or opaque cards like [6]. However,
these tools need bulky physical machines that are not accessible to everyone and
cannot be easily reproduced. In [7], text is extracted from ID cards using an
OCR and NLP methods, but only from perfectly cropped and scanned images.
In [8] a model is proposed to reduce the need for real images. Instead of having
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several different images of the same scene with different lighting angles, they
suggest adding a depth sensor as an input to be able to reconstruct (through
learning) the same image from different angles.

Fig. 1. Digital french ID card twin at the generation step and the Blender simulation
step. Content segmentation is highlighted with color boxes.

There also exist segmentation algorithms like [10] based on image projection
for complex text layout with or without an OCR. However, they are not fitted to
be used in real-time and their adaptability is low. At our knowledge, there is no
available public dataset of French ID cards. The sensible nature of such personal
information does not allow for easy storage, publication or reuse of data. [11]
proposes an alternative that uses the Wikipedia illustrative ID cards samples
of different countries. The images are printed and laminated to be taken from
a smartphone in different situations with variations in distance, angle, light,
reflection and background. This dataset has two main problems, the human
selection bias and the limited diversity of the dataset. We aim to solve these
two problems by using a simulated environment. Machine learning applications
involving image datasets commonly use image augmentation [12] to help reduce
overfitting. Data augmentation suppose a minimum of data available. Only few
works like [13] focuses on the case where no data are available where a real-world
robotic object detector is trained by only using synthetic data. Also, [14] are able
to generate realistic endoscopic video datasets efficiently for validating surgical
vision algorithms, by using the Blender software.

3 Propositions

Here we describe how we generate data synthetically. We then explain how we
use active learning to improve the generation process. Finally, we describe how
we use neural networks to perform a supervised segmentation task on this data.

3.1 Dataset creation pipeline

The dataset creation pipeline key steps are illustrated on Figure 2. We first
construct a blank ID card layout based on a Wikipedia sample, keeping only
invariant text as illustrated on Figure 2a. The background around the text is
sampled from neighborhood. The profile image is then generated using StyleGAN
model [15] able to create randomly realistic faces. The textual fields on the front
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of the cards are filled with random characters and numbers. These fields include
ID identifier, name, surname(s), sex, birthdate, birthplace, height and bandcodes
(two strings at the bottom). This allows us to generate realistic ID cards on
demand as illustrated in Figure 2.

Fig. 2. Dataset creation pipeline key steps

To project the ID cards in a realistic environment we use Blender1, a free
and open-source 3D computer graphics software able to compute rendering on
complex scenes. It allows for control of visual effects such as lighting, textures,
reflections, backgrounds, blur, materials, translations, rotations, etc. Our 3D
scene illustrated in Figure 2c is composed of a camera, an ID card handler
containing the ID card and the plastic layer of the card. The room consists of
walls, a floor, a roof, a window and two light sources: a sun to simulate natural
light and an artificial light. The different parameters involved in the rendering
are: camera position, rotation, ID card position, focal length, flash brightness,
light orientation, light intensity and desk textures. Ranges of values have been
manually defined for all these simulation parameters. Choosing random values
within these ranges allows us to generate realistic images of ID cards. Examples
of the computed renders are illustrated on Figure 2d. Finally, by controlling each
parameter of the 3D scene as well as the card’s content, position and content
position, we were able to create a fully annotated dataset of 3000 ID cards as
illustrated on Figure 1 and Figure 2e. This generated dataset is now publicly
available.2

3.2 Simulation space exploration with active learning

An important focus of our study is to train our models with data that is as close
to reality as possible. By randomly selecting the simulation parameters when
controlling the environment, the generated data will be very representative of
the diversity of the simulated space. However, these parameters can sometimes
turn out to be unrealistic, representing conditions that are either too smooth
or too harsh to be comparable to real-world situations. One solution to this
problem is to select the simulation parameters through an active learning process
guided by the performance of the segmentation models on real data. However,
this method requires the generation, training and evaluation of our datasets and
1 https://www.blender.org/
2 https://github.com/ResearchPaper0/Learning-without-real-data (anonym)
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Fig. 3. Active Learning pipeline(left) and Card Readability space(right)

models over multiple iterations, which would take an unreasonable amount of
time given the size of our datasets and the number of models. This solution is
particularly infeasible in our study, where the real data is extremely sparse.

In order to reduce the cost of active learning, we guide it with the readability
of the ID card instead of the model performance, assuming that hardly readable
examples might be more interesting for the model if we want to train it on more
realistic image conditions. This hypothesis allows us to limit the active learning
pipeline to parameter selection only, without seeking feedback from the model
training and evaluation. To obtain the card readability value for an example,
we first obtain a cropped and straightened image of the ID card in the image
using its real coordinates. A dice coefficient is then calculated by calculating the
percentage of the text box recognised by our OCR when presented with this
image. Below a manually defined threshold (70%), the ID card is considered
unreadable. Figure 3 shows the part of the simulation space to explore.

As illustrated on Figure 3, our active learning model follows an uncertainty
sampling approach guided by the readability of the ID cards. It is implemented
as follows: first, a batch of random pictures is generated using the pipeline de-
scribed on Figure 2. Then, each ID card picture is labeled as readable or unread-
able depending on whether the computed readability value is over 0.7 or not.
Each example generated is based on eight adjustable characteristics: accuracy
of camera position, distance between camera and ID card, rotation, degree of
translation, flash brightness, focal length and ID (x, y) coordinates. These simu-
lation parameters affect the readability of the ID card. Using them as input and
the readability labels as output, we are able to train a support vector regression
(SVR) model to predict whether or not a set of image parameters will produce
a readable ID card image. Using an SVR allows us to see how uncertain the
model is in its prediction by looking at how close its output is to 0.5. We use
this information to apply uncertainty sampling to a randomly generated set of
parameters, selecting the set of parameters whose readability the model is most
uncertain about. We then use these parameters to generate interesting, harder-
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to-read examples, discard the unreadable ones, and add these new images to
the SVR training set for another iteration of the process. We repeat these steps
several times, creating a new set of examples that are actively sampled each
time. Active learning is repeated until the desired set of readable ID cards is
reached. The final SVR training set is then used as the training data set for our
segmentation models.

3.3 Supervised machine learning models for image segmentation

To simplify the model and the experimental protocol, we focused on identifying
ID cards and text fields. As such, there is no need for extensive training of a
dedicated OCR. The first step is to locate the card in the image. Once the corner
or edge of the card is detected, we can perform basic image corrections to run the
OCR system on the image and recognise the text field. Since we have a dataset
of realistic ID card examples that are fully annotated, we can reduce the task
to a supervised learning problem. We experimented with three different neural
network models to detect the position of the card.
Keypoints Regressor : The first model we use is a supervised Keypoints Re-
gressor model (KPR) as described in [16], whose goal is to learn to retrieve the
4 corners of the ID cards. The model is composed of a stack of convolutional
neural networks. The first layer of the model is a ResNet-50 [17] pretrained on
ImageNet [1]. The head of the ResNet-50 is replaced by a customized head to
get the 8 coordinates predictions. KPR takes as input 448×448×3 RGB images
and predicts 8 normalized coordinates for the 4 ID card’s corners in the image.
KPR model has the advantage of reaching the coordinates even outside of the
image which can be especially useful if the ID card image is truncated.
UNet : [18] is a neural network with the shape of the letter U. It was de-
signed for medical image segmentation in a context where few samples were
available and data augmentation was performed. Our UNet structure consists of
3 DownBlocks, 2 UpBlocks linked with the symmetrical skip connections from
DownBlocks to Upblocks followed by a final HeadBlock. Our UNet model takes
as input 128×128×3 RGB images and predicts the 128×128×2 masks corre-
sponding to the probability heatmaps for each pixel to be part of the ID card
and to not be part of it. A comparison of these two masks is done to obtain a
final binary map of the ID card position. The UpBlocks and DownBlocks have
two convolutional layers followed by a batch normalization and a ReLU activa-
tion function. The Upblocks are preceded by a 2×2 upsample layer. The output
is summed with a 1×1 residual convolutional layer preceded by a 2×2 average
pooling for the Donwblock. Lastly, the HeadBlock is the same as the UpBlocks
without the residual layer and its final activation function is the channel wise
softmax. In order to crop and staighten the image for the OCR reading, we mark
the four corners of the cards as the four corners of the rectangle of smallest area
that contains all the predicted ID cards pixels.
Edge-based UNet : We introduce a variation of the UNet called Edge-Based
UNet designed to extract the 4 corners of ID cards. This model has the same
architecture as our Unet model, except we replace the two output masks by four
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masks representing the probability distribution of each pixel in the image to
correspond to a corner according to the model’s prediction. The four corners are
then annotated following the brightest pixel’s location on each mask.

Fig. 4. Target mask example of the top left ID card corner. The four corner masks
(right) are the Hadamard product of the keypoint Gaussian heatmap (left) by the edge
contours masks (center).

To create the ground truth corner heatmaps used for training, we first com-
pute the Gaussian heatmaps of each corner from its coordinates and draw the
ID card outline mask for the image. We then compute the Hadamard product of
these two heatmaps to obtain the target masks. In this way, we obtain a training
sample that allows a more representative learning of the edges of the ID cards.
An example is illustrated on Figure 4.

4 Experimental study

We conduct our experimental study in order to evaluate three important as-
pects of our approach: (1) The performance of our different models given the
task of ID card segmentation in an image, especially the difference of perfor-
mance between our original model Edge-based Unet in comparison with more
conventional models such as a basic Unet or our Key Points Regressor model
(basic CNN). (2) The validity of our simulation approach for training dataset
creation in situations where very few training data is available compared to
the well-established data augmentation pipeline. (3) The impact of guiding the
dataset creation process with active learning compared to random sampling.

4.1 Baselines

Raw : Our first model to evaluate is the naive model without contour detection.
We call this the Empty Model. This model gives us a lower baseline that allows
us to evaluate the effect of applying an OCR system directly to the raw image.
The difference between any model and the application of the raw model will
show the interest of the approach. Oracle : Unlike the Raw model, the Oracle
model knows the exact coordinates of the ID cards generated by our simulations.
When used to evaluate an image, it returns the four exact corners of the card.
Due to the perspective angle of the ID card shot, these points can take the form
of a trapezium. In order to obtain a rectangle that is horizontally aligned with
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the edges of the image and more easily interpreted by the OCR, we apply a
geometric perspective transformation. This transformation is applied to all the
models described, except for the raw model, where no transformation is applied
at all. We consider Oracle’s output to be the best possible result achievable by
our models during evaluation. Canny : Canny Edge Detection [19] is a baseline
approach useful for edge detection. This algorithm uses the intensity of gradients
in the image to detect contours. First, we apply a bilateral filter, which allows
us to remove noise while keeping edges sharp. The canny filter allows us to
extract the contours in the image, to which we apply a dilation. We then extract
the contours of the image and assume that the contour with the largest area is
the ID card. Finally, we approximate this contour by a trapezoid whose sides
correspond to the four predicted corners of the ID card in the image.

4.2 Training Datasets

The differents Neural network models proposed (KPR, Unet, EB-Unet) described
Section 3.3 are trained to directly predict ID cards position. We also describe
a pipeline to generate synthetic data. In consequence, we need to evaluate this
models but also the impact of the generated datasets on training. All datasets
are composed of 3000 ID cards for training the models. The differents dataset
studied are the following: Random Sampling (RS) : ID cards are generated
and projected randomly on the 3D simulation (all simulation parameters like po-
sition, rotation, angle, light,... are selected randomly). Active Learning (AL)
: As described in Section 3.2, an amount of examples are actively and iteratively
selected in order to emphasize the dataset creation on supposed interesting zones
of the space of readable ID cards. 10% of the total amount of cards is selected
randomly, the remainder is generated actively. Data Augmentation (DA) :
This dataset is created using state of the art Data Augmentations techniques
as described in [21].We started from 4 real pictures of 4 differents ID cards3 to
which we applied various transformations including rotation, translation, shift-
ing, zooming, shearing, flipping, color mingling, cropping and noise injection.
This is a common method used to create more examples when very few training
data are available. Hybrid (RS+DA) : This dataset combines half simulated
images generated through random sampling, and half images produced using
data augmentation. Hybrid (AL+DA) : This dataset combines half active
learned images and half images produced using data augmentation.

4.3 Metrics

Since we are interested in improving the output of an OCR by using image
segmentation to improve its input, we evaluate our models on two different
metrics that represent the steps of the text extraction process using our method.

Dice : To evaluate the quality of the ID card segmentation regarding the
text box detection after the image is straightened and cropped, we use an open-
source OCR project based on CTPN [20] which can accurately localize text lines
3 We used our personal ID cards.
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in an image. We compute the Dice coefficient [22] of the text zones locations
predicted by the OCR when presented the cropped image.

Once the four corners of the card have been found by the model, the straight-
ening is achieved by calculating the perspective matrix of the corners in the image
and warping the image to this matrix, so that the trapezoid predicted for the
card now becomes rectangular and takes up the entire size of the image.

Jaro : To evaluate the quality of the text extraction, we use the open-
source OCR Tesseract4 that supports French language. We calculate the Jaro
distance between the predicted text and the real text of the ID card. The distance
decreases as more characters of the predicted string match the real one.

4.4 Evaluation Datasets

We evaluated our models on three different datasets. The first two datasets
make up the synthetic evaluation. They each consist of 5000 images of ID cards
generated using our 3D simulation approach with random sampling and data
augmentation. The purpose is to evaluate our models on a large representative
set of data and to analyse the influence of different evaluation environments. The
third dataset is used for qualitative evaluation. It consists of 100 images of real
ID cards of 10 different people, taken with a mobile phone camera in different
contexts. It allows us to evaluate our models on real data, which is essential to
verify that the simulated data used for training is representative of reality and
that the models’ performance on the synthetic evaluation datasets translates
well to real-life examples. In contrast to the first two datasets, we do not know
the exact locations of the text boxes for the real-life dataset, as it would have
been far too costly to manually annotate these coordinates. Therefore, we were
not able to evaluate the dice on the qualitative dataset.

5 Experimental Results

Table 1 describes the results of our evaluation pipeline for an ID card example.
It qualitatively summarises the full pipeline results, showing the ID card corner
predictions and their order, as well as the pixel-wise segmentation confusion
from the prediction. The ID card is then extracted from this segmentation and
passed to the CTPN OCR to localise the text boxes within the ID card. As
shown in Table 1 we can see with the Raw model that considering the ID card
as the full image is not accurate. This proves the need to first detect and crop
the ID card within the image to get more accurate results. The Canny model
seems to get a better idea of the ID card’s location, although it sometimes
misses corners and cannot give a precise order for them, which can lead to
unwanted vertical or horizontal flipping of the card. This shows the importance
of getting the full positional information of the 4 corners. Looking at the results
in Table 2, we can see that our EB-Unet model obtains the best results for all

4 https://github.com/tesseract-ocr/tesseract
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Table 1. ID card and text boxes prediction and confusion masks example for a given
digital french ID card twin at each evaluation pipeline step. True Positive (blue), False
positive (grey), and False Negative (purple).

datasets on the metrics of Dice and Jaro. On real data, our EB-Unet Hybrid
AL+DA model shows much better results than all other models, which seems
to confirm the relevance of our contribution. Simulation vs Augmentation:

Dice Evaluation Jaro Evaluation
Models Synthetic Dataset DA Dataset Synthetic Dataset DA Dataset Real Dataset

Raw 0.080015 0.075503 0.014071 0.065077 0.302591
Canny 0.261582 0.117614 0.253295 0.110559 0.192075
KPR RS 0.576401 0.320820 0.280018 0.134209 0.243554
KPR AL 0.588218 0.326579 0.324815 0.135301 0.253568
KPR DA 0.308425 0.463260 0.128293 0.227250 0.224553
KPR RS+DA 0.456271 0.448648 0.227862 0.225237 0.272988
KPR AL+DA 0.548479 0.394319 0.270078 0.193477 0.240959
U-Net RS 0.446206 0.285383 0.377550 0.279690 0.353886
U-Net AL 0.446914 0.233374 0.389795 0.206026 0.358050
U-Net DA 0.279221 0.331805 0.249823 0.321525 0.365210
U-Net RS+DA 0.449694 0.328581 0.380301 0.318117 0.419871
U-Net AL+DA 0.457636 0.322958 0.397315 0.315604 0.411983
EB-Unet RS 0.579265 0.310245 0.394510 0.199747 0.381991
EB-Unet AL 0.620448 0.268437 0.416357 0.178608 0.400699
EB-Unet DA 0.107115 0.516300 0.082561 0.329897 0.305460
EB-Unet RS+DA 0.523831 0.563217 0.343238 0.308663 0.438738
EB-Unet AL+DA 0.616479 0.540640 0.405847 0.342679 0.464733
Oracle 0.658440 0.654548 0.460686 0.404859 0.549665

Table 2. Image segmentation (Dice) and text extraction (Jaro) evaluation of the dif-
ferent models and datasets benchmarked

The performance of our models on real data seems to show a clear superiority
of our dataset generation approach based on data simulation compared to a
data augmentation method, proving that our simulation better represents reality.
This analysis can also be supported by a cross-reading of the synthetic results:
although the simulation models perform better on the simulated dataset and the

55



data augmentation models on augmented images, we notice that the performance
of the simulated models is much less degraded when evaluated on the augmented
dataset than the performance of the augmented data models evaluated on the
simulated dataset, showing a better robustness and adaptability of the models
trained on the simulated data. Random Sampling vs Active Learning :
By comparing the results shown on Table 2 between the Random Sampling and
Active Learning models and between our RS+DA and AL+DA hybrid models,
we find a superiority of our models trained on the AL data over RS on both the
simulated and real data sets. This shows the effectiveness of using our guided
data generation method over random sampling to generate training data and
confirms our hypothesis that harder to read simulated examples better represent
reality for learning.

6 Conclusion

We presented a pipeline to generate a useful simulated dataset for the task of
segmenting structured documents which we applied to the use case of French ID
cards. We demonstrated that learning is possible even in the absence of real data.
We then proposed an active learning approach to explore the simulation space
by focusing on examples at the edge of readability, assuming that hard-to-read
examples can better represent the difficult conditions under which images are
taken in real life. We presented three supervised neural network models, KPR,
Unet and EB-Unet, trained to identify ID cards in an image, and found that
the EB-UNet model - trained to perform edge detection using a product of the
Gaussian heat map of the corners and a mask of the edges of the card - resulted
in significantly more efficient localisation of text in ID cards. We conducted
synthetic and qualitative evaluations that demonstrated the efficiency of training
our EB-Unet model on simulated data in conjunction with augmented data to
extract text from ID cards in real images, as well as the relevance of our active
learning method to guide the generation of synthetic data. In the future, we
would like to generalise the approach to other types of structured documents,
such as barcodes or sheet music, and enable the detection and extraction of
multiple documents in an image.
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Abstract. A set function representation is a method of representing an
evaluation score vector using a set function while preserving the rank
information of each element. An aggregated set function representation
is created by aggregating the set function representations. In this study,
three data layers are considered: alternatives, criteria, and experts. A
set function representation for an expert and a criterion is created from
the alternative evaluation vector. Aggregation with experts creates the
set function representation of the criteria that preserves the rank infor-
mation of the original evaluation vectors. Comparing the set function
representations among the criteria allows for a richer analysis than with
averages because rank information is included. For example, it is possible
to interpret the agreement, disagreement, and polarization of opinions
among experts. We define set function representations that can be trans-
formed into each other, and demonstrate the meaning of their Shapley
values.

Keywords: Set function representation · Rank information · Shapley
value.

1 Introduction

When investigating a dataset consisting of multiple series of valuations, the basic
methods are often the analysis of a specific series, such as the mean of a sample,
or the relationships among series, such as correlations.

Table 1. Example

Criteria A1 Criteria A2 Criteria A3
Alternatives B1 B2 B3 B1 B2 B3 B1 B2 B3
Expert C1 50 50 50 90 70 20 80 90 60
Expert C2 50 50 50 10 30 80 70 50 40

Total 100 100 100 100 100 100 150 140 100

Table 1 presents the evaluation of the two criteria (A1 and A2), three alter-
natives (B1,. . .,and B3), and two experts (C1 and C2). For A1 and A2, the total
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for all the alternatives is 100, and there is no difference. However, the evaluation
values for criteria A1 and A2 are clearly different. For criterion A2, experts C1
and C2 give each alternative in the opposite order. Expert C1 gives higher scores
to alternatives B1 and B2, whereas expert C2 gives a higher score to alternative
B3. High and low scores cancel each other out, and the total score is the same
for all alternatives. As far as the total is concerned, the difference between the
experts in A2 disappears.

In this study, we propose defining a set function representation and inter-
preting the results accordingly. The set function representation of an expert
preserves the order of evaluation values of each alternative and the differences
between them. The aggregated set function representation of a criterion for each
expert also preserves the order and differences among experts.

[9] defines the set function representation; however, the focus is on the anal-
ysis of the Choquet integral with respect to a set function, which is defined as
the sum of the products of the set function of the evaluation values and the
fuzzy measure corresponding to the Choquet integral. This study analyzes the
set function representations of the evaluation values. A method for analyzing the
set function representation of the evaluation values is discussed.

In [7], a similar definition to this set function representation is given as a
Möbius inversion of the interaction operator. The interaction operator using t-
norms, and the interaction operator of t-norms using min operator is the set
function representation in this study.

[4] proposes a method for integrating multi-attribute score data using the
set function representation defined in [9]. When interpreting the set function
representation, the concept of maximal chains, which is used in lattice theory, is
important.

2 Set function representation

2.1 The assumed 3-layers data

In this study, we use 3-layers data such as shown in Table 1. For each criterion
(A1,A2,. . .), set functions of experts are generated, and the set functions are
compared; therefore, the criteria are called comparison items. The alternatives
are the elements of each set of set functions and are called analysis items. The
experts are called aggregation items because they are aggregated. Each score
is denoted by xi,j,k, where i, i = 1, . . . ,M denotes the number of comparison
items; j, j = 1, . . . , N denotes the number of analysis items; and k, k = 1, . . . , N
denotes the number of aggregation items.

Values must be non-negative and satisfy strong commensurability or be nor-
malized to satisfy it. Satisfying strong commensurability requires that the values
are comparable between any two values and that the intervals have the same
meaning on the unit. For all i, the difference in a given unit quantity must rep-
resent that in the same quantity of valuation values. This condition is the same
as the relationship for the input series of Choquet integrals.
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There are many such 3-layer data, such as the evaluation values of the Ana-
lytic Hierarchy Process (AHP)[8] and survey data on a 5-point scale.

2.2 Creation of set functions

Set function representations are set functions using the method of computing
the input values of the Choquet integral [1]. Let X = {1, 2, . . . , N} be the entire
set of analysis items. We create a set function representation for some xj,k =
(xj,k,1, . . . , xj,k,N ).

For simplicity, we omit the superscript and subscript j, k and describe how to
create a set function representation of a vector x. We represent x = (x1, x2, . . . , xN ),
the row values in Table 1, as a set function representation. σ(i) is the permuta-
tion on X; that is, xσ(1) ≥ . . . ≥ xσ(N), xσ(N+1) = 0 and X = {σ(1), . . . , σ(N)}.
The permutation of xj,k is σj,k.

Definition 1 (Mass form set function representation[9]). For a x and
∀A ⊆ X, let us define η∗ : 2X → R+.

η∗(A) =

{
xσ(i) − xσ(i+1) if A = {σ(1), . . . σ(i)}, i = 1, . . . , N

0 otherwise.
(1)

The set function representation assigned from x by the equation (1) is distin-
guished from other set function representations by adding ∗, such as η∗.

A mass form set function representation created from a certain xj,k is denoted
as η∗j,k. In the formula (1), sets are denoted by numbers, but in examples, they
are denoted by specific element names. For example, the set of table 1 is denoted
by X = {B1, B2, B3}.

2.3 Maximal chain set sequence

Maximal chain set sequence is defined using the maximal chain([6],[2]) concept.

Definition 2 (Maximal chain set sequence). We define the maximal chain
set sequence (R1, . . . , RN ) of xσ(1) ≥ · · · ≥ xσ(N) for x.

Ri = {l | xl < xσ(i+1)} , i = 1, . . . , N (2)

Let Rj,k
i be the maximal chain set sequence created from xj,k, and denote it as

(Rj,k
1 , . . . , Rj,k

N ). Additionally, R1 ⊆ R2 ⊆ . . . ⊆ RN (= X).
In this sequence of sets, up to the ith rank (R1, . . . , Ri)(i = 1, . . . N) is called

the maximal chain set sequence up to ith place. By interpreting these maximal
chain set sequences, the rank information can be interpreted.

As shown in equation (1), for some η∗, all possible A values such that η∗(A) >
0 are contained in one maximal chain set sequence.

60



2.4 Aggregation of set function representations

In a 3-layer data, there are multiple experts (k = 1, . . . ,K), which we aggregate.
Suppose we have a set function representation ηj,1, . . . , ηj,K for each k and for
a j, and we aggregate the set function representations for k.

Definition 3 (Aggregated set function representation ηj).

ηj(A) =
K∑

k=1

η∗j,k(A),∀A ⊆ X (3)

For each k, the rank of xi,k is generally different. Therefore, A for which η∗j,k(A) >
0 is generally different, and the maximal chain set sequence for each k is also
different.

In the aggregated set function representation, by interpreting A such that
ηj(A) > 0, | A |= 1, we can interpret the rank information of the element that
ranked first in more than one expert. In addition, ηj(A), | A |= 1 is the sum of
the differences of the second place when A is ranked first by each expert, the
value of ηj(A) gives the degree of the first place of A.

By interpreting the value of the set A for which ηj(A) > 0, | A |= 2, we know
the set of elements that are in first or second place, and we also know the sum
of the differences from the third place and the degree of second place. Similarly,
we can read | A |= 3, . . . , N for ηj(A) > 0.

2.5 Numerical example: set function representations

Figures 1 and 3 present the evaluation values (x3,1,x3,2) of experts C1 and C2
for criterion A3 in Table 1, and Figures 2 and 4 are the mass form set function
representations (η∗3,1, η∗3,2) of their experts C1 and C2. Figure 5 is x3,1 + x3,2 in
Table 1, and Figure 6 is the aggregated set function representation (η3), the sum
of Figures 2 and 4. In the graphs of each set function representation, the bar of
A where η(A) = 0 is omitted.

In Figures 1 and 3, each value is shown as a set of the equation (1), where the
regions are divided by the differences in the input values and the maximal chain
set sequence is presented. The regions of each set are extracted and displayed
as set function representations in Figure 2 and 4. Figure 6 is the aggregated set
function representation of figure 2 and 4. In Figure 6, the sets with one element
appear as {B1} and {B2}. This is because the maximal chain set sequence differs
between C1 and C2.

2.6 Interpretation of a set function representation (η∗)

Sets with 1 element (| A |= 1) The value η∗(A) with one element (e.g., {B2})
is the evaluation value of the part that exists with that element alone. A is
the element of the first-ranked value and η∗(A) represents the difference be-
tween the first- and second-ranked values. If this value is large, it indicates
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Fig. 6. Aggregated set function repre-
sentation, η3

that there is a large difference between the first and second places, and it
shows the magnitude of the first place’s evaluation value. Even if it is small,
η∗(A) > 0 indicates that A exists in the first position. According to Figure
2, at η∗({B1}) > 0 and B1 is in first place, whereas Figure 4 shows that
η∗({B2}) > 0 and B2 is in first place.

Sets with 2 elements (| A |= 2) The value η(A) with two elements is the part
whose elements are both present. This value does not include the portion of
the value of the first-rank element alone. A large value indicates that the
second place is far ahead of the third.

Sets with more than 3 elements (| A |≥ 3)
When A = X, ηj(X) = mini,k xi,j,k is the minimum value. If we consider the
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minimum evaluation value as the base point of evaluation, the values of the
set function with fewer than N−1 elements represent the good portion from
the base point. Additionally, X \A in a set A with N−1 elements represents
the minimum value element. For example, for a set of two elements in C1,
A = {B1, B2}, and thus X \ A = {B3} indicates that B3 is the minimam
value element. A similar reading can be used for N − 2 sets.

2.7 Interpretation of the aggregated set function representation(ηj)

An example of an aggregated set function representation is presented in Figure
6.

Set with 1 element(| A |= 1) In Figure 6, there are two sets with one element:
{B1} and {B2}. This is because the first-ranked values are different, as can
be seen from Figure 5. Since ηj({B3}) = 0, it means that no expert ranks
first. The value of η(A)(where | A |=1) is the sum of the degree of difference
from the second place.

Set with 2 elements(| A |= 2) In Figure 6, the only set with two elements
that are greater than 0 is {B1, B2}. This indicates that B1 and B2 are in
first or second place for all experts, indicating that they are in agreement for
A3. According to Figure 5, the difference in the sum of the evaluation values
of B1, B2, and B3 is small, and the difference in the total evaluation values
of B1, B2, and B3 is not significant. However, alternative B3 is ranked third
among all experts.
In addition to this example, when B,C are sets of two elements and B∩C =
∅, and the values of η(B) and η(C) are larger than those of the other sets
with two elements, we can interpret this as there being two polarized groups:
those with a high value of B and those with a high value of C. The same is
true for the analysis with three or more elements.

Set with N − 1 elements (| A |= N − 1) Because the number of with two el-
ements is N − 1, only η({B1, B2}) is greater than zero, which means that
the other elements X \{B1, B2} = {B3} are not in the second (N −1) rank.

The set A with the small number of elements For some small number L,
for example L = 1 or 2, there exist a set A where η(A) > 0, | A |= L and
η(D) = 0,∀D, |D| = L,D ̸= A, which indicates there is agreement that A
is good alternative for the criterion. In addition, η({B1}) > 0, η({B1, B2}) >
0, η({B1, B2, B3}) > 0 and η(D) = 0,∀D /∈ {{B1}, {B1, B2}, {B1, B2, B3}}
then it is consistent with being a good evaluation of B1 → B2 → B3.
Conversely, when there are many A, η(A) > 0, | A |= L, the evaluation is
divided.

3 Properties of the set function representations

3.1 Weighted mass form set function representation

When comparing η(A) of A with two elements and η(A) with one element, it
is better to consider the difference in the number of elements. The set with m
elements appears in m places, as shown in Figures 1 and 3.
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Definition 4 (Weighted mass form set function representation η♯). We
define the weighted mass form set function representations η♯ that adjusts for
the number of elements.

η♯(A) =| A | η(A), ∀A ⊆ X (4)

3.2 Canonical form set function representation

η and η♯ do not include differences in the evaluation values of their proper
subsets. From Figures 2 and 4, η({B1, B2}) is the sum of the parts where both
B1 and B2 exist. This is the "AND" part where B1 and B2 are both present.
We define a set function representation ρ that contains either part of B1 or B2.
For example ρ({B1, B2}) = η({B1})+ η({B2})+ η({B1, B2}) is the "OR" part
where one of B1 and B2 exists in {B1, B2}.

Definition 5 (Canonical form set function representation). We define
the canonical form set function representations ρ(A) and ρ♯(A).

ρ(A) =
∑

B⊆A

η(B),∀A ⊆ X (5)

ρ♯(A) =
∑

B⊆A

η♯(B),∀A ⊆ X (6)

ρ∗j,k(A) where A = {σj,k(1), . . . , σj,k(| A |)} is the difference from the first
place value to | A | +1.

ρ∗j,k(A) =

|A|∑

i=1

[(xσj,k(i),j,k − xσj,k(i+1),j,k)] = xσj,k(1),j,k − xσj,k(|A|+1),j,k (7)

Additionally, ρ∗♯j,k(A) where A = {σj,k(1), . . . , σj,k(| A |)} is the sum of the
values of each element of A.

ρ∗♯j,k(A) =

|A|∑

i=1

[i(xσj,k(i),j,k − xσj,k(i+1),j,k)] =
∑

i∈A

[xσj,k(1),j,k − xσj,k(|A|+1),j,k]

(8)

ρj
♯(X) =

K∑

k=1

∑

i∈X

[xσj,k(1),j,k − xσj,k(N+1),j,k] =
K∑

k=1

∑

i∈X

xi,j,k =
N∑

i=1

K∑

k=1

xi,j,k

(9)

Equations (5) and (6) show that η and are η♯ Möbius transformation [3] of ρ
and ρ♯. η can be obtained from ρ as follows:

η(A) =
∑

B⊆A

(−1)|A\B|ρ(A),∀A ⊆ X (10)
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The set function representations of η and ρ are equivalent representations corre-
sponding one-to-one to each other. The set function representations η and η♯ are
equivalent representations. Therefore, η, η♯, ρ, and ρ♯ are equivalent set function
representations that correspond one-to-one.

3.3 Comparison of the set function representations (numerical
example)

As a numerical example, for the aggregated set function representation of C1
and C2 in Figure 6 of Table 1, Figure 7 shows the mass form (η), weighted mass
form (η♯), canonical form(ρ), and weighted canonical form(ρ♯).
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Fig. 7. Set function representations

Because η♯(A) is the η(A) value multiplied by the number of elements in A,
the difference between the 2nd and 3rd places for each expert of C1 and C2 is
doubled, and the difference between the 3rd place and 0 is tripled. Therefore,
η♯ is the sum of all experts of each difference and is a comparison between sets
with different numbers of elements. In Figure 7, the values of {B1} and {B2} are
smaller than {B1, B2} and η♯({B1})+η♯({B2}) < η♯({B1, B2}). The difference
between the first and second places is smaller than the difference between the
second and third places for the whole experts.

ρ(A) is the sum of the subsets. ρ({B1, B2}) is the difference between the 1st
and 3rd place values when B1 and B2 are the 1st and 2nd places, respectively.
Therefore, the aggregated set function representation ρ({B1, B2}) is an indicator
of how well B1 or B2 are evaluated as a whole.
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ρ♯({B1, B2}) also reveals how well B1 or B2 is evaluated. If the set of two
elements other than ρ♯({B1, B2}) is 0, it indicates that only B1 and B2 have
good evaluation values. In addition, ρ♯(X) = 390 is equal to the sum of the
individual evaluation values of C1 and C2 (Equation (9)).

3.4 Shapley value

By interpreting the properties of the Shapley values of ρ and ρ♯, we can observe
the properties of η and η♯. The Shapley value of the i-th element of ρ is defined
by the following equation. Using the Möbius transformation, we can obtain this
from η.

shi(ρ) =
∑

S⊆X

QN (S)[ρ(S)− ρ(S \ {i})] (11)

QN (S) =
(N− | S |)!(| S | −1)!

N !

shi(ρ) =
∑

A∋i

1

| A |η(A) (12)

shi(ρ
♯) =

∑

A∋i

1

| A |η
♯(A) (13)

3.5 Shapley value of ρ♯

Theorem 1 (Shapley values of ρ∗♯).

shi(ρ
∗♯) = xi (14)

(Proof)

shσ(i)(ρ
∗♯) =

∑

A∋σ(i)

[
1

| A |η
∗♯(A)] =

n∑

j=i

1

| {σ(1), . . . , σ(j)} |η
♯({σ(1), . . . , σ(j)})

=
n∑

j=i

1

j
j · [xσ(j) − xσ(j+1)] =

n∑

j=i

[xσ(i) − xσ(j+1)] = xσ(i) (15)

Theorem 2 (Shapley values of ρ♯). The Shapley value of ρ♯ is equal to the
sum of xi,k

shi(ρ
♯) =

K∑

k=1

xi,k (16)
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(Proof)

shi(ρ
♯) =

∑

A∋i

[
1

| A |η
♯(A)] =

∑

A∋i

[
1

| A |
K∑

k=1

η∗♯(A)]

=
K∑

k=1

[
∑

A∋i

1

| A |η
∗♯(A)] =

K∑

k=1

xi (17)

Therefore,
∑N

i=1 shi(ρ
♯
j , X) =

∑N
i=1

∑K
k=1 xk,i. This is consistent with the effi-

ciency of the Shapley values. Thus, the Shapley value of ρ♯ indicates the alloca-
tion of the sum of the evaluation values.

3.6 Shapley value of ρ

The i-th Shapley value of ρ∗ is a weighted sum of the rank difference.

shσ(i)(ρ
∗) =

∑

A∋σ(i)

[
1

| A |η
∗(A)] =

N∑

j=i

[
1

| {σ(1), . . . , σ(j)} |η
∗({σ(1), . . . , σ(j)})

=
N∑

j=i

1

j
· [xσ(j) − xσ(j+1)] (18)

This value emphasizes the difference with good rankings.

Theorem 3 (Sum of Shapley values of ρ∗). The sum of ρ∗ is the maximum
value of the element x.
(Proof)

N∑

i=1

shσ(i)(ρ
∗) =

N∑

i=1

N∑

j=i

1

j
· [xσ(j) − xσ(j+1)] =

N∑

i=1

(xσ(i) − xσ(i+1))

= xσ(1) = max(x1, . . . , xn) (19)

The Shapley values of ρ∗ are interpreted as maximum based values because it
allocates the maximum value. The Shapley value of the aggregated set function
representation ρ is as follows:

shi(ρ) =
∑

A∋i

[
1

| A |η(A)] =
∑

A∋i

[
1

| A |
∑

k

η∗k(A)] =

K∑

k=1

∑

A∋i

[
1

| A |η
∗
k(A)]

=
K∑

k=1

shi(ρ
∗
k) (20)

Because shi(ρ) is the sum of the maximum based values for expert k, it is
the maximum based aggregation value because the allocations are based on the
maximum value of all experts. These values are also the aggregation values that
emphasize higher-ranked values.
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3.7 Numerical example: Shapley value of the set function
representation

The Shapley value of the set function representation of Figure 7 is presented in
Table 2. The Shapley value of ρ is the value that emphasizes the higher-ranked
evaluation value.

Table 2. Shapley Value

Evaluation Value Shapley Value of ρ3 Shapley Value of ρ♯3
B1 B2 B3 B1 B2 B3 Total B1 B2 B3 Total

C1 80 90 60 30 40 20 90 80 90 60 230
C2 70 50 40 38.33 18.33 13.33 70 70 50 40 160

C1+C2 150 140 100 68.33 58.33 33.33 160 150 140 100 390
% 38% 36% 26% 43% 36% 21% 100% 38% 36% 26% 100%

4 Conclusion

The set function representations of the data are described in terms of its def-
initions, visualizations, interpretations, and several one-to-one correspondence
representations and their characteristics. The set function representation can
preserve the rank information, allowing rank-based considerations.

Although this paper deals only with small models, when the number of crite-
ria, alternatives, and experts is large, a set function representation of the char-
acteristics of the set function is needed.
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Abstract. Occlusion significantly reduces the information content of
images, corrupts object shapes and requires big data sets including a
wide range of occlusion types for training. Capsule Networks are an ar-
chitectural alternative to Convolutional Neural Networks for computer
vision tasks that can achieve better results with more shallow networks
requiring fewer parameters and generating better results for occluded
images. At the same time, they suffer from issues with overfitting, slow
convergence and limited robustness. We combine a Capsule Network ar-
chitecture with self-supervised learning which creates synergies, miti-
gates shortcomings and improves the performance up to 5.6% for MNIST
with high degrees of occlusion, up to 8.2% for the combination of occlu-
sion and data scarcity, and up to 18.1% for noise and data scarcity.
Even in scenarios where the accuracy is not being improved significantly,
reconstruction quality is. Self-supervision furthermore significantly re-
duces overfitting and does not require a huge increase in computational
complexity. Additionally, we analyze the learning behaviour in detail by
comparing different occlusion scenarios, pretraining different layers and
parameters as well as investigating the influence of the reconstruction
and margin loss on the performance.

Keywords: Capsule Networks · Self-supervised Learning · Occlusion ·
Data Scarcity · Robust Machine Learning.

1 Introduction

Convolutional Neural Networks (CNN) have a limited robustness to occlusion
even when being exposed to large amounts of samples during training [27]. Oc-
clusion is a serious problem as features extracted from occluded images can be
corrupted which leads to misclassifications, the information content is signifi-
cantly decreased and object shapes are altered [19], which makes occlusion e.g.
one of the main factors that reduces performance in video surveillance [5]. Cen
et al. [4] show that classification accuracy for ResNet18 drops from 93.05% to
22.66% with 20% centered occlusion using Caltech101 [8] data set. The actual
features which are affected by occlusion can also make a significant difference,
e.g. facial expression recognition performance suffers more due to mouth than
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eye occlusion [28]. The variability of occlusion types requires training with big
data sets that include a wide range of examples [32]. At the same time, occlusion
can be utilized as a regularization methods, improve shape estimation and help
to robustify models [3, 9]. Performant models deal better with occlusion during
training, targeted occlusion can be used for model interpretability and improve
weakly supervised localization by forcing networks to not solely rely on the most
discriminative parts of an object [3]. Occlusion can be applied to analyze what a
network is focusing on as it forces the network to take the entire image into con-
sideration instead of a subset [49]. Also, the “photographer bias” of benchmark
data sets being perfectly centered and the network tending to focus on easily
recognizable image parts can be reduced due to occlusion [9]. Consequently, oc-
clusion is not only a problem in numerous use cases, but it is also an interesting
scenario to evaluate and influence the model‘s learning behaviour.

Fig. 1. Schematic functionality of Capsule Networks including encoder and decoder.

Capsule Networks (CapsNets) can detect objects even with a high degree of
occlusion [44] due to their ability to gain more discriminative information from
image data caused by a better preservation of the spatial relationship among
various features of the unobstructed target part [43]. They have outperformed
traditional CNN concerning vision tasks regarding rotational invariance, model
interpretability and small training sets [48]. The main difference of CapsNets
compared to CNN is the eponymous capsule, which is considered as a distinct
entity representing several neurons and has a vector output [24]. The feature map
is still extracted with convolutional layers in the first place, but then transformed
into primary capsules [13]. While spatial hierarchies in CNN are lost due to max
pooling, CapsNets do not only include new structural elements like the capsule,
they also have an improved inter-layer communication due to dynamic routing,
which ensures that each capsule output is forwarded to the next capsule receiving
the most similar other inputs [45, 59]. Each capsule encodes an image feature by
combining individual neurons that each represent a property of the feature, such
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as texture, pose or deformation, which are represented in the output vector [16].
If a feature is detectable, the output vector of the capsule has a high magnitude
and its direction is equivariant to the orientation of that particular feature [24].
Dynamic routing ensures that each capsule output is forwarded to the next
capsule which gets the most similar other inputs, which adds more invariance,
improves inter-layer communication, and makes connection strength a learnable
parameter [45, 59]. Instead of an activation function, CapsNets use a squashing
function [45]. While the encoder consists of a convolutional, a primary capsule
(PrimaryCaps) and a digit capsule (DigitCaps) layer, the decoder is made up of
fully connected layers [45], as can be seen in Fig. 1. After classification of the
sample in the decoder, a class-conditional reconstruction sub-network generates
the reconstruction loss to enable regularization [59]. CapsNets are characterized
by fewer parameters than CNN, instead of links between individual neurons
they only contain connections between capsules and more shallow CapsNets can
have a comparable or better performance than CNN [45]. According to Kapadnis
et al. [24], the main developmental steps of CapsNets are: transforming auto-
encoders [17], vector capsules with dynamic routing [45], and matrix capsules
with expectation-maximization routing [18]. This publication will focus mainly
on the work of Sabour et al. [45] as functional framework. While CapsNets deal
better with rotated data [59], class imbalance [21], deformation [38], small data
sets [54] and occlusion [30] compared to CNN, they suffer from overfitting with
too many iterations and layers, which limits the model complexity [51, 59]. They
have a higher run time and a larger computational complexity [11]. Also, both
dynamic routing and margin loss are counter-productive regarding transforma-
tion robustness [13] and CapsNets have difficulties reconstructing complex data
sets like SVHN or CIFAR10 [36].

Fig. 2. Overview of self-supervised learning with pretext and downstream task.

Several shortcomings of CapsNets, such as overfitting [26], difficulties with
weight initialization [53], and low convergence speed [11], can be mitigated by
an alternative training approach: Self-supervised learning, a form of pretraining
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that does not require man-made labels because supervisory signals are generated
from the input data itself by solving auxiliary tasks [62]. The visual representa-
tions and intricate dependencies in the training data are learned during the so
called pretext task and can then be used to improve diverse downstream com-
puter vision tasks due to the pretrained feature extractors [20, 37]. Even when
self-supervision cannot boost performance compared to training from scratch, it
can significantly improve robustness [15]. An overview of the general functional-
ity of self-supervised learning can be seen in Figure 2. Self-supervised learning is
beneficial when training data is scarce, no pretrained models are available, over-
fitting has to be prevented or when manual annotation suffers from high inter-
and intra-observer variability [22, 26, 37]. It boosts learning occlusion-invariant
representations for all degrees of occlusion [39, 41] without needing man-made
annotations as learning contextual information is incorporated in contrast to
CapsNet [22, 42].

Having similar strengths, the combination of self-supervised CapsNets should
create synergies, especially regarding robustness towards occlusion. At the same
time, self-supervision improves model robustness. In our analysis, we focus on
the three following key advantages of self-supervised CapsNets: (1) The model
performance is better than non-pretrained CapsNets regarding high degrees of
occlusion, noise and data scarcity. (2) Self-supervised learning reduces the over-
fitting tendency of self-supervised CapsNets significantly. We particularly show
the influence of the reconstruction and the reconstruction loss on the overfitting
problem and how self-supervision improves that. Thereby, self-supervision helps
to mitigate a considerable disadvantage of CapsNet. (3) By variations of the
occlusion scenarios, the influence of the pretext task on the learning behaviour
can be studied in detail. Thereby, we generate a deeper understanding of both
learning paradigms and the combination.

2 Related Work

2.1 Robustness of Capsule Networks

Robustness characterizes the ability of machine learning algorithms to deal with
erroneous inputs and parameters as the success of models depends on the re-
liability of their performance [61]. So how robust are CapsNet, especially in
comparison to CNN, which they have been intended to surpass? It is difficult
to draw general conclusions concerning the robustness of CapsNets as their per-
formance differs significantly for different data sets [23]. Using the original im-
plementation by Sabour et al., CapsNets are moderately robust to small affine
transformations [45]. Although being better at preserving spatial relationships,
CapsNets still perform significantly better on untransformed inputs compared
to transformed ones [12]. Li et al. compared a simple CapsNet and a CNN, in
which the capsule layer was replaced with a fully connected layer [30]. They
calculate a robustness index for the different scenarios, taking manipulation and
the achieved accuracy into consideration [30]. The rotational robustness index
is approximately 15% higher compared to CNN, for shifting it is improved by
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13%, for scaling 11%, 10% for cropping, 3% for both brightness and blurring,
2% for noise as well as 9% gain for occlusion [30]. CapsNets achieve equivari-
ance instead of translational invariance [31] and generalization over varieties of
poses does not require massively replicated feature detectors across viewpoints,
consequently, CapsNets have already been successfully used for training with
small data sets (see e.g. [1, 2, 24, 43, 55, 58, 60, 64]). Ren et al. [43] tested differ-
ent CapsNet architectures with different degrees of data scarcity, the average
overall accuracy of their proposed CapsNet is 80% higher for 10% of the orig-
inal MSTAR data set [43]. CapsNets can be better for training complex data
sets with few training examples [23], as CNN loose more features due to the
pooling operation, CapsNet in general need less training data [24, 64]. CapsNets
have a high robustness regarding occlusion (see e.g. [6, 34, 44, 63]). They per-
form better regarding the average recognition rate of facial expressions given
different degrees of occlusion; the improvement is up to 13.38 percentage points
compared to CNN [30], due to their ability to preserve spatial information they
are superior to CNN [43]. CapsNets are also beneficial regarding noise: The av-
erage recognition rate of six different facial expressions given either Gaussian
noise or salt-and-pepper-noise results in higher accuracies using a CapsNet im-
plementation with three layers compared to a CNN of the same depth [30].
According to Juralewicz & Markowska-Kaczmar, CapsNets are also more ro-
bust to randomly shuffled images than CNN, although capsule-specific elements
do not "provide considerable improvement in preserving the spatial relationship
between capsules" [23]. Especially with an elevated number of layers, CapsNets
show a considerable overfitting tendency as reconstruction does not provide a
strong enough regularization, even adding dropout is not sufficient [51, 59]. Gu
et al. find dynamic routing actually being harmful to robustness as well as se-
mantic representation and CNN being able to outperform CapsNets in terms of
affine input transformations [13]. Consequently, they are more robust in some
specific contexts, but their robustness should be improved further.

2.2 Improving model robustness with self-supervision

Self-supervised learning is a branch of unsupervised learning that can learn the
underlying representations of unlabeled data by using the input data itself for
supervision, e.g. by predicting some parts of the data from another [20, 33].
Self-supervision is a specific form of pre-training which solves an auxiliary task
before the actual downstream task using the same data set, which is in general
beneficial for small data sets, big domain gaps, and occluded data sets [41, 62].
Even when pre-training does not boost performance compared to training from
scratch, it can significantly improve robustness concerning label corruption, ad-
versarial accuracy [15] and increase verifiable robustness [47]. The approach can
improve image classification robustness with CNN [57] and extracts more diverse
features than supervised learning [50]. The best combination of robust and com-
pact models can be achieved when applying pre-training and fine-tuning using
similar objectives [47]. Kortylewsk et al. demonstrated that ResNext can develop
an invariance to partial occlusion when being pre-trained with ImageNet [27].
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Pre-training can also help to reduce overfitting in small data regimes and works
significantly better for classification than for object detection [14].

2.3 Self-supervised Capsule Networks

Self-supervised learning and CapsNets have been previously combined, but self-
supervision has mostly been used to approach unsupervised training. Sabour et
al. introduce self-supervised training for visual part descriptors using a proxy
motion task where the encoder pairs successive video frames to realize part dis-
covery without annotations or segmentation masks [46]. A self-supervised model
for primary capsule decomposition through permutation-equivariant attention in
3D point clouds can be trained with pairs of randomly rotated objects to outper-
form state-of-the-art method on both 3D point cloud reconstruction, canonical-
ization, and unsupervised classification [52]. Tran et al. apply a self-supervised
CapsNet for volumetric medical image segmentation using an UNet-based ar-
chitecture with a 3D Capsule encoder and 3D CNNs decoder, generating im-
provement using less data and needing no additional computation complexity
at test time [53]. They use contrast transformation as pretext task as medical
images often contain patterns of interest [53]. In a previous paper, we analyze
self-supervised CapsNet for data scarcity and demonstrate that the combination
can improve test accuracy by up to 11.7% for small data sets and by up to 11.5%
for small and imbalanced data sets [58]. Mei & Yin propose a cascade residual
CapsNet for hyperspectral images clustering with coding rate reduction as self-
supervision to learn subspace structures of hyperspectral image cubes including
brink loss [35]. Colorisation as a self-supervised learning task with UCapsNet
architecture using convolutional operators for spatial details extraction in com-
bination with capsules used for entity extraction has been developed by Pucci et
al. [40]. While most approaches focus on the prospect of training without labels,
Wiles et al. demonstrate that their co-attention CapsNet architecture having
been trained using self-supervision via camera pose can outperform state-of-the-
art models given challenging conditions, which is a sign of robustness [56]. To our
knowledge, self-supervised CapsNet have not yet been studied with respect to
occlusion, data scarcity and noise, nor has the influence of pretraining different
layers and parameters.

3 Methods

3.1 Models

We adapt our model from the original vector CapsNet implementation [45] to
analyze the effect of self-supervision on the fundamental functionality of Cap-
sNets. The encoder contains a convolutional layer with 1 input channel, 256
output channels and kernel size 9, the primary capsules with 256 input chan-
nels, 32 output channels and kernel size 9 as well as a final digit capsule with
1152 routes, 8 input channels and 16 output channels. The subsequent decoder
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includes three fully connected layers of output size 784. In contrast to the Sabour
et al. implementation, no 2-pixel shift is applied. We use 3 routing iterations,
ReLu activation function, Adam optimizer, a learning rate of 0.001 and batch
size 10. An un-pretrained CapsNet is used for comparison and is referred to as
the "reference model" in this paper. To ensure comparability, we use the same
hyperparameters for both models besides the addition of the pretext task and a
different weighting of the reconstruction loss (see Section 3.2). While CNN are
highly optimized and well researched, CapsNets are a rather new development,
so using a rather basic reference CNN puts more focus on comparing the general
functionality instead of the level of optimization. The CNN reference model was
also adapted from Sabour et al. [45]. As capsules are a more complex entity than
neurons, comparisons solely based on the same number of layers are not construc-
tive, instead the CapsNet version has less trainable parameters in general. The
CNN model has two more layers than the CapsNet encoder and 4.3 times more
trainable parameters than the whole CapsNet [45]. Three convolutional layers of
256, 256, 128 channels with 5x5 kernels and stride 1 are succeeded by two fully
connected layers of size 128, 192. The last layer is connected with dropout to a 10
class softmax layer. Cross entropy loss is used instead of margin loss, otherwise
all the training conditions remain the same. Although carefully choosing a suit-
able reference model, the comparison can not necessarily be generalized to other
architectures. The number of training epochs has to be adjusted to the data set
size but is in a range from 30-50 epochs. We always train both the reference and
self-supervised model for the same duration and use a similar training duration
for the self-supervised CNN. Results are determined in triplicate, the mean value
is reported.

3.2 Reconstruction and margin loss

Reconstruction should encourage the network to learn more general representa-
tions of images [59]. But classification accuracy can plateau earlier than recon-
struction accuracy, which indicates that reconstruction does not substantially
support the classification [36]. In the original Sabour et al. implementation, re-
construction loss is down-scaled by 0.0005 so as not to overpower margin loss and
avoid overfitting [29]. Xi et al. also experimented with different scaling factors
for the reconstruction loss due to the complexity differences between MNIST and
CIFAR10, but increasing reconstruction loss scaling decreases the accuracy for
CIFAR10, which can be attributed to the non-ideal reconstruction quality of the
CapsNet for this data set [59]. Low reconstruction qualities for complex data sets
might be one general reason why CapsNets do not perform well on these, e.g. for
CIFAR10 reconstructions are blurry and lack distinct features, which might be
caused by the diversity of view points per class and could be solved by applying
a deeper decoder [36, 59]. We analyze if self-supervision allows to up-scale the
reconstruction loss and profit more from its regularizing capabilities. The effects
of different down-scaling factors using MNIST are analyzed in Section 4.2.
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3.3 Self-supervision

The selection of the right pretext task is crucial to successful self-supervised
learning as the specific combination with the downstream task has a key in-
fluence on the model’s behaviour [22]. We decided to use rotation as a pretext
task to enhance the spatial knowledge of the CapsNet model further and avoid a
too big surplus in computational complexity. Rotation does not generate easily
detectable low-level artifacts but is only beneficial for pretraining with data sets
that are not rotation invariant [20]. As CapsNets do not only contain different
types of layers but also learn the connections between layers, consequently it
is interesting to evaluate if pretraining the weights of the different layer types
and the coupling coefficient changes performance (see ablation experiment in
Section 4.1). We used a rather difficult scenario for this ablation analysis with
only 1% of the original MNIST data set and an occlusion of 0-50% to find the
best model parameters for the combination of occlusion and data scarcity. The
number of pretraining epochs and consequently the pretraining accuracy is an
important hyper-parameter for self-supervised learning. There is no linear rela-
tionship between pretext and downstream accuracy as phenomena like overfitting
can also occur between the two different training steps [25], so hyper-parameter
optimization is needed for all scenarios. In general, the smaller the data set and
the higher the occlusion factor, the more pretext epochs are required. A good
rule of thumb is to use 1 epoch for 100% of the data, 5 for 10% of the data, and
15 for 1%.

3.4 Data sets

The benchmark data set MNIST [7] is manipulated to simulate different degrees
of randomized and centred occlusion, to ensure that the information loss is both
severe and unpredictable. In the so called "Test" scenario, we manipulate both
test and training set using the same degree of occlusion. For all other scenarios,
we evaluate our results using the non-manipulated MNIST test set. As occlusion
is generated randomly, it is important to use a test set big enough to ensure that
diverse degrees of difficulty are present in the test set [10]. The test set size is
consequently never reduced. Often real-world training sets do not contain enough
occluded images plus the occluded samples might not be diverse enough or not
relevant for the specific task [4], so tailored synthetic occlusion can be helpful.
The scenarios are named using the minimum and the maximum percentage of
the area which can be occluded. Several scenarios still include original images
while others only contain occluded ones, so the model’s shift of attention can be
studied.

4 Results

4.1 Pretraining Ablation Analysis

We conduct an ablation analysis to identify the ideal combination of pretrained
layers using 1% of the original MNIST data set and 0-50% occlusion. The results
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can be seen in Table 1. An improvement of 4.60% compared to the non-pretrained
version can be achieved if the weights of all layers are being pretrained, but the
coupling coefficient is not. We will apply this pretraining strategy in all following
experiments. Including a pretrained coupling coefficient decreases the improve-
ment slightly to 4.46%, the pre-training of the connections between the capsules
therefore does not appear to be advantageous. When only one of the three layers
is pretrained, Digit Capsules is the best choice with an improvement of 2.24%
compared to 1.35% with the Convolutional Layer and 0.16% with Primary Cap-
sules. The combination of Convolutional and Primary Capsules already generates
an improvement of 3.40%, the combination of Convolutional and Digit Capsules
generates 3.49%, while Primary with Digit Capsules only results in an improve-
ment of 1.86%.

Table 1. Accuracy improvements generated by pretraining different layers compared
to the non-pretrained version using 1% of MNIST data set and 0-50% occlusion.

Pre-Trained Layers Accuracy Improvement
None 86.59% -
Convolutional Layer 87.76% 1.35%
PrimaryCaps Layer 86.73% 0.16%
DigitCaps Layer 88.53% 2.24%
Convolutional Layer + PrimaryCaps Layer 89.53% 3.40%
Convolutional Layer + DigitCaps Layer 89.61% 3.49%
PrimaryCaps Layer + DigitCaps Layer 88.20% 1.86%
All 90.57% 4.60%
All + Coupling Coefficient 90.45% 4.46%

4.2 Reconstruction and margin loss

Literature indicates that reconstruction of CapsNets does not significantly im-
prove classification (see Section 3.2), so we tried to up-scale reconstruction loss
and evaluate if this has a positive effect. For the pretext task, it is counter-
productive. If the weight of reconstruction loss is increased by factor 10, the
accuracy is reduced by approximately 70%, which also results in a decrease in
downstream performance. This can be attributed to the reconstruction quality
not being sufficient, as the pretext training duration is shorter, while recon-
struction converges later than the classification does [36]. Additionally, class-
conditional reconstruction does only distinguish the different rotation modes
but not the numbers, so the reconstructed images do not have a high semantic
value. The effect using different down-scaling factors for downstream task and
reference model can be seen in Table 2. The accuracy of the self-supervised ap-
proach increases to 90.75% if the weight is up-scaled by factor 10. When being
augmented further, the accuracy drops again. If the factor is reduced to 0.0001,
the accuracy also drops significantly by 1.15 percentage points. Self-supervision
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has a positive influence on reconstruction quality and improves reduction loss up
to 70.54%, which explains why increasing the influence of the reduction loss can
have positive effects on the self-supervised model. This will be analyzed in more
detail in Section 4.4. The self-supervised version only shows signs of overfitting
for factor 0.05. In contrast, the reference model is affected by overfitting in all
scenarios as the learning process in general only benefits from an up-scaling of
the reconstruction loss if the ability of the CapsNet to reconstruct the data set
is sufficient. In general, self-supervision improves the results of the encoder.

Table 2. Different down-scaling factors for reconstruction loss, the resulting train and
test accuracies for the self-supervised and the reference model using 1% of MNIST data
set and 0-50% occlusion including the percental improvement due to the pretext task.

Self-supervised Reference Improvement
Down-scaling factor Training [%] Test [%] Training [%] Test [%] Test[%]
0.0001 90.50 89.42 96.67 86.13 3.82
0.0005 91.83 90.57 95.33 86.33 4.91
0.001 90.71 90.58 97.28 86.25 4.93
0.005 90.83 90.89 97.17 86.28 5.34
0.01 90.78 90.40 96.61 86.34 4.70
0.05 94.56 89.20 97.50 86.38 3.26

4.3 Occlusion and data scarcity

Higher degrees of occlusion and smaller data set sizes both decrease the absolute
accuracies of the CapsNet models, but the decrease is less severe for the self-
supervised version (see Table 3). While pretraining only improves the accuracy
slightly for 100% and 10% data set size if there are still un-occluded samples,
it results in significant gains in accuracy for all sizes if only occluded data is
available for training. The absolute area of occlusion seems to be less important
than the existence of un-occluded examples in the training set, which becomes
obvious when comparing the 0-80% scenario with the 13-30% one. For 0-80%
occlusion, the accuracy is improved by 0.23%, 0.52% and 4.25% for 100%, 10%
and 1% data set size due to self-supervision, while for 13-30% occlusion, the
improvements are 5.55%, 6.05% and 7.79%. Surprisingly, the accuracies of the
reference model for all data set sizes in the 13-50% scenario are better than the
13-30% scenario. This could be attributed to the fact that a bigger occluded
area forces the model to shift its learning focus to the outer areas of the image
which is available in every sample and more reliable for classification, although it
contains less information. Consequently, the regularization effect of training with
occluded data which helps to robustify models also depends on the specific make-
up of the occlusion scenario. In general, the absolute accuracies are significantly
lower if the test set is occluded as well, but also in this case pretraining makes
a difference: For 0-80% occlusion in both training and test set and 1% data,
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pretraining improves the results by 8.2%. With 10% and 100% data set size,
the improvements due to self-supervision are only marginal. If we train with un-
occluded data and test on occluded data, the accuracies drop significantly and
the self-supervised model (47.29% with 1% of the data set and 0-80% occlusion)
is only 0.5% better than the reference version (47.05%). It is more challenging
to learn features that might not appear in the test data set than, conversely,
to train with a data set affected by occlusion and then test on non-occluded
data. Self-supervision improves the results only slightly if there is no occlusion,
but the absolute accuracies are significantly higher in this case. For 100% and
10%, the improvement is neglectable, for 1% it is 0.62%, for 0.1% there is 4.08%
improvement. Self-supervised CNN is inferior to self-supervised CapsNet in all
scenarios with 1% and 10% data set size. In most cases with un-occluded samples,
the non-pretrained CapsNet version is outperformed by self-supervised CNN.
CNN also performs best in most 100% scenarios, the only exeption is the 13-
30% scenario. Consequently, self-supervision in general does improve CapsNet
performance but the combination cannot outperform self-supervised CNN if the
full data set is available for training. Still, in many application scenarios self-
supervision could be beneficial as it helps to avoid overfitting and improves the
reconstruction quality.

Table 3. Test accuracies given different occlusion scenarios and data set sizes with
MNIST using self-supervised CapsNet, non-pretrained CapsNet (Reference) and self-
supervised CNN.

Occlusion scenario Data set size [%] Self-supervised [%] Reference[%] CNN[%]
0-30% 100 98.08 98.07 98.40

10 96.36 95.60 96.31
1 90.84 87.32 89.79

0-50% 100 97.17 97.04 98.42
10 96.40 96.16 95.94
1 90.57 86.33 86.43

0-80% 100 97.36 97.14 98.14
10 96.11 95.61 95.03
1 82.89 79.51 82.74

13-30% 100 88.20 83.56 87.78
10 88.12 83.09 75.79
1 72.09 66.88 64.88

13-50% 100 88.54 84.73 90.00
10 86.90 83.92 82.26
1 71.29 67.31 65.38

0-80% 100 75.40 75.35 78.06
(Test) 10 73.22 72.98 72.56

1 62.81 58.05 61.05
None 100 98.87 98.84 99.16

10 97.95 97.93 97.87
1 94.02 93.44 93.03
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4.4 Noise

High noise levels significantly decrease the accuracy of the self-supervised and the
reference CapsNet model. In contrast to occlusion, there is no clear correlation
between the level of difficulty and the improvement generated by self-supervision.
Nevertheless, the self-supervised CapsNet can deal significantly better with noise
than the non-pretrained counterpart. For Gaussian noise with standard deviation
10, the self-supervised version is 18.1% better, for standard deviation 1 there is no
significant difference. For 0.1 and 0.01, the improvement is 1.6% and 1.3%. Self-
supervision improves considerably reconstruction loss more than margin loss.
For high noise levels, the improvement for margin loss is only slightly above 1%,
while the improvement of reconstruction loss is minimum 38.5% and maximum
68.2% for 0.01 noise. Consequently, the general tendency that self-supervision
leads to greater improvements if the task is more difficult cannot be observed
here. In terms of margin loss, the trend is even almost reversed.

Table 4. Improvements in Reconstruction and Margin Loss due to self-supervision
using different standard deviations for Gaussian noise with 1% of the MNIST data set.
Additionally, the accuracies of the self-supervised and the reference model as well as
the accuracy improvement due to self-supervision are shown.

Accuracy[%] Loss Reduction[%]
Noise Self-supervised Reference Improvement Reconstruction Loss Margin Loss
10 30.71 26.01 18.1 41.3 1.5
1 93.57 93.27 0.1 54.7 1.1
0.1 94.43 92.98 1.6 38.5 30.5
0.01 94.53 93.31 1.3 68.3 22.3

5 Conclusion

Self-supervised learning can mitigate some of the challenges that CapsNets are
still facing as the combination creates promising synergies, but self-supervised
CNN are still more performant for big data sets. Pretraining improves clas-
sification accuracy especially in difficult scenarios and generally decreases the
overfitting tendency of CapsNets. The original implementation does not include
sufficient regularization for increased model complexity, which can be improved
by pretraining, so reconstruction loss can be given a higher weight for total loss,
therefore the influence of the encoder can be increased. Self-supervision allows
more information to be extracted from the same set of data and improves the
spatial knowledge of the model further, increasing the accuracy especially given
high occlusion factors and small data sets. Furthermore, self-supervised learning
also renders CapsNets more stable regarding added noise and improves the ca-
pability to classify non-corrupted images while having been trained on occluded
ones, so the approach boosts different dimensions of robustness.
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Abstract. Brain networks (or graphs) derived from magnetic resonance
imaging (MRI) have demonstrated to be an optimal method to repre-
sent brain data organization. In this context, graph measures has been
widely used as a methodology to represent and study brain data. These
measures are typically derived from graph theory and can provide in-
sights into the organization, efficiency, and communication patterns of
the brain network. In this work, we propose to use persistent homology
and Betti curves to extract features that are relevant to identify people
with neurodegenerative diseases, such as multiple sclerosis, from struc-
tural brain connectivity, morphological gray matter and functional brain
networks. We compare the features extracted from each single-layer and
a multi-layer architecture, and prove that using a multi-layer architec-
ture better preserves the brain alterations that drive cognitive processes
and brain damage. Finally, we test our method in a cohort of people
with MS, proving that features extracted using our proposed conceptual
scheme are relevant to identify and classify both healthy volunteers and
people with multiple sclerosis (MS).

Keywords: MRI · Brain networks · Graph theory · Persistent Homology
· Multiple Sclerosis · Machine Learning

1 Introduction

Recent advances in magnetic resonance imaging (MRI) have facilitated the study
of brain connectivity structures and functions, providing a comprehensive under-
standing of brain connectivity organization and behaviour [3, 11]. Over the last
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decade, different complex preprocessing pipelines have been developed for ob-
taining patterns of structural brain connectivity [12], morphological gray matter
[19] or functional brain networks [8].

Brain networks (or graphs) have demonstrated to be an optimal method to
represent brain data organization. Specifically, graph theory has been used as
straightforward, clear, robust and useful methodology to represent and study
brain networks. Several works have been tackling this problem from the point of
view of graph theory [17]. Graph theoretical analysis allows us to model complex
network systems with comprehensive indices related to the integration, segre-
gation and propagation of information inside the brain system [18]. However,
different types of data may require different mathematical tools and techniques
for analysis.

The main goal of this work is to propose a novelty methodology to extract
relevant features (or embeddings) from brain networks by using tools from topo-
logical data analysis. Specifically, we use the persistent homology (PH) and Betti
curves to extract important topological features from the structural brain con-
nectivity, morphological gray matter and functional brain networks indepen-
dently, and by the combination for multimodal brain networks. Additionally,
the proposed methodology can be used to study the impact of each brain net-
work data type in the context of neurodegenerative diseases, such as multiple
sclerosis (MS) [6].

MS is a chronic, inflammatory, demyelinating, and neurodegenerative disease
of the central nervous system characterized by widespread damage leading to
disruption of large- and short-scale structural and functional connectivity, which
leads to clinical alterations [9, 15]. Local and global implications of damage on
networked systems, such as our brain, have been studied from many angles using
complex networks. Thus, network theory approaches have been widely applied
in the field of neuroscience to study both structural and functional connectivity
and explore its relationship with cognitive function [12].

1.1 Contributions

This study presents the methodology that contributes to the state of the art
from two points. Firstly, we explore and analyse the brain connectivity net-
works, including structural brain connectivity, morphological gray matter and
functional data, through the lens of persistent homology (PH) and Betti curves.
It is a novel approach to extract topological features from brain networks that
are relevant in the context of neurodegenerative diseases. Secondly, we empiri-
cally compare all single-layers brain networks and the multi-layer architecture
[5], and objectively demonstrate that using a multi-layer architecture better pre-
serves the brain mechanisms that drive cognitive dysfunction and brain damage.
Finally, our proposed scheme is used to study a cohort of people with MS as a
proof of concept, and we claim that features extracted from persistent homology
and Betti curves are relevant to identify and classify both healthy volunteers
and people with MS.

87



1.2 Organization

The remainder of this paper is organized as follows: Section 2 explores the lit-
erature for related works. We briefly describe the extraction of data procedure
as the two approaches designed in Section 3. Section 4 presents the proposed
methodology and its related concepts, and we highlight the results in Section 5.
Finally, the paper is concluded in Section 6, where we summarize our contribu-
tions, insights and future improvements.

2 State of the Art

Network theory approaches have been widely applied in the field of neuroscience
to study both structural and functional connectivity and explore its relationship
with cognitive function [12, 13, 16]. In this context, single network analysis is
limited to only one feature, and hence, does not fully describe the complexity of
brain mechanisms after damage. In order to overcome this limitation, a multi-
layer architecture was proposed in [5]. However, to the best of our knowledge,
there is no objective study about the relevance or importance of each single-
layer brain network, i.e. structural, morphological and functional connectivity
networks, and the multi-layer architecture to identify people with neurodegener-
ative diseases. Specifically, studying brain networks in the context of both health
and disease plays a critical role in discovering the multimodal brain patterns that
drive cognitive processes and brain damage [2].

Previous works investigated connectivity changes in people with MS related
to their cognitive status, and they proposed an automatic classification method
to classify subjects as patients and healthy volunteers (HV) using graph theory
basic metrics, such as local efficiency and node strength, computed on weighted
structural connectivity matrices [17].

Algebraic topology is a branch of mathematics that studies topological ob-
jects by means of assigning them algebraic structures. Topological Data Analysis
(TDA) is a framework of data science that uses tools from algebraic topology to
analyse datasets. One of the most used methods in TDA is persistent homology,
which is an adaptation of homology when the objects to study are graphs or sets
of points. For an overview of persistent homology, and to know more about its
use in machine learning, see, for example, [14].

Topological Data Analysis, and in particular persistent homology, has been
previously applied to study brain connectivity in relation to some diseases [4],
but the specific techniques, dataset, and goal of our paper are quite different to
the ones present in the literature.

3 Dataset

This study used data on patients with relapsing-remitting, primary or secondary
progressive MS recruited at the MS Unit at Hospital Clínic de Barcelona. The
Ethics Committee of the Hospital Clínic de Barcelona approved the study, and
all participants signed an informed consent.
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3.1 Participants

We analysed a cohort of n = 147 people with relapsing-remitting, primary or
secondary progressive MS (104 women), mean age of 47.33± 10.14 years, mean
disease duration of 15.96± 9.04 years, and median EDSS (Expanded Disability
Status Scale) of 2.0 (range 0–7.5), and a group of n = 18 healthy volunteers
(HVs), mean age of 36.62 ± 9.33 years. The clinical and demographic from the
final cohort are summarized in Table 1.

Table 1: Clinical and demographic data. Continuous variables are given as the
mean ± standard deviation. EDSS = Expanded Disability Status Scale; MS =
multiple sclerosis. p values obtained from comparing the groups.

Healthy volunteers People with MS p value
(n = 18) (n = 147)

Age, years 36.62± 9.33 47.33± 10.14 <0.001
Female, n (%) 15 (83%) 104 (71%) <0.001
Disease duration, years – 15.96± 9.04 –
Median EDSS score (range) – 2.0 (0-7.5) –

3.2 Brain networks and adjacency matrices

The DTI, RS-fMRI and GM values are derived from 3 MRI modalities acquired
within the same scan session in a 3T Siemens scan. Hence, the subject goes inside
the scanner, and we do the experiments for acquiring diffusion weighted images,
resting-state functional images and a structural scan using 3D T1 images. After
a complex preprocessing of the images, we can derive DTI measures from the
DWI MRI, functional measures from the RS-fMRI and get patterns of cortical
thickness from the T1 MRI.

Therefore, each subject has three single-layer networks representing DTI
structural connectivity, GM morphology and RS-fMRI functional activity. The
nodes of the three brain networks constructed are the 76 brain regions defined in
the common anatomical parcellation scheme. Therefore, the same parcellation is
used within each network and nodes of all networks are equivalent and represent
the same anatomical brain region. The scheme to create the three single-layer
networks is depicted in Figure 1.

Structural brain connectivity network. The first step in constructing a
structural connectivity matrix was to build a DWI preprocessing pipeline to fit
the diffusion tensor imaging (DTI) model, an approach previously described and
well established by [20]. The parcellation scheme (76 nodes) from the anatomi-
cal image was aligned to the FA map to determine which streamline connections
needed to be selected between pairs of nodes to create the structural connec-
tome. We defined the mean value of the FA metric along each connection to
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Fig. 1: Scheme to create structural brain connectivity network (DTI), morpho-
logical gray matter brain network (GM) and functional brain network (RS-fMRI)

generate the FA-weighted adjacency matrix of the network, denoted by A(DTI).
The mean FA computed along the fiber pathway that connects each pair of brain
regions enables the inclusion of the severity of the white matter damage at the
macro- and microstructural levels [12]. Finally, the FA measures for the struc-
tural network were corrected for age and gender effect using a regression model
[17]. The values of DTI connectivity matrices are in the range [0, 1], where values
close to 0 indicate null connectivity and values close to 1 point out the maximum
connectivity.

Morphological gray matter brain network. The GM morphological net-
work is based on the similarity of GM morphological patterns according to the
defined anatomical parcellation scheme [19]. We construct the final GM mor-
phological network and its adjacency matrix, denoted by A(GM), considering
the defined parcellation scheme (76× 76). The morphological networks obtained
were corrected for the effects of age and gender using a regression model. The
values of GM morphological matrices are in the range [0, 1].

Functional brain network. Brain signal correlation/synchronization through
resting-state functional connectivity (RS-fMRI) matrix was obtained following
[7], and the defined parcellation was used to extract the average time series for
each of the 76 brain regions, resulting in a functional connectivity network with
adjacency matrix A(RSfMRI). Note that the values of RS-fMRI matrices are
in the range [−1, 1], indicating negative or positive correlation between nodes.
However, we apply the absolute value in order to preserve only the strength of
the relationship. As with the other networks, age and gender effects were also
corrected for functional connectivity networks using a regression model. The
final values of RS-fMRI matrices are in the range [0, 1].
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3.3 Multilayer brain network

We propose to include in our comparison the multi-layer scheme developed in
[5], as a complex network composed of different layers, each representing a single
type of relationship between nodes within one layer. Nodes represent the same
exact object in each of the different layers, and encode different types of relation-
ships throughout their edges. In this network, the authors differentiate between
intralayer links, which encode the single type of relationship the layer represents,
and interlayer links, which encode how the different node perspectives (types of
relationships) are related within the system.

Fig. 2: Scheme to create the multi-layer network, as defined in [5]

In this multi-layer network, each subject has three single-layer networks rep-
resenting GM morphology, DTI structural connectivity, and rs-fMRI functional
activity, which are combined to create a multi-layer network composed of two
layers, as can be seen in Figure 2.

3.4 Data and Code Availability

The proposed method were made publicly available by the authors5, while data
used in our work is publicly available6 and described in [5].

4 Methodology

For each subject in the dataset, we have four possibilities to construct a graph:

– Single-layer graph with DTI structural connectivity network.
– Single-layer graph with GM morphological network.
– Single-layer graph with RS-fMRI functional network.

5 Code repository: https://github.com/ADaS-Lab/PH-MRI/
6 Data repository: https://github.com/ADaS-Lab/Multilayer-MRI
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– Multi-layer graph with DTI, GM, and RS-fMRI network, following the ar-
chitecture previously described.

Fig. 3: Pipeline designed for our experiments

Our main goal is to measure the predictive information contained in the dif-
ferent graph constructions by training supervised machine learning (ML) models
using each construction separately and computing performance metrics in each
case. In particular, we are interested in the topological information present in
each graph, so we will use persistent homology (PH) to create features (or em-
beddings) that we use to feed to several machine learning models. The complete
pipeline for our methodology is detailed in Figure 3.

4.1 Persistent Homology

Usually, persistent homology is applied to a set of points by constructing a
completely connected graph in which each node corresponds to a point in the
dataset and a pair of nodes is connected by an edge with weight proportional
to the distance between the two corresponding points. In our case, we have a
dataset in which each data point is already a graph, so we apply persistent
homology to each graph separately. The goal is to create persistent homology
features that can be associated to each graph separately, to then train models
to try to predict if a subject is a patient with MS or a healthy volunteer (HV).

Figure 4 shows the persistent diagrams resulting from computing persistent
homology in dimensions 0 and 1 for a single subject, considering the four different
possibilities to associate a graph to a subject discussed previously. Each dot in
the diagram represents a topological feature, either in dimension 0 (H0, red
dots) or in dimension 1 (H1, green dots). The position of the dot in the diagram
indicates the value of the filtration parameter in which the topological feature
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appears (Birth) compared to the value of the filtration parameter when the
topological feature disappears (Death). The dots far away from the diagonal
represent the more persistent topological features in the graph.

We can see in the persistent diagrams that the topological features for each
type of graph have different structures, and these differences will be reflected
later in the results of the machine learning models. Also, it is interesting to
note that the graph constructed with GM connectivity data seems to have only
0 dimensional homology. This phenomenon is present in all subjects, and in a
future work we are planning to investigate it further.

(a) Multi-layer architecture (b) Single-layer with DTI connectivity

(c) Single-layer with GM connectivity (d) Single-layer with RS connectivity

Fig. 4: Persistent Homology diagrams for a single subject.

The persistent homology diagrams have a variable number of features for each
subject, depending on the actual topological structure for each graph. To be able
to use this kind of information in a traditional machine learning model, we need
to convert the variable number of topological features into a fixed number of
numerical features.

There are different methods to convert a persistent diagram with a variable
number of features to a vector with a fixed number of components. In this case,
we will use Betti curves, presented in [21].
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In Figure 5, we can see the Betti curves associated to the persistent diagrams
shown in Figure 4. In these diagrams, each curve represents a dimension, and
each point in the curve represents how many topological features are alive for
each possible value of the filtration parameter. By construction, we can also see
in these diagrams that the structure of topological features is different in each
type of graph, so the machine learning models should be able to react different
to the different graphs using the features extracted from the Betti curves.

(a) Multi-layer architecture (b) Single-layer with DTI connectivity

(c) Single-layer with GM connectivity (d) Single-layer with RS connectivity

Fig. 5: Betti curves for the same subject as Figure 4.

4.2 Machine Learning Models

To test if the features extracted from the graphs using persistent homology
are useful, we will train different supervised machine learning models on each
type of constructions to try to separate between patients with MS and healthy
volunteers (HV). We will repeat the same experiment 10 times with different
random initializations for the train-test split, and we will compute the mean
and standard deviation of the AUC ROC metric for each classifier. The models
we will consider are the following ones:
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– A fully connected neural network (NN) with three hidden layers.
– A simple logistic regression (LR).
– A random forest (RF) classifier.

To try to compensate for the fact that the multilayer architecture is using
all types of connectivity at the same time, we will also train the same models
but using the concatenation of the features for the three single layer graphs.
This allows us to see that the multilayer architecture is essential, and that it
is not enough to consider information for all connectivity types in any kind of
combination.

5 Results

Tables 2 and 3 present a summary of the results for the experiments outlined in
the previous section, where Table 2 handles the case with homology dimensions
0, 1, and 2 and Table 3 handles the case with homology dimensions 0 and 1.

Table 2: AUC ROC (mean ± std) for different machine learning models applied
to the different processing of the brain connectivity data. Using homology di-
mensions 0, 1, and 2

Neural network Logistic Regression Random Forest
Multi-layer 0.75± 0.02 0.57± 0.02 0.70± 0.02
Single-Layer FA 0.57± 0.02 0.58± 0.02 0.58± 0.02
Single-Layer GM 0.56± 0.03 0.46± 0.03 0.46± 0.04
Single-Layer RS 0.59± 0.02 0.52± 0.03 0.54± 0.03
Concatenation of SL 0.68± 0.02 0.55± 0.02 0.67± 0.03

Table 3: AUC ROC (mean ± std) for different machine learning models applied
to the different processing of the brain connectivity data. Using homology di-
mensions 0 and 1

Neural network Logistic Regression Random Forest
Multi-layer 0.75± 0.01 0.69± 0.03 0.73± 0.02
Single-Layer FA 0.58± 0.02 0.58± 0.04 0.60± 0.02
Single-Layer GM 0.55± 0.02 0.44± 0.03 0.46± 0.03
Single-Layer RS 0.64± 0.02 0.57± 0.02 0.52± 0.03
Concatenation of SL 0.69± 0.01 0.57± 0.02 0.66± 0.03

These results strongly suggest that the multi-layer architecture is the right
choice to work with brain networks in a graph format. In particular, we see that
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the multi-layer architecture encodes much more useful topological information,
specially in dimensions 0 and 1.

It can be seen in the results that the GM layer has less predictive power than
the DTI and RS-fMRI measurements. This fact is compatible with the results
previously obtained in different experiments. The results also show that the
combination of the information from the three single-layers graphs is, in general,
better than each single-layer graph in isolation, but the multi-layer architecture
is even better in almost all cases.

6 Conclusion and Future Work

We have presented a methodology that explores and analyses the multimodal
brain networks, integrating structural brain connectivity, morphological gray
matter and functional connectivity patterns, through the lens of persistent ho-
mology and Betti curves to extract features that are relevant to identify people
with neurodegenerative diseases, such as multiple sclerosis.

Additionally, we empirically demonstrated that using a multi-layer architec-
ture better preserves the brain mechanisms that drive cognitive processes and
brain damage. Our experiments in a cohort of people with MS proved that fea-
tures extracted using our proposed conceptual scheme are relevant to identify
and classify both healthy volunteers and people with MS.

Some interesting directions for future research have been uncovered by this
work. For instance, we plan to optimize and tune the hyperparameters of the
models and add volumetric measurements to try to improve the accuracy of the
machine learning models used in the study. Additionally, we intend to test our
conceptual scheme on other neurodegenerative diseases, such as Alzheimer or
Parkinson.
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Abstract. This paper describes the implementation of a white-box inclusion-
exclusion integral neural network using PyTorch. Our program is avail-
able on GitHub as the ieinn library. We provide an illustration of how
to use the program with real data and how to extract information from
the network using Shapley values and other methods.

Keywords: nonlinear integral, IE-integral, Explainable neural network

1 Introduction

Neural networks have achieved various results in the field of artificial intelligence
and data science. However, the so-called black box problem, in which the process
and basis of inference cannot be explained because the system itself is a black
box, remains an issue. There are two approaches to addressing this problem: one
is a “model-agnostic approach” that examines the input-output relationships of
models to identify such relationships, while the other is a “model-specific ap-
proach” that takes a more transparent approach to the models themselves. To
solve the black-box problem of neural networks, we have constructed a neural
network that incorporates an inclusion-exclusion integral, hereafter abbreviated
IE integral, mathematical model into a neural network as a white-box neural net-
work, and have proposed performance and information extraction methods[1, 2].
Our experiments demonstrate that the proposed network model achieves compa-
rable performance to standard neural networks, random forests, and other con-
ventional methods in data analysis. Furthermore, we show that the IE integral-
based approach allows us to extract meaningful information from the network
after training, which can be useful for interpreting the results and improving the
system.

Neural network models can be easily implemented using existing frameworks
instead of writing custom programs from scratch. However, it can be difficult to
significantly deviate from the standard formats provided by the framework. Al-
though the IE integral neural network includes skip connections between nodes
and is therefore distinct from standard network architectures, it can be imple-
mented with some ingenuity using an existing framework. This paper presents
an implementation of the Inclusive-Exclusive-Integral Neural Network(IEINN)
using PyTorch, an open-source machine learning library, as well as instructions
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on how to use the program. We also describe how to extract information from
the trained network using Shapley values. The program is available on our public
GitHub　 repository [3].

This paper is structured as follows. Section 2 provides an introduction to the
minimal mathematical background, the inclusive integral mathematical model,
and the inclusive integral neural network. In Chapter 3, we provide a detailed ex-
planation of how to implement the Inclusive-Exclusive-Integral Neural Network
using PyTorch. Section 4 describes specific data analysis methods using the im-
plemented program. Finally, Section 5 summarizes the findings and discusses
future research directions.

2 Inclusion-Exclusion integral neural network

2.1 Inclusion-Exclusion integral mathematical model

Here, we provide the necessary definitions and background for the implemen-
tation and analysis of the proposed IE integral neural network. Among non-
additive measure integrals, a number of partition integrals have been proposed,
and the IE integral is one of them ([1, 4, 5]). Further details and many of the
results can also be found in [6].

In our model, we consider a set of explanatory variables that correspond to
a finite set of J points, denoted as X = 1, . . . , j, . . . , J , with P(X) representing
the power set. The inputs are assumed to be in the unit interval, such that f =
(x1, x2, . . . , xJ) ∈ [0, 1]J , where xi represents either the arguments themselves
or the values after appropriate data transformations. We will use the notation
|A| to denote the cardinality of a subset A ⊆ X.

The IE integral is a non-additive measure that allows for integration with a
measure that is not necessarily assumed additivity and includes the Lebesgue
integral and the Choquet integral[7, 8] as special cases. As the measure’s addi-
tivity is not assumed, interactions such as synergies and canceling effects can
be expressed. The IE integral can be used to construct mathematical models
with high representativity that can express the interaction between items. The
mathematical model of the IE integral uses the Möbius representation of the IE
integral instead of its defining equation.

Definition 1 (Möbius trans representation of IE integral [1]).
Let µ be a monotone measure[9] on (X,P(X)), mµ be the Möbius inversion

of µ, and ⊗ be an interaction operator on [0, 1]|A| for |A| = 1, . . . , J . Then, the
IE integral of f = (x1, . . . , xj , . . . , xJ) with respect to µ and ⊗ is

∫ IE

f dµ :=
∑

A∈P(X)

(⊗

i∈A

xi

)
mµ(A), mµ(A) :=

∑

B⊆A

(−1)|A\B|µ(B).

The interaction operators ⊗ in the IE integral can be expressed using t-norms
such as the algebraic product. When the logical product is multiplied, the IE
integral becomes equivalent to the Choquet integral. However, more general
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operators that do not satisfy symmetry can also be used as interaction operators
(for example, see　 [10]).

When the IE integral is employed as a regression model, the objective or
target variable can be denoted as y and the explanatory variables as x1, . . . , xJ .
Then, we can express the model as follows:

ŷ = f(x1, . . . , xJ) =
∑

A∈P(X)

βA

(⊗

i∈A

xi

)
.

Here, the coefficients βA correspond to mµ(A). Using the IE-integral model has
an important advantage of being a flexible and expressive extension that main-
tains the white-box nature of the linear regression model. In this model, the
parameters are considered as integral measures, allowing the extraction of in-
formation statistics such as the Shapley index [11, 12] from the data. Therefore,
after the training process, important insights can be gained from the parameters,
too. When the number of explanatory variables is J , an IE integral mathematical
model typically consists of 2J terms. However, to avoid an excessive increase in
the number of terms or when there is no need to assume interactions involving
more than a few items, it is possible to reduce the number of terms by impos-
ing a k-order additivity condition on the measure [13]. A non-additive measure
µ is said to be k-order additive if it satisfies the property mµ(A) = 0 for any
A ∈ P(X) with |A| > k.

Preprocessing part IEI part

Fig. 1. IEINN model

2.2 Inclusion-exclusion integral neural network

The IE integral neural network is a network structure that is based directly on
the Möbius transform representation of the IE integral. This enables not only
optimized parameter estimation using the gradient method, but also automated
preprocessing of inputs for the IE integral model. A network diagram for the case
J = 3 is presented in Figure 1, with further details available in [6]. In contrast
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PreprocessingLayer IE OutputLayer

Fig. 2. implementation IE-integral neural network model

to general neural networks, the IE-integral network has unconnected units and
unweighted edge and skip connections. It also includes units of aggregation op-
erations that use multiplication-type operations, such as t-norms. The number
of such units increases exponentially with the number of inputs, at most 2J for
J explanatory variables, i.e., exponentially with the number of inputs. As men-
tioned above, the use of a k-additive measure can alleviate the explosive growth
of units.

3 Implementation of inclusion-exclusion integral neural
network

We implemented the inclusion-exclusion integral neural network using the Py-
Torch library’s torch.nn.Module, which is a module for building neural networks
in Python. Although it is a special case, the inclusion-exclusion integral neural
network can be considered a type of neural network. In the network diagram in
Fig. 2, skip connections such as the edges with weights β1, β2, and β3 can be
treated as unary operations for convenience, allowing for relatively easy use of
the neural network platform.

For the source code of the program, please refer to our “ieinn” library pack-
age, which is available on GitHub [3]. The “ieinn” module is included in the
package. We imported torch, the main package of the PyTorch library, and used
the nn package defined in it to create three classes: input layer, neural network
(nn), and output layer, which inherit from the torch.nn.Module class. The class
diagram of the “ieinn” module is shown in Fig. 3. In the following sections, we
will describe these three layer classes.

3.1 PreprocessingLayer

The PreprocessingLayer class performs data preprocessing to prepare the input
values for the IE integral layer. Specifically, one PreprocessingLayer instance
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Fig. 3. Class diagram

is created for each feature, with all joins of 1 input and 1 output. Suppose
there are J features and N instances of data, each feature being denoted by
Xj = x1,j , x2,j , . . . , xN,j and the objective variable being denoted by Y =
y1, y2, . . . , yN . To ensure that the input values are normalized to the [0,1] interval
and reasonably spread out, we apply the sigmoid function s(x) = 1/(1+e−(ax+b))
as the activation function.

There are several options for initializing the weight and bias parameters, and
we offer three methods, (i) to (iii), which can be selected based on the data
distribution and the presence of outliers.

(i) PreprocessingLayerPercentile class To set the initial weights and
biases, we use the 95th percentile (X0.95

j ) and the 5th percentile (X0.05
j ) of each

feature. If the correlation coefficient between the objective variable and feature
Xj is positive (negative), the weight and bias are initialized as follows: weightj =
±2× 2.94/(X0.95

j −X0.5
j ), biasj = ∓2.94(X0.95

j +X0.5
j )/(X0.95

j −X0.5
j ), respec-

tively. Here, s−1(0.05) ≈ −2.94 and s−1(0.95) ≈ 2.94, so the 5th percentile value
(95th percentile value) of feature Xj produces an output of 0.05 (0.95) when the
correlation between Xj and the objective variable is positive.

(ii) PreprocessingLayerStandardDeviation class To determine initial
values assuming that the data follows a normal distribution, the Preprocess-
ingLayerNormal class is used. The mean and standard deviation of each fea-
ture are calculated from the training data, denoted as E[Xj ] and SD[Xj ], re-
spectively. If the correlation coefficient between the objective variable and the
feature is positive or negative, the weight and bias parameters are defined as
weightj = ±2× 3.75/4SD[Xj ], biasj = ∓3.75× 2E[Xj ]/4SD[Xj ], respectively,

Φ(2) = 1√
2π

∫ 2

−∞ e−
1
2x

2

dx ≈ 0.977, s−1(0.977) ≈ 3.75. Here, Φ(2) denotes the

cumulative distribution function of the standard normal distribution evaluated
at 2, which is approximately 0.977. The inverse function of the sigmoid function
evaluated at 0.977 is approximately 3.75, denoted as s−1(0.977) ≈ 3.75. There-
fore, when the correlation between Xj and the objective variable is positive, the
output is 0.977 when the input is E[Xj ] + 2SD[Xj ], and when the correlation is
negative, the output is 0.023 when the input is E[Xj ]− 2SD[Xj ].
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(iii) PreprocessingLayerMaxMin class In contrast to method (i) which
employs the 95th and 5th percentile, the maximum and minimum values are uti-
lized.

3.2 Inclusion-exclusion integral neural network class IEINN

This layer corresponds to the Interaction Operator layer in the IE integral net-
work. The constructor, def init , defines the preprocessing layer and the output
layer. The forward function implements the forward propagation process. The
IE integral layer has no weight parameters that are updated during training.
The set of n-term operators required to compute integrals, such as algebraic and
logical products, is provided in the narray op module, which is imported in the
ieinn module. The original functions inherited from the torch.nn.Module class
are available, along with several additional necessary functions.

3.3 OutputLayer

The IE layer, composed by the t-norm, outputs a single input that serves as an
input to the instance, which corresponds to the output layer of the entire neural
network. The number of inputs required depends on the additivity specification,
with the default being 2N − 1 inputs without any additivity restrictions. This
number is reduced if additivity restrictions are applied. The weights are stored
in the order of w{1}, w{2}, . . . , w{N}, w{1,2}, . . . , wA, . . . , w{1,2,...,N}, where A cor-
responds to the Möbius transform of the fuzzy measure used in the integration.
The weights and biases are adapted during training. The weight parameter wA

is initialized to 1/N for A ∈ P(X), |A| = 1, and 0 otherwise. This initial value
setting implies a fuzzy measure with maximum entropy [14].

4 Application to dataset for machine learning

In this section, we present a concrete analysis procedure using the program
developed in the previous section and a real dataset. We demonstrate how to
execute the program using Google Colaboratory, a Python execution environ-
ment provided by Google. This service offers a simple setup process for a Python
environment and allows free access to GPUs. We have prepared a Python Note-
book (.pynb) that performs the operations described here, and the “main.py”
program for the data analysis is available in the library.

The dataset used in the analysis is the “Car Evaluation” dataset[15], which
is designed for a regression problem. This well-known dataset consists of 1728
observation data with information on six features. The goal is to predict the
overall evaluation value of each automobile. Table 1 provides an overview of the
dataset. Since the raw feature values are ordinal categorical data in the form of
word alternatives, they are converted to numerical values in order. Assume that
the quantified data is stored in csv format in CarEvaluation.csv. This dataset is
also available on GitHub.
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Table 1. Car Evaluation Data

attributes alternatives digitization cor. w/. y

y overall evaluation (unaccept, acceptable, good, vry good) (1,2,3,4) 1.00

x1 buying price (very high, high, medium, low) (1,2,3,4) 0.28
x2 maintenance cost (very high, high, medium, low) (1,2,3,4) 0.23
x3 doors number (2,3,4,more) (1,2,3,4) 0.07
x4 persons capacity (2,4,more)a a (1,2,3) 0.34
x5 luggage size (big, medium, small) (1,2,3) 0.16
x6 safety (high, medium, low) (1,2,3) 0.44

We will now proceed to explain the steps for executing the program. First,
we mount Google Drive and download the ieinn library to it.

from google.colab import drive

drive.mount('/content/drive')

%cd /content/drive/MyDrive/

!git clone https://github.com/AoiHonda-lab/IEI-NeuralNetwork.git

import sys

sys.path.append("/content/drive/MyDrive/IEI-NeuralNetwork")

%cd IEI-NeuralNetwork/

Import the necessary libraries, including the IE integral network package, which
is denoted by the filename “ieinn.py”1.

import pandas as pd

import torch

import torch.nn as nn

import csv

from sklearn.model_selection import train_test_split

from ieinn import ieinn

If a GPU is available, set cuda to device, otherwise, set CPU.

# check GPU or CPU

device = 'cuda' if torch.cuda.is_available() else 'cpu'

print(device)

cuda

The data is processed by reading the CarEvaluation.csv file using pandas and cre-
ating the explanatory variable X and the objective variable y. After dividing the

1 The subsequent actions can be obtained by executing “main.py” within the library.
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data into training data and test data in appropriate proportions, convert them
into the corresponding tensor type compatible with PyTorch. To split the dataset
into training and validation data in arbitrary proportions, the train test split
function from scikit-learn can be utilized. In this study, 80% of the data are
randomly assigned to the training set, while the remaining 20% are assigned to
the validation set. The data partitioning ratio can be adjusted according to the
study requirements.

df=pd.read_csv

('CarEvaluation20221207.csv',encoding="shift jis")

df=df.drop(0,axis=0)

df=df.astype(float)

y=pd.DataFrame(df.iloc[:,0])

X=pd.DataFrame(df.iloc[:,1:])

# data Generating

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)↪→

X_train_df=X_train

y_train_df=y_train

# Extract as a numpy array with value and convert to tensor

X_train = torch.FloatTensor(X_train.values)

y_train = torch.FloatTensor(y_train.values)

X_test = torch.FloatTensor(X_test.values)

y_test = torch.FloatTensor(y_test.values)

The data content can be printed by the command print(df).

print(df)

evaluation price maint doors persons lug_boot safety

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 2.0

3 1.0 1.0 1.0 1.0 1.0 1.0 3.0

:

1727 3.0 4.0 4.0 4.0 3.0 3.0 2.0

1728 4.0 4.0 4.0 4.0 3.0 3.0 3.0

[1728 rows x 7 columns]

Next, the data for training is prepared by creating dataset for both training and
testing, which are then passed as arguments to the DataLoader. During this
process, the mini-batch size and data shuffling can be specified.
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# Dataset creating

train_dataset = torch.utils.data.TensorD

ataset(X_train, y_train)

test_dataset = torch.utils.data.TensorDataset(X_test, y_test)

# DataLoade creating

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,

batch_size=128, shuffle=True, num_workers=2,

generator=torch.Generator(device=device))

↪→

↪→

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,

batch_size=128, shuffle=False, num_workers=2,

generator=torch.Generator(device=device))

↪→

↪→

Create a model using the class IE imported by ieinn module and specify argu-
ments such as a training data loader, the additivity order of the fuzzy measure,
the polynomial operation used for IE-integral, and the preprocessing method.
The training data loader is the “train loader” created earlier, and the additivity
order is an integer between 1 and the number of explanatory variables. Several t-
norms such as logical product and algebraic product are available for polynomial
operations. The preprocessing method can be selected from percentile, standard
deviation, and maximum and minimum values. If the additivity order, poly-
nomial operation, and preprocessing method are not specified, the defaults are
complete non-additivity, algebraic product, and PreprocessingLayerPercentile,
respectively.

model=IEINN.IE(train_loader, additivity_order=2,

tnorm='Algebraic').to(device)↪→

criterion = nn.MSELoss() #loss function

optimizer = torch.optim.Adam(model.parameters()) #Optimization method

print(model)

IE( (fc1): PreprocessingLayer()

:

(fc6): PreprocessingLayer()

(fc2_0): Algebraic()

(fc2_1): OutputLayer()

Check the initial parameters before training. The weights are w{1}, w{2}, . . . , w{6},
w{1,2}, w{1,3}, . . . , w{5,6}.

model.state_dict()

OrderedDict([('fc1.weight', tensor([[1.9600]])),

('fc1.bias', tensor([-4.9000])), ('fc2.weight', tensor([[1.9600]])),
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('fc2.bias', tensor([-4.9000])), ('fc3.weight', tensor([[1.9600]])),

('fc3.bias', tensor([-4.9000])), ('fc4.weight', tensor([[2.9400]])),

('fc4.bias', tensor([-5.8800])), ('fc5.weight', tensor([[2.9400]])),

('fc5.bias', tensor([-5.8800])), ('fc6.weight', tensor([[2.9400]])),

('fc6.bias', tensor([-5.8800])),

('fc2_1.weight', tensor([[0.1667, 0.1667, 0.1667, 0.1667, 0.1667,

0.1667, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000]])),

↪→

↪→

↪→

('fc2_1.bias', tensor([0.]))])

Now that the network is ready, run the training. Specify train data loader, test
data loader, criterion, optimizer, number of epochs, and device as arguments.

if (device == 'cuda'):

torch.set_default_tensor_type('torch.cuda.FloatTensor')

history=model.fit_and_valid(train_loader, test_loader, criterion,

optimizer, epochs=100, device=device)↪→

Epoch [1/100], loss: 1.14647595 val_loss: 1.16615186

Epoch [2/100], loss: 0.95711808 val_loss: 0.97552333

:

Epoch [100/100], loss: 0.27510643 val_loss: 0.29875589

time 28.790654182434082

Displays training results. Parameters after training can be displayed using the
model.state dict function as before training.

model.state_dict()

OrderedDict([('fc1.weight', tensor([[2.0274]])),

('fc1.bias', tensor([-4.8401])),('fc2.weight', tensor([[2.0580]])),

('fc2.bias', tensor([-4.7854])), ('fc3.weight', tensor([[2.0507]])),

('fc3.bias', tensor([-4.7873])), ('fc4.weight', tensor([[3.5346]])),

('fc4.bias', tensor([-5.3112])), ('fc5.weight', tensor([[3.0393]])),

('fc5.bias', tensor([-5.7852])), ('fc6.weight', tensor([[3.1182]])),

('fc6.bias', tensor([-5.9508])),

('fc2_1.weight', tensor([[ 0.2197, 0.2251, 0.1708, 0.3471, 0.2284,

0.6126, 0.0568, 0.0568, 0.0568, 0.0568, 0.0568, 0.0488, 0.0488,

0.0488, 0.0488, -0.0236, -0.0236, -0.0236, 0.1518, 0.1518,

0.0583]])), ('fc2_1.bias', tensor([0.0434]))])

↪→

↪→

↪→
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Functions for displaying the training progress using graphs, namely plot, plot train,
and plot test, are provided.

model.plot()

There is also a function, model.r2 score score, to obtain the coefficient deter-

Fig. 4. Learning curves for train data and test data

mination.

model.r2_score(test_Loader)

0.6534947140654361

Information can be extracted from the parameters after training. In the prepro-
cessing layer parameters, for example, fc1.weight = 2.0274, fc1.bias = −4.8401.
Then we see, for example, that the explanatory variable x1 is converted from
(1, 2, 3, 4) to (0.0452, 0.2620, 0.7267, 0.9522) by passing through the preprocess-
ing layer. Transform so that f(x) = 1/[1 + exp(2.0274x− 4.8401)]. fc2 1.weight
is the weight of the IE integral layer, which corresponds to the Möbius trans-
form of the non-additive measure. They shows that there is a synergistic effect
between the importance of persons capacity and safety, with both being partic-
ularly highly valued. Conversely, the doors number and luggage size are comple-
mentary, meaning that either one of them should be satisfied. From the Möbius
transform, the Shaplay values can be computed directly using

ϕi(v) =
∑

A∋{i}
mv(A)/|A|.
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The Shapley value obtained from this result is (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) = (0.2293,
0.5040, 0.3746, 0.7346, 0.4886, 0.8200). From the Shapley values, we can see that
the most important explanatory variable is safety, followed by a persons capacity.

5 Conclusions

In this paper, we presented a powerful approach to implement IE-integral neural
networks for data analysis. The program has been made publicly available, which
we hope will benefit the scientific community in their research. Our future work
will focus on improving the program by adding more necessary functions to
this library. We acknowledge that there are still many challenges that need to
be overcome, such as developing more advanced preprocessing techniques for
handling complex data and designing larger-scale neural networks using this
framework. Nevertheless, we believe that this method has significant potential
to advance the field of data analysis and information extraction.
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Abstract. With the increased interest in and demand for explanations
of decisions made by Machine Learning systems, and due to ethical issues
and concerns raised by researchers and governmental bodies worldwide,
as well as the proposed regulations connected to these, several techniques
to create explanations have been developed. Several methods have been
developed in recent years that seek to create textual explanations of data.
In this paper we compare three of these methods: Anchor, LORE and
CIU. We show the capabilities of these methods on tabular data and the
type of explanations they generate. We also analyse their shortcomings
and what would be needed in development to put these methods at the
forefront of explainable AI.

Keywords: Explainable AI · Textual explanations · Contextual Impor-
tance and Utility · Anchor · LORE.

1 Introduction

The ultimate challenge of Explainable AI (XAI) is reaching out to end users.
With so called Good Old Fashioned AI (GOFAI), this could be done by the
developers of applications, as they knew the logic behind their system (see e.g.
[5]). But with the opaqueness of Machine Learning (ML) methods, these same
programmers don’t know why the applications would have a specific outcome,
leading to the so called black-box AI systems. This is a growing problem since
the usage of black-box methods is expanding to cover more domains and to solve
more complex problems. The less clear these processes are, the more they will
increase the risk of leaving the end-user confused or upset about the outcome,
in particular if it is undesired or unexpected.

A great amount of research is being done to provide some view into the way
these methods work, or to approximate their working, to clarify their reasoning.
In order to ensure user trust in AI as it becomes more widespread, solutions that
provide explanations to end-users should be explored. This means letting a user
know the underlying reason for an automated decision or judgement that is made.
For example, if a user has had their loan application rejected, or if their insurance
⋆ This work was partially supported by the Wallenberg AI, Autonomous Systems and

Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
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fee has increased, the user should receive an explanation of the reasoning behind
this even when the decision has been made by an AI system. Based on this
the user could have a better understanding of the reasons behind the decision
and could make a more informed decision on when to reapply or how to object
to the decision. It is also important to see what type of explanations are the
most valuable and clear to different end-users. As it is now, textual explanations
seem to improve the possibilities to achieve this potential increased trust. One
of the reasons for this is that there is a reduced risk of misunderstandings in
comparison to interpreting visual explanations. In addition, text can also be
made available to the visually impaired, by means of text-to-speech methods. In
this paper we present an evaluation of three XAI methods that were designed
to produce textual explanations.

2 Background

The roots of XAI can be found in expert systems explaining their results via
applied rules. These early types of explanation methods date back to the 1970s
and early 1980s [19, 18, 21]. The biggest difference in problems faced then and
now is that current AI applications do not always operate on rule-based decision-
trees but rather on opaque neural networks or other ML models. This poses an
additional challenge to current XAI explanation methods that are required to
not only provide a satisfactory explanation of a decision, but to do so through
new mechanisms that can derive explanations from the output of systems whose
decision-making methods cannot be interpreted or known directly. This is in
great contrast to rule-based systems whose inference structures can be known
directly by observing or being knowledgeable of the rules.

The leading categories of current XAI method development are post-hoc ex-
planations [3, 13] and transparency by design [14], also called the glass box ap-
proach. In this work we deal with explanation methods of the former category.
In this category of explanations, most methods of explanation concern ranking
the main contributing features by their role or influence in the result, but there
is also increased interest in counterfactual explanations for classification prob-
lems [20, 13], which indicate what changes could be done to change the outcome
for a classification method (even though “counterfactual” is not limited to clas-
sification tasks per se). We will be looking at and comparing the performances
of three different explanation methods for generating textual explanations of
machine learning outputs.

The first explanation method is Contextual Importance and Utility (CIU) [7].
The original development of this method was inspired by Multiple-Criteria Deci-
sion Making (MCDM) methods such as Analytic Hierarchy Process (AHP) [17].
CIU computes the “Contextual Importance” (CI) and “Contextual Utility” (CU)
of features for a given decision. These terms are loosely based on the existing
definition of importance and utility in MCDM methods. The CI indicates the
importance of a feature for the model and for a specific instance, or “context”.
The CU on the other hand indicates to what extent the studied instance’s feature
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values contribute towards a higher probability for a specific class in the case of
classification, or whether it slides the result up or down in a regression problem.
This also means that CIU, in a classification problem, can be used to explain
why an instance does not belong to a specific other class. Implementations of
CIU exist in R [8] and Python [2] programming languages.

The other two methods that we will be looking at — LORE and Anchor —
both function by creating a decision-tree model that approximates the function-
ing of the AI model. The difference between these methods is how the decision-
tree is converted into an explanation. LORE uses a rule-extraction method to
provide explanations, where Anchor instead creates local regions known as “an-
chors” based on the decision-tree.

Anchor was first proposed in 2018 [16], by the same authors that developed
LIME [15]. LIME is an earlier explanation method, that has a focus on visual
explanations and was published in 2016. Anchor was initially developed as an
extension of LIME, to provide explanations in a new format, including textual
explanations. The internal difference to LIME is that Anchor uses a local region,
known as an “Anchor” to create explanations. The Anchor method is model-
agnostic, so it should work with any type of ML model, but is set up to be only
available for classification problems. Since part of the methods is to create a
decision tree, based on the model, the results from these explanations come as a
set of rules that represent the decision nodes that are touched upon to reach the
final classification. Anchor is available as an independent Python package [16]
and is also included in the “alibi” library [12], which is a Python library that
contains a collection of different explanation methods.

LORE (LOcal Rule-based Explanations) is still in an early development
stage [9]. The method has been developed as an improvement on the faithfulness
of textual explanations. It is designed to explain model outcomes in binary clas-
sification problems using a sequence of neighborhood generation, rule extraction,
and optionally counterfactual extraction. Unlike Anchor and CIU, the design of
LORE is not centered around a definition, but around the combined use of a
set of methods, such as genetic algorithms [11]. The first step of LORE is to
find neighborhoods for each feature in which the possible outcomes reside. After
neighborhood generation, the neighborhoods are merged and a decision tree is
built from these merged neighborhoods. Rules are extracted from this decision
and given as the explanation for the studied instance, as well as all instances
whose feature values satisfy the rule conditions. It ls also possible to identify so
called counterfactual instances by identifying instances that do not satisfy the
rules [9]

3 Methodology

To strive towards objectivity in the tests, we approximated the same setup for
the different methods as much as possible. To begin, for each dataset we used the
same file with data, in this case a data format file, and separated the training and
testing dataset the same way. As the different methods expect different inputs,

112



and a significant amount of pre-processing, a perfect simulacrum of the models
was not easily achieved. Our hope was that this could be countered by using
the same seeds and bootstrapping a larger number of tests and outputs with the
same seeds.

LORE needs access to the possible outcomes, the entire dataset kept in mem-
ory and the path to the source data file (access to the entire dataset is not
enough), to run their explanation function. Since LORE is designed for binary
classification, it neither functions with classification of multiple outputs, regres-
sion problems, nor non-tabular data. This will be reiterated in the results and
addressed in the discussion section.

To run Anchor, a list with all features and their possible values, the possible
outcomes and the training data were required as these are not automatically
extracted from the data. Anchor is designed around classification, so regression
problems are not within their designed functionality.

In the R implementation of CIU, the only needed inputs were the model and
the possible outcomes. We used the R implementation of CIU in our tests [8].

The first dataset we used for our test is the “adult” dataset, also known as
the “census income” dataset, from the University of California Irvine Machine
Learning Repository [4]. It is a classification dataset with two possible outcomes.
The outcomes are to predict whether or not the instance’s yearly income exceeds
$ 50k. As all three methods are capable to work with binary classification data,
the “adult” dataset can be considered as a baseline dataset, for which the quality
and accuracy of the explanations can be shown.

The next dataset is a classification dataset with more than two possible
result classes, which excludes LORE as a method. We used the Iris dataset [1,
6], for its simplicity and since both CIU and Anchor have shown to work for it
previously [7, 16].

Finally we tested the explanations with a regression dataset. For this we
decided on the Boston Housing dataset [10], as it is widely used for benchmarking
regression problems.

During our tests, we made general observations of the different algorithms, to
see how they themselves evaluate their accuracy, and in what form they present
their explanations. We started by observing a typical explanation of a single
instance. We then proceeded to run the explanation method ten times on the
same model and instance. In this time we made note of the following factors.

– Self-reported accuracy of the result of the explanation, when the method has
this as a functionality.

– How rapidly the model generates an explanation, measured by the system.time()
function’s “Elapsed” value.

– Consistency of the results, i.e. whether the explanations remain the same
over multiple runs of a method for the same instance. We used 10 runs in
all experiments.

– Overall agreement in generated results, and to what extent it can vary per
case. (e.g., what features are found by all methods to be ‘important’).
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4 Results

We trained a random forest model for each of the datasets, which gave a good
prediction accuracy for all of them. For each dataset, we have included a figure
illustrating an instance of the explanations for each of the different methods.
This is to give an indication on the form the explanation takes in each method.
We then present the results of running each method ten times on the same
instance, to show their consistency and speed.

4.1 Adult dataset

Fig. 1. Effect of adult dataset features on the probability of the studied instance to
belong to the “<=50k” class, with the values of the studied instance highlighted in red.

The Adult dataset is a binary classification dataset. Fig. 1 illustrates the
effect of varying the feature values on the probability of the studied instance to
belong to the class “<=50k”, which signifies having a yearly income of less than
$50 000. The red dot in the figure shows the feature values of the instance we
used, which are the following: age: 27, workclass: ‘Private’, education: ‘Some-
college’, marital-status: ‘Divorced’, occupation: ‘Adm-clerical’, relationship:
‘Unmarried’, race: ‘White’, sex: ‘Female’, capital-gain: 0, capital-loss: 0,
hours-per-week: 44, native-country: ‘United-States’.
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Fig. 2. LORE explanation and delta for the adult dataset.

Fig. 3. Anchor explanation for the Adult dataset.

Fig. 4. Example of CIU output for the adult dataset.

Feature LORE Anchor CIU

capital gain × + ×
capital loss − − ×
native country − − ×
marital status − × +
relationship + + +
hours per week + − +
education − + +
age × × −
occupation − + −

Table 1. The features of the adult dataset. Features consistently included or considered
very important are indicated with an ×, features only sporadically included, or with a
lower but still notable importance is indicated with a +. Features that are not included
in LORE and Anchor explanations or that are considered not important by CIU are
indicated with a −.

LORE. The explanation provided by LORE, illustrated in Fig. 2, shows the
decision-tree steps required to confidently explain the right outcome. Out of the
10 explanations, all included a “capital gain” below a threshold value that varied
between 3589 and 7688. For 8 out of 10 runs, “age” was included with values
below thresholds that varied from 27 to 59. One run produced a rule where
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“age” should be between 23 and 30. The value of the feature “relationship” being
“unmarried” was included in the decision-tree one time and “hours per week”
being between 42 and 45 was also included once. No other features were included
in the decision-tree to explain the outcome of an income below 50k. Each time
the explanation was generated, it took between 17.3 and 17.9 seconds.

Anchor. Anchor performed within its own definition of acceptable accuracy,
above 95 percent. Out of the 10 runs on the same instance, all of the anchors
included “Age ≤ 29.00”. In one run, “Age ≤ 29.00” was the only rule included in
the anchor explanation. This rule was most often paired with the rule “Marital
Status > 1.00”, which occurred in 5 out of 10 Anchors as the Anchor explanation.
After that “Occupation ≤ 2.00” was paired with “Age” twice. The “Relationship”
feature was also paired with “Age” twice, but with a variation, one was “Rela-
tionship > 0.00” and the other was “Relationship > 1.00”. In two results, a third
feature appeared as part of the Anchor, paired with “Age” and “Marital Status”.
These were “Education > 1.00” and “Capital gain ≤ 0.00”.

The one run that was different cited the Anchor as “Age ≤ 29.00 AND Hours
per week ≤ 45.00 AND Education > 1.00”. The Precision function that Anchor
uses to estimate how true to the model the explanation had values in the range
0.95 to 0.99. The time for each explanation to run was in the range 0.068 to
0.159 seconds.

CIU. For CIU, the 10 runs all gave exactly the same results. Capital gain and
loss both have high importance and utility, with native country having some im-
portance and high utility. For the studied instance, all values except “workclass”
are of high utility, which in this case signifies that they are typical for instances
that belong to the class “<=50k”. Looking at the most important features, that
didn’t make the “slightly important” threshold, it shows marital status, educa-
tion, relationship, and hours per week.

4.2 Iris dataset

The Iris dataset is a classification dataset with multiple outputs. Fig. 5 illus-
trates the effect of varying the feature values on the probability of the studied
instance to belong to the class “virginica”. The red dot in the figure shows the
feature values of the studied instance, i.e.: Petal.Length: 5.1, Petal.width:
1.9, Sepal.Length: 5.8, Sepal.Width: 2.7.

LORE. LORE was not designed to work with non-binary classification, and no
results are therefore available here.

Anchor. All 10 runs with the studied instance produced the Anchor explanation
“petal width (cm) > 1.80 AND sepal width (cm) ≤ 2.80”. The Precision function
ranged between 0.97 and 0.99. The time for each explanation to run ranged from
0.111 to 0.138 seconds.
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Fig. 5. This figure displays the effect that the different features have on the estimated
probability of the studied instance being an Iris Virginica.

Fig. 6. Anchor output for the Iris dataset.

Fig. 7. CIU output for the Iris dataset, including “why” explanation for the actual class
(“virginica”) and “why not” explanations for the other two classes.

CIU. For CIU, the 10 runs all gave identical results. All of the values indicated
that the output was a Virginica, with Petal Length and Petal Width being the
most important features.
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Fig. 8. Effect of the less linear features of the Boston Housing data on the estimated
value.

4.3 Boston housing dataset

The Boston Housing dataset is a regression dataset, with a numerical output.
Fig. 8 presents some of the features that have a highly non-linear effect on the
predicted price for the used instance, “14.585”. The red dot in the figures indicates
the values of the studied instance.

Fig. 9. Example of CIU output of the Boston housing dataset.
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LORE. LORE is not designed for regression problems, and therefore failed to
give an accurate explanation. As a regression model is not part of the LORE
design, it is removed from this comparison.

Anchor. Anchor attempted to explain the Boston housing dataset, but failed to
meet it’s own internal criteria of precision. It treated all different outcomes as
classes instead of identifying it as a regression problem. This resulted in an error
of Anchor not meeting the self-defined precision criterion, even when lowering
the precision threshold to 0.7 (from the default 0.95). It can still be run on the
data, but will create an Anchor that includes all features and has low precision,
which is not what the method is intended to do.

CIU. CIU displayed identical results for every run, shown in Fig. 9. The esti-
mated output value (medv=“Median value”) is shown with the descriptor ‘bad’
because it is a low value compared to the other instances in the data set. This
result is largely explained by the most important two features, ‘lstat’ and ‘rm’
that are both ‘very bad’, but some of the ‘not important’ features are ‘good’
or ‘very good’, which in this case puts the overall value up to just ‘bad’, rather
then ‘very bad’.

5 Discussion

Although our initial goal was to apply all three methods to all the studied data
sets, we rapidly realized that not all methods or implementations were designed
for all types of tabular data. In the results, each method provided some form of
text explanation for binary classification and showed some amount of consistency
for the same instance. For the instance used, LORE was significantly slower then
the others. For the classification on the IRIS dataset, the results for both Anchor
and CIU were identical and of similar speed. Since only CIU worked as expected
for the regression dataset, no comparison is possible.

Apart from LORE and Anchor not working for regression at all, all three
methods had strengths and weaknesses. In the case of LORE the greatest weak-
ness was that it only worked for binary output, and current implementations take
long to generate the explanations. In contrast, the Anchor and CIU implemen-
tations are well suited for such tasks and both run relatively rapidly. The CIU
method was the most consistent in generating explanations, since for all three
tests the explanations were identical on every run. The clarity of the explanation
is subjective, but Anchor and LORE have the benefit of keeping the explanation
concise, whereas for CIU, the explanation includes all features unless specifically
bounded by a stated threshold. This also ascribes a benefit to CIU, in that more
of the instance is included in the explanation, so lesser contributing factors are
also included.
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6 Conclusion

In this paper we evaluated three methods of generating textual explanations,
LORE, Anchor and CIU. We found that while all methods can explain a binary
classification outcome, Anchor and CIU can explain multiple output classifica-
tion and only CIU can generate an explanation for a regression problem. When
comparing the methods, we found that CIU is the most consistent in the expla-
nation it produced. To truly know which method is better for generating textual
explanations, further study must be done using these methods. Instead of a focus
on technical limitations of the methods, a user study on how far these explana-
tions take their understanding and if they are satisfied with such output as an
explanation would be a valuable next step.
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Abstract. Probabilistic metric spaces generalize metric spaces. While
in a metric space the metric is a function that returns a number repre-
senting the distance, in a probabilistic metric space the corresponding
function returns a distribution. In a recent work we have introduced prob-
abilistic metric spaces based on fuzzy measures. They are the f-spaces.
In this paper we provide some new examples and results for this family
of probabilistic metric spaces.

1 Introduction

Probabilistic metric spaces [9,10] were introduced as a generalization of metric
spaces. In probabilistic metric spaces we deal with distribution functions. They
play the role of the distance. The triangle inequality is then replaced by an
inequality on distribution functions. More precisely, the inequality is based on
triangle functions. Triangle functions are connected with t-norms [1].

Several families of probabilistic metric spaces have been introduced in the
literature. Menger spaces, E-spaces [11,12], and F-spaces are of relevance in this
work. We introduced F-spaces recently [7] as a generalization or extension of E-
spaces. While in E-spaces the probabilistic metric space is based on a probability
distribution, in F-spaces we replace the probability with a fuzzy measure. Then,
under some conditions, the construction also produces a probabilistic metric
space with some interesting properties.

In this paper we further study these probabilistic metric spaces, provide
some results based on the Choquet integral, and include some examples. Recall
that the Choquet integral is a generalization of the Lebesgue integral when the
measure is not additive, and, thus, permits to integrate a function with respect
to a non-additive (fuzzy) measure. See e.g. [3,13,14,5] for details on the Choquet
integral.

The structure of this paper is as follows. We begin in Section 2 with some
preliminaries. Then, in Section 3 we review the probabilistic metric spaces we
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need in our work. Section 4 includes our main results on the F-space and the
Choquet integral. The paper finishes with a summary.

2 Preliminaries

In this section we review t-norms, and some results related to fuzzy measures
and integrals.

2.1 t-Norms

We will use in this paper the concept of t-norm. They are functions on [0, 1]×[0, 1]
that generalize Boolean conjunction. The definition follows.

Definition 1. A function > : [0, 1]× [0, 1]→ [0, 1] is a t-norm if and only if it
satisfies the following properties:

(i) >(x, y) = >(y, x) (symmetry or commutativity)
(ii) >(>(x, y), z) = >(x,>(y, z)) (associativity)
(iii) >(x, y) ≤ >(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)
(iv) >(x, 1) = x for all x (neutral element 1)

They are usually required to satisfy also continuity and subidempotency (i.e.,
>(x, x) < x for x 6= 0). Such t-norms are called Archimedean t-norms.

Some examples of t-norms follow.

Example 1. The following functions are t-norms.

– Minimum: >(x, y) = min(x, y). The minimum is often denoted by ∧. That
is, x ∧ y = min(x, y).

– Algebraic product: >(x, y) = xy. This t-norm is denoted by Π(x, y) fol-
lowing [10].

– Bounded difference or Lukasiewicz t-norm: >(x, y) = max(0, x+y−1).
This t-norm is denoted by W (x, y) following [10].

– Yager family: >w(x, y) = 1−min
(
1, ((1− x)w + (1− y)w)1/w

)
for w ≥ 0.

– Drastic: >d(x, y) = y if x = 1, >d(x, y) = x if x = 1, and >d(x, y) = 0
otherwise.

It easy to see that t-norms are proper generalizations for conjunctions, as,
for all of them, >(0, 0) = >(0, 1) = >(1, 0) = 0 and >(1, 1) = 1.

2.2 Fuzzy measure and the Choquet integrals

This section introduces some concepts related to fuzzy measure and the Choquet
integrals that are needed later on in this paper.

We use X to denote the reference set. Then, let A denote a subset of the
power set of X (i.e., 2X) such that ∅ ∈ A. An element of A is said to be a fuzzy
measurable set and, then, (X,A) is a fuzzy measurable space. In addition, we say
that a function f : X → R is measurable when {x|f(x) > r} ∈ A for all r ∈ R.
We denote the class of measurable functions by M. In addition, we denote by
M+ the class of non-negative measurable functions.
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Definition 2. A fuzzy measure (also known as non-additive measure and ca-
pacity) µ is a real valued set function µ : A −→ [0, 1] that satisfies the following
properties:

(i) µ(∅) = 0 (boundary condition)
(ii) µ(X) = 1 (boundary condition)
(iii) A ⊂ B for A,B ∈ A implies µ(A) ≤ µ(B) (monotonicity condition)

If µ(X) < ∞, the conjugate of a measure µ, denoted by µc, is defined by
µc(A) = µ(X)− µ(AC) for A ∈ A.

Among the different families of fuzzy measures, some are of interest in this
work. We define them below.

Definition 3. Let X be a set, then we consider the following fuzzy measures on
(X,A).

(i) Probability measures. A measure P is a probability measure if it satisfies the
additivity axiom. That is, for all A ∩B = ∅ we have that

P (A ∪B) = P (A) + P (B),

and, in addition,
P (X) = 1.

(ii) Possibility measures. A measure Pos is a possibility measure if it satisfies
the following axiom

Pos(A ∪B) = max(Pos(A), Pos(B))

for all A, B. These measures were introduced by Zadeh [17] in the context
of fuzzy sets.

(iii) Necessity measure. A measure Nec is a necessity measure if it satisfies

Nec(A ∩B) = min(Nec(A), Nec(B))

for all A, B. These measures were also introduced by Zadeh [17] and they
can be defined as the conjugate of possibility measures.

(iv) The 0-1 possibility measure PosA focused on a set A ⊆ X. Given a set A we
define the measure as follows.

PosA(B) =

{
1 if A ∩B 6= ∅
0 if A ∩B = ∅

(v) The 0-1 necessity measure NecA focused on a set A ⊆ X. This measure is
defined as follows, and corresponds to the unanimity game [5].

NecA(B) =

{
1 if A ⊆ B
0 if A 6⊂ B

Definition 4. Let µ be a fuzzy measure on the measurable space (X,A). Then,
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– µ is submodular if µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B);
– µ is supermodular if µ(A) + µ(B) ≤ µ(A ∪B) + µ(A ∩B).

Definition 5. Let ϕ be a real valued function on closed interval [c,d]. Then,

– ϕ is said to be convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

for x, y ∈ [c, d], 0 < λ < 1, and
– ϕ is said to be concave if

ϕ(λx+ (1− λ)y) ≥ λϕ(x) + (1− λ)ϕ(y)

for x, y ∈ [c, d], 0 < λ < 1.

The following results are of relevance.

Proposition 1. [8] Let µ be a non-additive measure on (X,A), and ϕ : [0, 1]→
[0, 1] be a non-decreasing function with ϕ(0) = 0 and ϕ(1) = 1.

(i) If ϕ is convex, then ϕ ◦ λ is supermodular.
(ii) If ϕ is concave, then ϕ ◦ λ is submodular.

We begin introducing the Choquet integral which was introduced by Cho-
quet [2]. This integral generalizes the Lebesgue integral. More particularly, when
the measure is additive (as we require µ(X) = 1 this measure will be a probabil-
ity), the Choquet integral of f is the Lebesgue integral of f . Thus, the Choquet
integral of f with respect to µ corresponds to the expectation of f . For details
on fuzzy measures and integrals see e.g. [13,14,5].

Definition 6. [2] Let X be a set, let f be a function on X as above, and let
µ be a fuzzy measure on (X,B). Then, the Choquet integral of f ∈ M+ with
respect to µ is defined by

(C)

∫
fdµ =

∫ ∞

0

µf (r)dr,

where µf (r) = µ({x|f(x) ≥ r}).
We also need to consider the restriction of the integral on a set. Let A ∈ B

be such set. Then, the Choquet integral of f with restricted domain A is defined
as follows:

(C)

∫

A

fdµ =

∫ ∞

0

µ(A ∩ {x|f(x) ≥ r})dr.

From the above definitions, it is obvious the next theorem.

Theorem 1. Let (X,B) be a measurable space, let f be a nonnegative measur-
able function on X and A ∈ B. Then,
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(i) (C)

∫
fdPosA = sup

x∈A
f(x) where PosA is the 0-1 possibility measure focused

on A.

(ii) (C)

∫
fdNecA = inf

x∈A
f(x) where NecA is the 0-1 necessity measure focused

on A.

The next theorem is known as the subadditivity theorem.

Theorem 2. [2,3] Let (X,B) be a measurable space, let fand g be a nonnegative
measurable function on X and A ∈ B. If a fuzzy measure µ on B is submodular,
then

(C)

∫
(f + g)dµ ≤ (C)

∫
fdµ+ (C)

∫
gdµ.

We need some additional notation. Let us denote by ||f || the following:
||f || := (C)

∫
|f |dµ. Then, because of the subadditivity theorem, we know that

if µ is submodular, we have ||f + g|| ≤ ||f ||+ ||g||. Then || · || is a seminorm.
We will also use the following.

L+
µ (X) := {f |f is a nonnegative measurable function, ||f || <∞}.

3 Probabilistic metric spaces

In this section we review the concept of probabilistic metric spaces. To do so we
begin with the concept of metric spaces and then we review the definitions of
distance distribution functions and triangle functions.

3.1 Menger space

A metric space is defined in terms of a set S and a function d : S × S → R+

that plays the role of distance on the set S. Here, we understand R+ = [0,∞)
and R+ = [0,∞].

Definition 7. Let d : S × S → R+, then d is called a pseudometric on S if the
following properties hold for a, b, c ∈ S:

– d(a, b) ≥ 0 with equality if a = b (positive property),
– d(a, b) = d(b, a) (symmetry property), and
– d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality property).

Definition 8. The pair (S, d) where d is a metric on S is called a pseudo metric
space and d(a, b) is the distance between a and b.

A pseudo metric space (S,d) is a metric space if d(a, b) = 0 implies a = b.
The pair (S, d) where d is a function S × S → R+ that satisfies the positive

property and triangle inequality (but not the symmetry property) is a quasimetric
space. The pair (S, d) where d is a function S × S → R+ that satisfies positive
property and the symmetry property (but not the triangle inequality) is a semi-
metric space.
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Probabilistic metric spaces were introduced as a generalization of the concept
of a metric. They replace the distance function in a metric space by a distance
distribution function. So, the distance between a pair of elements in S is not a
number but a distribution on these numbers. We introduce this concept below.

Definition 9. [10] A nondecreasing function F defined on R+ that satisfies (i)
F (0) = 0; (ii) F (∞) = 1, and (iii) that is left continuous on (0,∞) is a distance
distribution function.

∆+ denotes the set of all distance distribution functions.

In this definition we can understand F (x) as the probability that the distance
is less than or equal to x. In this way we can write any classical distance a in
terms of a distance distribution function. More particularly, we will use in this
case εa defined as follows. Naturally, εa is a step function at a.

Definition 10. [10] (Def. 4.1.4) For any a in R+, we define εa ∈ ∆+ by

εa(x) =

{
0, 0 ≤ x ≤ a
1, a < x ≤ ∞

The next step towards the definition of a probabilistic metric space is to
consider a counterpart of triangle inequality. Triangle functions will be used for
this purpose. We review them below.

Definition 11. [10] Let ∆+ be the set of all distance distribution functions.
A binary operation on ∆+ is a triangle function if it is commutative, asso-

ciative, and nondecreasing in each place, and has ε0 as the identity.

It is important to underline the link between triangle functions and t-norms [1].
In particular, for a t-norm >, we have τ>(F,G)(x) = >(F (x), G(x)) is a triangle
function. See Def. 7.1.3 and Section 7.1 in [10]. The maximal triangle function
is τmin (Theorem 7.1.4 in [10]).

We are now in conditions to define probabilistic metric spaces.

Definition 12. [10] Let (S,F , τ) be a triple where S is a nonempty set, F
is a function from S × S into ∆+, τ is a triangle function; then (S,F , τ) is a
probabilistic metric space (PM space) if the following conditions are satisfied for
all p, q, and r in S:

(i) F(p, p) = ε0
(ii) F(p, q) 6= ε0 if p 6= q
(iii) F(p, q) = F(q, p)
(iv) F(p, r) ≥ τ(F(p, q),F(q, r)).

Given a probabilistic metric space (S,F , τ), we say that (S,F) is a proba-
bilistic metric space under τ .

A probabilistic pseudometric space (PPM space) (S,F , τ) is defined as above
but not requiring condition (ii). When all conditions above apply but (iv) is not
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required we have a probabilistic semimetric space. When all conditions apply
but (iii) is not required we have a probabilistic quasimetric space.

We prefer to use Fpq instead of F(p, q). Then, we express the value of the
latter at x simply as Fpq(x).

We consider in this paper particular probabilistic metric spaces. The next
definition introduces Menger spaces.

Definition 13. [10] Let (S,F , τ) be a probabilistic metric space. Then (S,F , τ)
is proper if

τ(εa, εb) ≥ εa+b
for all a, b in R+.

If τ = τ> for some t-norm >, then (S,F , τ) is a Menger space, or equivalently
(S,F) is a Menger space under >.

Example 2. Let (S,F , τ) be a probabilistic metric space and a, b ∈ R+ with
a ≥ b.

– Suppose that τ is minimum, that is, τ = ∧.
Since a ∧ b < a+ b, we have τ(εa, εb) ≥ εa+b. Therefore (S,F , τ) is a proper
Menger space.

– Suppose that τ is algebraic product.
Since εa · εb = εa, we have τ(εa, εb) ≥ εa+b. Therefore (S,F , τ) is a proper
Menger space.

– Suppose that τ is the bounded difference, that is, τ = W .
Since 0∨ (εa + εb− 1) = εa, we have that (S,F , τ) is a proper Menger space.

3.2 E-spaces

This is a family of probabilistic metric spaces [11,12] that are constructed in
terms of a set of functions and a probability space. For any pair of functions,
and any x we can compute the measure of the points that are at a distance at
most x. The definition of the E-spaces uses a probability to measure the set of
points. As discussed by Schweizer and Sklar this can be seen as a generalization
of just using the Lebesgue measure on the I = [0, 1] interval.

The definition of E-spaces follows. Here, L+
1 (Ω) is the set of all positive a.e.

finite Lebesgue measurable functions on Ω.

Definition 14. [9] Let (Ω,A, P ) be a probability space, let (M,d) be a metric
space, let S be a set of functions from Ω into M and let F be a mapping from
S×S into ∆+. Then, (S,F) is an E-space with base (Ω,A, P ) and target (M,d)
if

– (i) for all p, q in S and all x in R+ the set

{ω ∈ Ω|d(p(ω), q(ω)) < x}

belongs to A; i.e., the composite function d(p, q) from Ω into R+ is P-
measurable and therefore in L+

1 (Ω); and
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– (ii) for all p, q in S, F(p, q) = Fpq defined by

Fpq(x) = P ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (1)

Equation 1 implies that F satisfies Properties (i) and (iii) in Definition 12.
If F also satisfies Property (ii), then (S,F) is a canonical E-space.

The following can be proven for E-spaces. The proof of this theorem is given
in [9] and also in [12].

Theorem 3. [9] Let (S,F) be an E-space. Then (S,F) is a probabilistic pseu-
dometric space under τW . If (S,F) is canonical, then it is a Menger space under
W.

3.3 F-space

We have introduced [7] a generalization of E-spaces by means of replacing the
probability function in Equation 1 by a non-additive measure. This measure
evaluates the set of ω that are at most at a given distance x. We provide the
definition below.

Definition 15. [7] Let (Ω,A) be a measurable space, and let µ a fuzzy measure
on (Ω,A). Let (M,d) be a metric space, let S be a set of functions from Ω into
M and let F be a mapping from S×S into ∆+. Then, (S,F) is an F-space with
base (Ω,A, µ) and target (M,d) if

– (i) For all p, q in S and all x in R+ the set

{ω ∈ Ω|d(p(ω), q(ω)) < x}

belongs to A.
– (ii) For all p, q in S, F(p, q) = Fpq with

Fµpq(x) = µ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (2)

In our previous paper we have proven the following two results.

Theorem 4. [7] Let (Ω,A) be a measurable space, and let µ be a non-additive
measure on (Ω,A) and (S,F) be an F-space with base (Ω,A, µ).

If µ is a supermodular non-additive measure on (Ω,A), then (S,F) is a
probabilistic pseudometric space under bounded difference τW .

The proposition below follows from this theorem and Proposition 1.

Proposition 2. [7] Let (Ω,A) be a measurable space, and let P be a probability
on (Ω,A), ϕ be as increasing convex function on closed interval on [0,1] with
ϕ(0) = 0, ϕ(1) = 1, and (S,F) be an F-space with base (Ω,A, ϕ ◦ P ).

Then, (S,F) is a probabilistic pseudometric space under bounded difference
τW .
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4 F-space and Choquet integral

In this section we discuss F-spaces when we consider functions fromX×Ω → R+,
for appropriate X and Ω. Then, we consider a distance between functions in
terms of the Choquet integral. Let us start introducing the distance.

Definition 16. Let (X,B) be a measurable space and ν be a fuzzy measure on
B. Then, for p, q ∈ L+

ν (X), the distance dν between p and q by means of the
Choquet integral with respect to ν is defined by dν(p, q) = (C)

∫
|p− q|dν.

The next proposition is immediate from the previous definition and the sub-
additivity theorem.

Proposition 3. Let ν be a fuzzy measure. Then, let dν be the distance defined
by means of the Choquet integral with respect to ν as above. Then,

(i) (L+
ν (X), dν) is a symmetric space; and

(ii) if ν is submodular, then (L+
ν (X), dν) is a pseudometric space.

4.1 Results

Let us now consider two measurable spaces (Ω,A) and (X,B), and fuzzy mea-
sures µ on A and ν on B. Suppose that X is finite and B = 2X .

Let f : X ×Ω → R+ be measurable for fixed x ∈ X and fixed ω ∈ Ω. Then,
the set of the above mentioned functions is denoted by M . Then, we denote by
fω the function f(x, ω). For p, q in M , then dν(pω, qω) corresponds to ||pω−qω||ν
for pω, qω ∈ L+

ν (X).

We can then prove the next proposition.

Proposition 4. Let X be a finite set and ν be a fuzzy measure on 2X , L+
ν (X)

be as above, and dν be the distance by means of the Choquet integral with respect
to ν for functions in L+

ν (X).

Then, for a given ω ∈ Ω, and pω, qω ∈ L+
ν (X), we have that dν(pω, qω) is

A−measurable.

The next proposition is obtained from Theorem 4.

Proposition 5. Consider two measurable spaces (Ω,A) and (X,B), and fuzzy
measures µ on A and ν on B. Let M := {f |f : X×Ω → R+, both A,B measurable}.

Let S = L+
ν (X) and pω, qω ∈ S. Then, let

Fµpq(x) = µ({ω ∈ Ω|dν(pω, qω) < x}).

If µ is super modular and ν is submodular, then (S, Fµp,q) is a probabilistic
pseudometric space under bounded difference τW .
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Next we will consider the Choquet integral with respect to µ as the average
of the distances on the ω ∈ Ω.

Define the µ-average Aµ(p, q) of pω, qω for ω ∈ Ω by

Aµ(p, q) = (C)

∫
dν(p, q)dµ (3)

Note that here we can consider fuzzy measures ν that depend on ω ∈ Ω.
That is, ν(ω) and, thus, dν(ω)(pω, qω). This can be used in Equation 3 as well.

The next proposition follows from the definition of the conjugate.

Proposition 6. Let pω, qω ∈ L+
ν (X) for ω ∈ Ω and s = supω∈Ω{dν(p(ω), q(ω)) <

x}. Then,

Aµ(p, q) = s−
∫ s

0

Fµpq(x)dx.

4.2 Example

In this section we consider an example. Let Ω := {ω1, ω2, ω3, ω4}, X = {x1, x2},
A := 2Ω , and B := 2X . Then (Ω,A) and (X,B) are measurable spaces.

Let us define a function f : X ×Ω → R+ according to the following table.

ω1 ω2 ω3 ω4

x1 1 1 2 4

x2 1 4 1 4

Now, let us define the following fuzzy measures νk for k = 0, 1, 2,∞ defined
on (X,B) as the table below indicates.

{x1} {x2} {x1, x2}
ν0 0 0 1

ν1 3/4 1/4 1

ν2
√

3/2 1/2 1

ν∞ 1 1 1

Now, let us define µa on (Ω,A) by µa := λa where λ({ωk}) = 1/4 for
k = 1, 2, 3, 4. That is, λ is additive.

For each ωk for k = 1, 2, 3, 4, the distance by means of the Choquet integral
with respect to µl denoted by dl(0, f) l = 0, 1, 2,∞ corresponds to the table
below.

Therefore for l = 0, 1, 2,∞, we have {ω|dl(0, f(ω)) < x} as the tables below.
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ω1 ω2 ω3 ω4

d0 1 1 1 4

d1 1 7/4 7/4 4

d2 1 5/2 (2 +
√

3)/2 4

d∞ 1 4 2 4

x 0 ≤ x ≤ 1 1 < x ≤ 4 x > 4

{ω|d0(0, f(ω)) < x} ∅ {ω1, ω2, ω3} Ω

x 0 ≤ x ≤ 1 1 < x ≤ 7/4 7/4 < x ≤ 4 x > 4

{ω|d1(0, f(ω)) < x} ∅ {ω1} {ω1, ω2, ω3} Ω

x 0 ≤ x ≤ 1 1 < x ≤ (2 +
√

3)/2 (2 +
√

3)/2 < x ≤ 5/2 5/2 < x ≤ 4 x > 4

{ω|d2(0, f(ω)) < x} ∅ {ω1} {ω1, ω3} {ω1, ω2, ω3} Ω

x 0 ≤ x ≤ 1 1 < x ≤ 2 2 < x ≤ 4 x > 4

{ω|d∞(0, f(ω)) < x} ∅ {ω1} {ω1, ω3} Ω

Then, we have that the averages of the distances Al(0, f) for l = 0, 1, 2,∞
are calculated using Equation 3 as follows.

(i) A0(0, f) = (4− 1)µa({ω4}) + +(1− 0)µ(Ω)
= 3 ∗ (1/4)a + 1

(ii) A1(0, f) = (4− 7/4)µa({ω4}) + (7/4− 1)µa({ω2, ω3, ω4}) + (1− 0)µ(Ω)
= (9/4) ∗ (1/4)a + (3/4) ∗ (3/4)a + 1

(iii) A2(0, f) = (4−5/2)µa({ω4})+(5/2−(2+
√

3)/2)µa({ω2, ω4})+((2+
√

3)/2−
1)µa({ω2, ω3, ω4}) + (1− 0)µ(Ω)
= (3/2) ∗ (1/4)a + ((3−

√
3)/2) ∗ (1/2)a + (

√
3/2) ∗ (1/2)a + 1

(iv) A∞(0, f) = (4− 2)µa({ω2, ω4}) + (2− 1)µa({ω2, ω3, ω4}) + (1− 0)µ(Ω)
= 2 ∗ (1/2)a + 1 ∗ (3/4)a + 1

Note the following, let a→ 0, then we have Al(0, f) = 4 = max(dl(0, f)) and let
a→∞, Al(0, f) = 1 = min(dl(0, f)) for l = 0, 1, 2,∞.

5 Conclusions

In this paper we have reviewed the definition of F-spaces and provided new
results for these spaces. In particular, we have considered the case of functions
p from X ×Ω into R. We have also provided an example of their computation.

As future work we plan to provide new result in the same direction. One of
our motivations to work on probabilistic metric spaces is to compare machine
learning models built from databases. Some results in this direction appear in
our previous paper [16]. Another future direction is to consider F-spaces in this
setting.
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Abstract. By estimating interval weights reflecting the vagueness of
evaluation from a crisp pairwise comparison matrix, we may analyze
the potential solutions and give a well-considered suggestion in multi-
ple criteria decision problems. In this paper, we compare several interval
priority weight estimation methods by numerical experiments for finding
the most appropriate one as well as their characters. For comparison,
the accuracy in ranking alternatives is adopted. To cope with the non-
uniqueness of the solution to the interval priority weight estimation prob-
lem, we compare the accuracy at three representative solutions, i.e., the
standard, minimum, and maximum solutions. We show the results under
different numbers of criteria when maximin and maximax rules are used
for ranking alternatives. Several characteristic tendencies of estimation
methods are revealed.

Keywords: Interval analysis, AHP, maximin rule, minimax rule, rank-
ing alternatives

1 Introduction

The analytic hierarchy process (AHP) [1] is one of the useful tools for multiple
criteria decision problems. The problem is solved by using a crisp priority weight
vector (PWV) estimated from a pairwise comparison matrix (PCM). To reflect
the vagueness in decision maker’s (DM’s) evaluation, interval priority weight
(PW) estimation has been investigated [2–4]. By estimating interval PWV, we
may analyze the potential solutions and give a well-considered suggestion for
making decisions. Then interval PW estimation methods have been proposed
and investigated their usefullness and proporties.

To find the most appropriate one and their characters, various methods for
estimating the interval PWV have been compared by numerical experiments [2–
4]. It is shown that the estimation methods using the minimum ranges perform
well in many cases. As multiple interval PWVs associate with a consistent inter-
val PCM, any interval PW estimation problem usually has multiple solutions [5].

⋆ Supported by JSPS KAKENHI Grant Number JP23K04272
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Therefore, the comparisons of solution sets are more reasonable than those of
one-point solutions in the evaluation of interval PW estimation methods.

In this paper, instead of the comparisons of solution sets, we compare three
representative solutions to the interval PW estimation problems as we did ear-
lier in [4]. The three representative solutions are (i) the standard solution, the
solution such that the sum of centers of interval PWs is one, (ii) the minimum
solution such that the sum of centers of interval PWs takes the minimum, and
(iii) the maximum solution such that the sum of centers of interval PWs takes
the maximum. We compare the accuracy in ranking alternatives, i.e., the number
of alternative pairs whose pairwise comparisons by the estimated interval PWs
produce the correct results. For ranking alternatives, we use the maximin rule
and the maximax rule because the total scores of alternatives become intervals
under an interval PWV. In [4], the following facts are demonstrated:

a) In difficult ranking problems such that many alternatives take similar total
utility scores, the accuracies in the maximin rule tends to be larger than
those in the maximax rule.

b) In easy ranking problems, interval PW estimation methods often perform
worse than the classical crisp PW estimation methods under the maximum
true interval PWs in the maximin rule and also under the minimum true
interval PWs in the maximax rule.

c) In difficult ranking problems, accuracies of estimated interval PWs are larger
than those of estimated crisp weights. Especially, the estimation method by
maximizing the minimum ranges with minimizing the sum of widths often
perform best.

d) Accuracies of the estimation method by averaging the minimum ranges with
minimizing the sum of deviations are larger than those of estimated crisp
PWs in all problem settings.

However, the differences among the settings of true interval PWs have not
yet been shown, and the comparisons in different numbers of criteria have not
yet been done. In this paper, those results are shown and investigated the char-
acteristic tendencies of interval PW estimation methods.

In the next section, the conventional interval PW estimation method is re-
viewed. The other estimation methods, representative solutions, and methods
for ranking alternatives are described in Section 3. In Section 4, numerical ex-
periments are explained. The results of numerical experiments are shown in
Section 5. In Section 6, the conclusion is given.

2 The Conventional Interval AHP

Assume that the DM’s PW of each item Xi is evaluated vaguely and repre-
sented by interval PWs Wi = [wL

i , w
U
i ], i ∈ N = {1, 2, . . . , n}. Then the (i, j)-

component aij of the given PCM A satisfies aij ∈ [wL
i /w

U
j , w

U
i /w

L
j ], i, j ∈ N ,

i ̸= j. The interval PW estimation problem is formulated as the following linear
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programming (LP) problem [6]:

minimize
∑

i∈N

(wU
i − wL

i ),

sub. to aijw
L
j ≤ wU

i , i, j ∈ N i ̸= j,∑

i∈N\j
wU

i + wL
j ≥ 1,

∑

i∈N\j
wL

i + wU
j ≤ 1, j ∈ N,

wU
i ≥ wL

i ≥ ϵ, i ∈ N.

(1)

We note that the second and third constraints imply the normality condition of
interval weight vector composed ofWi, i ∈ N . The first constraints are equivalent
to wL

j ≤ ajiw
U
i , i, j ∈ N , i ̸= j from the reciprocity of PCM A as well as to

aij ∈ [wL
i /w

U
j , w

U
i /w

L
j ], i, j ∈ N , i ̸= j. As the objective function is the sum of the

widths of interval weights, this estimation problem is called “the minimization
problem of the sum of widths (MSW)”.

3 Non-uniqueness, Methods and Ranking Alternatives

There are usually multiple feasible interval PWVs whose deviations from the
given PCM A are the same. Namely, the solution to the estimation problem is
usually non-unique [5].

To cope with the non-uniqueness, the most natural one, i.e., the standard
solution such that the sum of centers of interval PWs is one, is used as the
representative solution. We note that the existence of the standard solution is
guaranteed by the normality constraints of interval PWs. The optimal solution
set of the estimation problem usually forms a line segment from the optimal
solution minimizing the sum of centers to the optimal solution maximizing the
sum of centers. In this paper, we extend the accuracy analysis by employing the
minimum and maximum solutions located at the edges of the line segment of
solutions.

Given a standard solutionWi = [wL
i , w

U
i ], i ∈ N , the minimum and maximum

solutions are obtained as tLWi, i ∈ N and tUWi, i ∈ N , respectively, where tL

and tR are calculated by

tL = max
i∈N

1

wL
i +

∑

j∈N\i
wU

j

, tU = min
i∈N

1

wU
i +

∑

j∈N\i
wL

j

. (2)

The interval PWV estimated by Problem (1) do not reflect appropriately
the vagueness of the DM’s evaluation [2, 3]. Then, various interval PW estima-
tion methods have been proposed by authors [2–4]. To reflect the vagueness
appropriately to the solution, the variety of potential solutions is considered by
introducing the minimum ranges of interval PWs. As one of the various estima-
tion methods using minimum ranges, we describe the method of averaging the
minimal ranges with deviations, AMRD. The method for obtaining the standard
solution is composed of the following four steps:
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⟨1⟩ For each k ∈ N , obtain the optimal value d̂k̄ of LP problem,

minimize dk̄ =
∑

i∈N\k

∑

j∈N\k,i
dij ,

sub. to
√
aijw

L
j + dij =

√
ajiw

U
i , i, j ∈ N, i ̸= j∑

i∈N\j
wU

i + wL
j ≥ 1,

∑

i∈N\j
wL

i + wU
j ≤ 1, j ∈ N,

∑

i∈N

(wL
i + wU

i ) = 2, wU
i ≥ wL

i ≥ ϵ, dij ≥ 0, i, j ∈ N, i ̸= j.

(3)

⟨2⟩ For each k ∈ N , obtain the optimal value ďk̄ of LP problem,

minimize d̃k̄ =
∑

j∈N\k
(dkj + djk),

sub. to constraints of (3), dk̄ = d̂k̄.

(4)

⟨3⟩ For each k ∈ N , obtain optimal solutions Ŵi(k)，i ∈ N and W̌i(k), i ∈ N
to the following two LP problems, respectively:

maximize wU
k

/
minimize wL

k ,

sub. to constraints of (3), dk̄ = d̂k̄, d̃k̄ = ďk̄.
(5)

⟨4⟩ Then the interval PWs are obtained as

Wi =
1

2n

∑

k∈N

(Ŵi(k) + W̌i(k)), i ∈ N. (6)

By replacing the averaging step ⟨4⟩ with a step taking the union of all nor-
malized interval PWVs and dividing it by its sum of center values, we obtain the
method of maximizing the minimal range with deviations, MMRD. Moreover, by
replacing the objective functions showing deviations of LP problems solved at
Steps ⟨1⟩ and ⟨2⟩ with the objective function showing the sum of widths, we
obtain the method of averaging the minimal ranges with widths AMRW and the
method of maximizing the minimal range with widths MMRW. Furthermore, de-
termining the center values by the classical methods for estimating a crisp PWV,
e.g., eigenvalue method (EM) and geometric mean method (GM) in interval PW
estimation methods, we obtain other methods.

Given marginal utility score ui(op) of Alternative op in view of the i-th cri-
terion, the total utility score is obtained as an interval bounded by the following
minimum total utility score umin(op) and maximum total utility score umax(op)
under interval PWs Wi = [wL

i , w
U
i ]，i ∈ N ;

umin(op) = min

{∑

i∈N

ui(op)wi

∣∣∣
∑

i∈N

wi = 1, wL
i ≤ wi ≤ wU

i , i ∈ N

}
, (7)

umax(op) = max

{∑

i∈N

ui(op)wi

∣∣∣
∑

i∈N

wi = 1, wL
i ≤ wi ≤ wU

i , i ∈ N

}
. (8)
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In this paper, for ranking alternatives, we adopt the maximin rule and the
maximax rule. The maximin rule arranges alternatives in descending order of
the minimum total utility score while the maximax rule arranges alternatives in
descending order of the maximum total utility score.

4 Numerical Experiment

As described earlier, the solution to the interval PW estimation problem is not
unique. Accordingly, even if we assume a true normalized interval PWV, we
would not be able to estimate it by a unique normalized interval PWV. Moreover,
we do not know whether the DM has a true normalized interval PWV or a
true consistent interval PCM in her/his mind, where consistent interval PCM
implies an interval PCM whose interval components [aLij , a

U
ij ], are expressed as

aLij = wL
i /w

U
j and aLij = wU

i /w
L
j , i, j ∈ N , i ̸= j with a normalized interval PWV

W = (W1,W2, ...,Wn)
T, Wi = [wL

i , w
U
i ], i ∈ N . In the numerical experiment, we

assume that the DM has a unique true consistent interval PCM in her/his mind.
We prepare five different settings of consistent interval PCMs for each number
n of criteria (n = 4, 5, ..., 8). Each consistent interval PCM can be represented
by a normalized interval PWV with normalized center values. The normalized
interval PWV with normalized center values associated with the five different
settings of true consistent interval PCMs are given in Table 1 when n = 6. As
shown in Table 1, setting A is a case where the widths increase as the center
values of interval PWs decrease, setting B is a case where the widths decrease
as the center values of interval PWs decrease, setting C is a case where the
widths decrease as the center values of interval PWs approach to their median,
setting D is a case where the widths are constant regardless of the center values
of interval PWs, and finally, setting E is a case where the widths increase as
the center values of interval PWs approach their median. Those properties of
five settings A to E are the same in other number of criteria, n = 4, 5, ..., 8.
Therefore, the true consistent interval PCMs are denoted by a combination of
the number of criteria and the alphabet showing the setting. For example, 5E
stands for the true consistent interval PCMs of setting E with five criteria. We
use 1,000 PCMs randomly generated from a true consistent interval PCMs for
each of those twenty-five settings, 4A, 4B,..., 8E. Each component aij , i < j
of a PCM is generated by exp(rand) with a random number rand obeying a
uniform distribution [log(aLij), log(a

U
ij)] of the true consistent interval PCM. The

components aij , i > j and aii of the PCM is determined by aij = 1/aji and 1,
respectively.

The high accuracy in ranking alternatives would be more significant than
the high accuracy of interval PW estimation in the setting of multiple criteria
decision making problems. From this point of view, we would like to compare the
results in ranking alternatives based on solutions to the various estimation prob-
lems to the results in ranking alternatives based on all normalized interval PWVs
obtained from the true consistent interval PCM. Unfortunately, this comparison
becomes complex because we have infinitely many solutions and infinitely many
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Table 1. Five kinds of normalized interval PWVs (n = 6)

A B C D E

T1 [0.21, 0.25] [0.16, 0.30] [0.16, 0.30] [0.18, 0.28] [0.20, 0.26]
T2 [0.17, 0.23] [0.14, 0.26] [0.15, 0.25] [0.15, 0.25] [0.15, 0.25]
T3 [0.14, 0.24] [0.13, 0.23] [0.15, 0.21] [0.13, 0.23] [0.11, 0.25]
T4 [0.10, 0.20] [0.11, 0.19] [0.12, 0.18] [0.10, 0.20] [0.08, 0.22]
T5 [0.07, 0.19] [0.10, 0.16] [0.08, 0.18] [0.08, 0.18] [0.08, 0.18]
T6 [0.04, 0.18] [0.09, 0.13] [0.04, 0.18] [0.06, 0.16] [0.08, 0.14]

normalized interval PWVs. Then we select the three representative normalized
interval PWVs, i.e., standard, minimum and maximum ones from the set of
normalized interval PWVs. We compare the standard, minimum and maximum
solutions of the estimation problem to the standard, minimum, and maximum
normalized interval PWVs corresponding to the true consistent interval PCM,
respectively. The accuracy of the estimated ranking alternatives is defined by
the number of alternative pairs whose order is correctly estimated. For ranking
alternatives, we use the maximin rule and the maximax rule. In those rules. the
order between two alternatives is independent from any irrelevant alternatives.

For the numerical experiment, we consider multiple criteria decision problems
with five alternatives under twenty-five settings, 4A, 4B,..., 8E. We generate two
kinds of ranking problems, i.e., easy and difficult ones, in each setting. Each
problem is defined by the marginal utility scores of five alternatives. In the
‘easy ranking problems’, the marginal scores of an alternative are generated
randomly so that their sum becomes 1. By doing this five times, we obtain
a set of five alternatives, that corresponds to a problem. We generate 100 easy
ranking problems in each setting. In the ‘difficult ranking problems’, we generate
five alternatives having similar total utility scores for a problem. The marginal
scores of an alternative are generated by the following three steps: (i) Generate
gi ≥ 0, i ∈ N randomly such that

∑
i∈N gi = 1, (ii) Calculate g′i = 2gi/(t

L
i + tUi ),

i ∈ N . (iii) Determine marginal utilities by ui = g′i × randi, i ∈ N with random
numbers randi ∼ U(0.95, 1.05), i ∈ N , where Ti = [tLi , t

U
i ] is the i-th component

of the normalized interval PWV corresponding to a true consistent interval PCM,
and U(0.95, 1.05) stands for a uniform distribution over the interval [0.95, 1.05].
By this procedure, the total utility score of each alternative locates around 1.
Generating five alternatives, we obtain a difficult ranking problem. We generate
100 difficult ranking problems in each setting.

5 Results

We applied twenty-seven interval PWCV estimation methods and two classical
crisp PW estimation methods to each of the prepared PCMs (25×1, 000 PCMs).
Due to limitations of space, we show the results of two interval PW estimation
methods, i.e., MMRW and AMRW as well as a classical crisp PW estimation
method, i.e., EV. MMRW and AMRW are top two methods. The performances
of EV and GM are similar and EV is selected for comparing to the interval PW
estimation methods. In each setting, we examined 100 problems for each of 1,000
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Table 2. Accuracies of the estimated ranking alternatives (1)

Set.
Easy ranking problem: Maximin rule

minimum standard maximum
EV MMRW AMRW EV MMRW AMRW EV MMRW AMRW

4A 852,282 858,864 876,859 858,212 876,348 881,507 877,856 884,993 889,614
4B 857,996 842,764 859,070 861,732 861,352 863,486 873,980 864,189 866,606
4C 853,135 839,654 862,756 867,371 859,125 870,851 869,007 872,670 874,157
4D 853,970 858,897 867,864 860,952 874,358 874,796 882,220 879,362 880,706
4E 854,835 848,103 866,855 858,773 863,145 868,521 870,749 870,381 875,530
5A 836,132 848,871 885,168 856,640 863,001 895,823 876,408 886,194 902,218
5B 856,350 826,301 867,104 866,076 848,100 874,597 886,338 869,752 879,251
5C 829,665 835,211 861,543 857,553 847,613 882,042 874,039 868,749 885,101
5D 847,313 846,554 877,003 867,603 858,442 888,014 890,399 876,708 890,663
5E 857,835 835,930 883,996 865,023 864,080 888,125 880,189 885,775 892,451
6A 772,543 773,819 843,328 812,785 799,984 867,221 845,791 842,898 876,508
6B 777,868 735,861 796,346 779,932 776,929 797,731 822,326 792,523 801,042
6C 744,416 759,682 789,649 795,744 790,311 830,605 823,786 815,623 838,977
6D 777,687 782,059 822,987 803,370 801,941 842,737 843,760 822,221 848,190
6E 769,224 749,754 819,168 793,092 798,071 845,545 818,321 826,142 844,364
7A 678,947 831,783 821,490 756,041 802,113 849,113 815,895 811,907 849,862
7B 697,520 747,218 782,606 702,141 774,796 766,769 769,715 733,539 739,995
7C 703,491 777,268 803,726 746,607 785,218 812,611 800,873 782,670 808,016
7D 691,502 799,428 800,226 739,040 786,838 808,787 803,661 766,306 795,183
7E 671,045 786,823 794,418 725,195 791,014 813,500 788,080 773,554 806,010
8A 664,908 839,781 828,897 743,664 816,890 859,056 803,772 810,001 848,582
8B 690,605 733,712 785,877 680,731 785,965 773,366 737,707 725,182 715,812
8C 671,217 770,669 785,956 720,509 789,586 800,878 777,159 745,908 776,627
8D 685,176 792,004 803,264 715,108 799,118 815,176 783,960 746,764 778,635
8E 660,040 780,654 793,991 705,560 798,779 823,659 753,107 774,252 800,189

PCMs. Accordingly, we have 100,000 kinds of problems in each setting. For each
problem, we have 10 alternative pairs. Therefore, the maximum number of the
correctly ordered pairs becomes 1, 000, 000 in each setting.

The results are shown in Tables 2–5. Tables 2 and 3 show the accuracies
in ranking alternatives by the estimated interval PWV when the maximin rule
is adopted under easy ranking problems and under difficult ranking problems,
respectively. On the other hand, Tables 4 and 5 show the accuracies in ranking
alternatives by the estimated interval PWV when the maximax rule is adopted
under easy ranking problems and under difficult ranking problems, respectively.

From those tables, we observe that the accuracies in easy ranking problems
are less than those in difficult ranking problems. In easy ranking problems, the
accuracies of EV in the ranking by maximin rule increases in the order cor-
responding to minimum, standard, and maximum solutions while those of EV
in the ranking by maximax rule decreases in that order. As the minimum and
maximum total utility scores increase in the order corresponding to minimum,
standard, and maximum solutions. The maximum total utility score of the min-
imum solution and the minimum total utility score of the maximum solution
approach to the center value of all conceivable total utility scores. From these
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Table 3. Accuracies of the estimated ranking alternatives (2)

Set.
Difficult ranking problem: Maximin rule

minimum standard maximum
EV MMRW AMRW EV MMRW AMRW EV MMRW AMRW

4A 584,483 769,915 717,395 595,159 765,270 721,733 608,861 756,899 721,210
4B 542,330 694,414 628,632 555,066 708,109 636,977 565,816 659,693 623,281
4C 577,733 752,875 693,871 592,721 749,023 691,995 607,263 734,615 700,404
4D 557,758 763,615 680,618 570,722 759,991 684,920 587,332 732,857 680,812
4E 555,905 716,651 659,760 554,741 710,877 642,283 561,999 680,158 636,640
5A 599,506 809,320 767,476 636,624 808,570 790,859 660,917 799,804 798,108
5B 549,706 694,259 664,979 549,174 760,742 668,959 565,229 709,048 653,774
5C 604,943 782,658 744,531 635,759 798,685 764,716 658,737 772,461 768,155
5D 574,604 793,455 738,924 589,072 796,187 737,682 611,276 751,088 729,074
5E 552,347 730,586 708,966 565,591 774,161 709,176 581,508 736,455 699,897
6A 539,567 776,812 736,412 599,117 782,593 783,686 616,457 754,386 779,994
6B 522,855 703,219 654,368 525,225 759,264 644,817 541,909 611,390 551,884
6C 538,392 762,722 709,705 585,207 780,194 742,211 618,182 723,210 729,078
6D 533,651 812,875 726,601 544,121 816,293 731,944 571,619 710,231 704,951
6E 521,793 739,911 693,503 543,265 781,095 717,983 560,036 713,327 701,932
7A 519,211 835,027 769,125 573,847 822,082 783,067 616,247 750,565 759,080
7B 523,389 776,790 728,714 516,145 838,102 705,111 547,936 687,568 598,763
7C 529,633 806,386 750,013 567,323 803,306 744,456 603,743 708,597 700,793
7D 525,000 837,801 756,610 535,546 841,131 739,258 573,879 702,172 673,799
7E 512,270 812,079 748,578 528,234 842,226 745,006 561,001 709,825 692,621
8A 513,153 874,015 793,036 582,481 811,696 805,593 629,568 749,049 788,175
8B 514,530 777,048 747,898 514,818 849,724 721,268 535,544 673,323 585,378
8C 525,251 821,699 768,142 568,063 810,331 762,055 621,209 704,471 711,987
8D 522,710 869,887 780,250 531,976 845,880 756,083 570,312 680,212 675,057
8E 505,044 822,180 765,016 527,172 843,841 762,749 560,128 713,415 700,069

observations, we guess that ranking alternatives based on the crisp PWV esti-
mated by EV may work well around the center value of all conceivable total
utility scores. The accuracies of EV in the ranking by the maiximax rule with
minimum solutions attain the best in several settings.

In difficult ranking problems, the accuracies in the ranking alternatives by
the minimax rule are a little larger than those in ranking alternatives by the
maximax rule. To generate difficult ranking problems, we make the centers of
total utility intervals close to one another. Then the total utility intervals of
five alternatives can often be nested. From this conceivable fact, the order of
alternatives obtained by the minimax rule would be similar to the reverse order
of that obtained by the maximax rule, and vice versa. Therefore, if the accuracies
of EV, or more generally, a crisp priority estimation method, in the ranking
alternatives by the maximin rule is large, those in the ranking alternatives by
the maximax rule becomes small, and if the accuracies of EV, or more generally,
a crisp priority estimation method, in the ranking alternatives by the maximax
rule is large, those in the ranking alternatives by the maximin rule is small.
Indeed, the accuracy of EV in the maximin rule plus the accuracy of EV in
the maximax rule becomes near 1,000,000. As the orders of two alternatives can
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Table 4. Accuracies of the estimated ranking alternatives (3)

Set.
Easy ranking problem: Maximax rule

minimum standard maximum
EV MMRW AMRW EV MMRW AMRW EV MMRW AMRW

4A 862,604 874,384 874,815 855,796 874,194 877,426 855,518 875,782 878,433
4B 882,070 856,707 869,101 865,716 855,930 866,418 864,788 853,948 867,786
4C 870,997 851,915 849,269 866,981 853,279 862,621 865,615 860,465 872,516
4D 885,362 870,465 875,429 860,040 871,505 871,875 860,966 872,477 874,058
4E 857,139 842,641 862,359 846,023 852,733 858,743 849,803 855,676 861,726
5A 878,528 862,054 889,557 860,290 867,432 891,801 850,890 863,775 894,737
5B 893,792 833,509 873,012 880,474 833,787 876,224 862,036 836,101 870,868
5C 864,729 840,397 854,849 856,158 847,096 871,127 843,730 855,945 876,879
5D 893,024 846,914 877,767 876,318 851,442 886,190 855,093 858,466 881,350
5E 882,675 824,034 880,764 870,231 838,603 883,273 861,647 850,291 882,963
6A 809,809 782,358 826,410 785,434 808,566 846,170 781,016 826,470 859,753
6B 841,656 670,741 793,772 818,934 701,521 804,194 771,266 765,194 800,720
6C 795,506 707,597 769,672 780,982 762,413 806,394 763,324 820,517 833,629
6D 842,003 745,058 810,753 792,707 783,733 829,720 765,947 821,373 832,664
6E 790,075 674,321 783,007 772,069 733,985 806,570 762,283 795,885 826,864
7A 793,431 753,292 797,178 705,191 810,697 820,603 714,339 821,351 841,627
7B 793,300 583,720 733,501 738,844 675,799 762,426 675,804 787,323 779,764
7C 794,397 654,916 763,979 732,663 739,548 799,328 711,083 803,398 822,152
7D 804,963 667,469 761,251 727,888 752,790 799,094 700,236 802,331 806,905
7E 760,342 635,234 733,396 713,052 729,818 779,383 688,368 800,823 813,073
8A 770,128 767,111 781,164 672,608 826,645 808,107 698,694 830,996 849,510
8B 773,879 558,833 722,441 721,174 659,294 755,844 653,232 809,088 791,043
8C 745,815 608,987 715,970 705,743 713,772 769,218 689,385 810,404 817,502
8D 786,581 650,372 737,464 695,514 756,356 785,671 668,545 830,683 814,227
8E 718,923 612,859 700,274 661,157 746,596 763,352 657,903 819,330 815,177

be the same in both the maximin rule and the maximax rule, the sums do not
exactly equal to 1,000,000. Then the advantage of interval priority estimation
can be observed because it potentially enlarges the accuracy in the maximin rule
and the accuracy in the maximax rule at the same time. Indeed, accuracies of
MMRW and AMRW in both maximin rule and maximax rule take values more
than 650,000 on average. MMRW performs better than AMRW.

It is a little surprising that accuracies in the maximin rule are always larger
than those in the maximax rule. However, this fact may come from the generation
method for marginal utility scores. In our method, the marginal utility scores
are generated by dividing random numbers by center values of interval PWs
corresponding to the true consistent interval PCM. Therefore, the marginal score
corresponding to a large interval PW tends to be small. To evaluate the minimum
total utility score, the largest value in the interval PW is assigned in order of
increasing marginal utility, as far as the sum of weights is not larger than one.
On the contrary, to evaluate the maximum total utility score, the largest value
in the interval PW is assigned in order of decreasing marginal utility, as far as
the sum of weights is not larger than one. From these facts, the PWs assigned for
calculating the minimum total utility score can be closer to the PWs estimated
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Table 5. Accuracies of the estimated ranking alternatives (4)

Set.
Difficult ranking problem: Maximax rule

minimum standard maximum
EV MMRW AMRW EV MMRW AMRW EV MMRW AMRW

4A 456,689 720,511 664,845 468,563 736,540 669,066 487,121 746,656 671,237
4B 557,004 636,150 623,858 541,784 689,569 643,268 528,804 706,493 656,926
4C 461,873 700,783 634,935 467,647 735,967 650,827 482,261 738,941 663,967
4D 503,226 728,127 673,867 500,996 744,924 671,901 506,970 749,486 668,396
4E 529,465 622,983 633,789 527,021 680,559 649,814 527,131 704,636 656,509
5A 377,937 781,314 675,512 397,822 806,113 685,563 449,526 799,639 701,111
5B 541,895 690,820 673,638 512,831 743,624 683,342 506,345 786,026 705,840
5C 383,618 750,488 643,460 398,260 798,325 666,021 439,241 806,406 684,494
5D 457,202 793,052 714,422 456,497 817,535 717,700 486,347 802,644 710,314
5E 487,100 676,050 673,874 496,562 735,446 693,337 508,812 779,587 713,891
6A 423,783 720,341 676,135 443,308 771,402 700,574 500,254 802,715 725,830
6B 568,005 509,290 536,349 540,713 665,914 630,984 526,673 791,528 703,109
6C 429,863 668,109 642,114 453,403 754,423 686,999 497,907 818,036 720,793
6D 507,161 761,055 707,695 499,672 812,862 721,358 502,870 848,015 720,227
6E 493,690 599,017 620,192 500,166 710,449 676,673 515,800 794,604 718,036
7A 434,535 744,030 689,382 466,709 826,467 743,445 517,807 860,342 771,712
7B 562,766 606,756 614,043 527,436 765,023 713,321 516,764 852,278 747,027
7C 460,169 686,646 667,063 480,531 805,450 739,525 514,285 857,120 761,582
7D 507,375 765,923 706,858 504,751 838,468 749,891 518,355 870,931 757,164
7E 500,258 657,460 644,643 507,220 787,321 725,002 516,473 864,341 764,653
8A 406,392 791,986 685,542 446,706 847,017 749,538 512,300 866,892 811,107
8B 565,082 516,820 563,957 531,829 738,015 710,784 509,615 878,990 789,218
8C 443,169 691,090 643,046 463,766 811,858 734,195 507,026 875,327 783,696
8D 503,438 800,275 700,598 501,369 856,926 761,642 505,559 898,958 793,646
8E 493,114 659,610 628,658 503,163 788,238 730,822 518,021 880,059 80,5406

by EM. Therefore, the accuracies of EM in the maximin rule can be larger than
those in the maximax rule.

To see the case of estimated interval PWVs, we should consider the following
tendency [7] of the estimated interval PWs: the larger interval PW, the smaller
its width. The error of the estimated interval PW corresponding to a larger
marginal utility score makes the error of the total utility score bigger. The error
of the estimated interval PW corresponding to a larger marginal utility score
could be large because of the tendency of the estimated interval PWV as well as
the property of the marginal utility score generation in difficult ranking prob-
lem. From the calculations of minimum and maximum total utility scores, the
maximum total utility score would include bigger errors than the minimum to-
tal utility score. Therefore, the accuracies in the maximax rule are smaller than
those in the maximin rule in difficult ranking problems.

The accuracies of MMRW and AMRW become better than those of EV as the
number of criteria increases even in easy ranking problems. In difficult ranking
problems, the accuracies of MMRW and AMRW are better than those of EV in
all settings. In general, the estimated interval priority weight vectors perform
better than the estimated crisp PWV.
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Fig. 1. Easy ranking problem: Maximin rule

Fig. 2. Difficult ranking problem: Maximin rule

Fig. 3. Easy ranking problem: Maximax rule

Fig. 4. Difficult ranking problem: Maximax rule
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To see the differences in accuracies by the number of criteria, we depict
graphs showing the relation between accuracy and the number of criteria in
Figures 1–4. In those figures, the vertical axis shows the accuracy while the
horizontal axis shows the settings in the order corresponding to 4A,4B,..., 8E.
The interval PW estimation methods estimate 2n parameters from nC2 = n(n−
1)/2 data under n criteria. When n = 4, the number of data is smaller than
the number of parameters. When n = 5, the number of data equals the number
of parameters. When n ≥ 6, the number of data is larger than the number
of parameters. Therefore, we may guess that the estimation problem becomes
easier as n increases. However, as shown in Figures 1 and 3 corresponding to easy
ranking problems, the accuracies decrease as n increases. This may imply that
the correctness of the parameter estimation is required much more as n increases
because the normality is assumed for the PWV. On the other hand, in Figures 2
and 4 corresponding to difficult ranking problems, the accuracies increase as n
increases. Although the reason for this result is hard to explain, this may come
from the fact that the correctness of only a few key parameter estimation would
be required in difficult ranking problems and multiple data can work well.

Finally, from Figures 1–4, we find that MMRW performs well in difficult
ranking problems although the fluctuation by the setting is large. On the other
hand, AMRW frequently performs best in easy ranking problems.

6 Conclusion

We compared several interval PW estimation methods by numerical experiments,
using three representative solutions to cope with the non-uniqueness of the so-
lution. Characters of the top two estimation methods are observed.
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Abstract. When working with historical medical data from patient’s
electronic health record (EHR), we may have sequences of very differ-
ent lengths, as some patients are visited more frequently than others.
Moreover, when screening the patients for specific diseases, the number
of patients that test positive is usually much smaller than the ones that
test negative. Therefore, there is a high class imbalance towards the neg-
ative class. In a previous work, we presented a method for pre-processing
medical multivariate time-series data from EHR in order to have a set
of sequences of the same length. Patients with very short EHR were
discarded. In this paper, we propose a novel technique to make use of
short EHR series to minimize class imbalance. Long time series are used
to synthetically complete the short time series. For numerical data, a
fuzzy-based approach is proposed to generate additional similar positive
examples. The proposed method has been tested with the problem of
Diabetic Retinopathy classification. Results show that it improves the
performance obtained by applying random oversampling to the data.

Keywords: Fuzzy Logic · Time Series · Class Imbalance · Diabetic
Retinopathy

1 Introduction

Diabetic Retinopathy (DR) is an ocular complication due to diabetes. Its pro-
gression leads to the eye blood vessels break and may also generate small blood
spots, hemorrhages and exudates. These lesions produce vision loss and may
even cause blindness if they are not detected and treated at an early stage [8].
The incidence of DR in the diabetic population is about 12%. Due the increasing
number of diabetic people, the identification of the patients with risk of devel-
oping DR is of high importance and proper screening tests must be done (i.e.
control with eye-fundus images). However, diabetic people with no risk does not
need to perform such tests, saving time and resources. The assessment of Dia-
betic Retinopahy risk can be addressed using clinical and analytical data stored
in the electronic health records (EHR) of a patient, as done in systems like
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Retiprogram [10, 5, 6]. This system uses 9 risk factors to determine the DR level.
According to the ETDRS standard classification [11], the categories in which
DR patients can be classified are: no retinopathy (DR = 0), mild (DR = 1),
moderate (DR = 2) and severe (DR = 3). They are ordered from the best to
the worst medical condition.

The DR classification problem from EHR data is quite difficult to solve for
several reasons. First, patients with similar values on the risk factors can have
different risk levels of DR. The low incidence of DR leads to a scarce availability
of positive DR examples. Thus, there is a high imbalance of the data towards
the negative class. Recently, we began to study the possibility of using the in-
formation of the past data available in the EHR to make the classification of
patients. In a previous work [6], we explained a method for transforming the
historical EHR data into equal-length multivariate time series. Then, by using
multivariate time series classifiers, we were able to improve the prediction of the
current DR risk level. The sequences used had between 6 and 10 entries, and
they were turned into time series of length 10 (with interpolation methods).

In this work, we propose a novel fuzzy-based method to compensate for
class imbalance on DR time series data. In the previous work, we discarded the
sequences with less than 6 values to avoid inferring too much data that could
end being incorrect. However, due to the scarcity of DR patients, we propose
now to use the short series data to generate synthetic data that can be used as
positive examples in the training of the classification methods.

A fuzzy approach has been used during the generation of new data values, be-
cause doctors reason qualitatively on the attribute values when assessing the pa-
tients’ conditions (e.g., age: child/young/old; body mass: underweight/normal/
overweight; hypertension: good control/bad control, etc.). For health treatment,
a difference of one year in age, or of one kilogram makes no difference in the
diagnosis, as it is done at a more general level (with labels corresponding to
intervals). Fuzzy approaches can be used to reason qualitatively. In the liter-
ature, several fuzzy-based clinical decision support systems can be found. For
instance, Hamedan et al. [2] use fuzzy linguistic variables to predict a chronic
kidney disease and Nazari et al. [4] to diagnose heart diseases. The Retiprogram
system is also a fuzzy-based classifier [10, 5, 6]. Therefore, in this work, we take
advantage of the fuzzy linguistic model to generate different numerical values for
fictive patients, which correspond to the same labels of real patients. We gener-
ate synthetic values making use of fuzzy linguistic variables in order to introduce
some degree of variability o the new samples, without assigning unreal values.
The numerical risk factors have been transformed to fuzzy linguistic variables
with the knowledge of specialized ophthalmologists. By means of the fuzzy sets
defined, we introduce some variability to the new generated examples, without
affecting the patterns that the classifier must learn.

The rest of the paper is organized as follows. A short review of related work is
done in Section 2. Next, Section 3 presents the proposed approach for boosting
short time series. In Section 4, the data used to perform the experiments is
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presented, and the obtained results are shown. Finally, Section 5 presents the
conclusions and the future work.

2 Related work

Most state-of-the-art time series classifiers are not suited to solve problems with
imbalanced class distributions, thus, methods to balance the amount of data at
each class are commonly used. Three main approaches can be used to avoid class
imbalance on time series data:

1. Sampling methods: some techniques are applied to the data on the origi-
nal dataset to oversample and/or undersample it. For instance, in random
oversampling, examples of the positive (minority) classes are replicated to
balance the class distribution. On the contrary, undersampling consists on
randomly removing examples from the majority class.

2. Synthetic data generation: the examples introduced to compensate the class
imbalance are artificially generated from the existing data. The most com-
mon method is SMOTE (Synthetic Minority Over-Sampling Technique) [1].
Synthetic data points are generated by taking one of the k-nearest neigh-
bours of a sample, and randomly choosing one point of the vector that unites
the sample and the selected nearest neighbour. On the literature, several
variations or methods based on the methodology of SMOTE can be found.
For instance, T-SMOTE [13] is a variation for time series which takes into
account the temporal characteristics of the data to select the nearest neigh-
bours. T-SMOTE can be used on both univariate and multivariate time
series.

3. Data augmentation: slightly modified copies of the data or synthetic ex-
amples created from the existing data are introduced to compensate for
the class imbalance. Methods are highly dependent on the data types that
have to be augmented. In the time series case, Iwana and Uchida [3] anal-
ysed over 50 data augmentation methods for time series, and they proposed
a taxonomy with 4 families of methods: Random transformation methods
apply a transformation function with some randomness to the time series;
Pattern mixing combines patterns to generate new ones, which overcomes
the assumption that all random transformations are possible on the data;
Generative models use either statistical or neural network models to sample
time series from feature distributions; Time series decomposition uses fea-
ture extraction techniques to extract features or underlying patterns, which
are then used to generate new examples.

In medical diagnosis, the patients’ values of the different risk factors are
not totally independent. Although doctors know that there are some underlying
relations, they are not usually completely defined. For instance, doctors may
know that some combinations of values are not possible. Consequently, it is
important that the balancing method used does not generate examples that
may not be not real, as this may hamper the quality of the classifier built. This
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paper proposes a new method that combines both synthetic data generation and
random transformation data augmentation. On the one hand, short series are
extended by synthetically generating the missing data. On the other hand, we
are also conditioning the generated data to be similar to other existing examples
(i.e. to a real patient), which is something that cannot be assured when using
interpolation without introducing further pre-processing.

3 Time series generation

At each visit, doctors collect some clinical and analytical data about the diabetic
patient. The most relevant risk factors for DR consist of six numerical and three
categorical variables, which were selected by experts [9]. Numerical variables
include the current age, body mass index (BMI), duration of Type-2 diabetes
(EVOL), HbA1c, CKDEPI and microalbuminuria (MA). Categorical variables
include gender, treatment of Type-2 diabetes (TTM) and control of arterial
hypertension (HTAR). Sometimes they also have an eye fundus image, captured
with special non-mydriatic cameras. However, we will not consider image data
in this work, as our goal is to avoid the cost of obtaining such images. With this
information, the ophthalmologist determines the degree of DR, which is stored
in the EHR.

Diabetic patients are visited every 6 to 24 months, depending on the level
of risk of developing the retinopathy disease. After some years, we can collect
a sequence of entries with the medical data of each of the visits, stored in the
hospital EHR. This inforamtion can be structured as a time series dataset that
can be used to train a DR classifier. The DR variable should also be included
as a categorical variable in each entry, except for the last one, which is the
value we want to predict using an automatic classifier. The DR value of the last
visit is taken, then, as the ground truth value. In our case study, after some
pre-processing [6], we obtained a set with 2108 patients, each of them with a
multivariate time series of length 10, where each variable is encoded as a different
time series. For convenience, the interval between two entries was set to be 1
year. During pre-processing, some patient’s data was discarded, concretely the
ones with sequences with too short length, as the interpolation method could
not find appropriate values. The data of these patients is now used to generate
partially-synthetic instances for the minority classes.

In the procedure to generate new examples for short time series, we distin-
guish two subsets:

– Cp are sets of complete time series for the minority classes. In the case of
DR, it contains the positive categories, p ∈ {1, 2, 3}. All the series have the
same length, lc.

– I is the set with incomplete time series, ij , each one with a short length
lj . The length must be in the range lmin < lj < lc, where lmin must be
determined by the characteristics of the data.
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In short, we propose to generate new examples of length lc by means of
extending (i.e. boosting) the information available in short series. For each mi-
nority class p, the additional entries added at the end of the existing sequence
will take into account the information available in the set Cp. In that way, we
introduce data values they are feasible, as some other patient has had similar
values. In the following subsections, the method to boost the incomplete set I
using the complete set Cp is explained. In the procedure, variables are treated
differently according to their nature. The method is applied to all examples of
the incomplete set, ij ∈ I, for each of the minority classes p ∈ {1, 2, 3}. Exam-
ples in I do not have a ground truth value, hence, they can be completed using
examples from different classes, generating different sequences for each class.

3.1 Demographic variables

First, we consider the demographic variables, whose progression is known in
advance. In the DR case study, they are age, gender and EVOL (duration of
diabetes). Age and EVOL are numerical and they are measured in years, so at
each time point in the series (yearly intervals), they increase in 1 unit. Gender
is a categorical variable with a value fixed along the time, so the same category
(woman/man) is maintained equal in all the new entries for each given time
series ij .

3.2 Medical variables

These are variables that store clinical and analytical information related to
health. For the medical variables, we calculate the distance between a given
incomplete series ij ∈ I (with length lj) and a complete series cp,k ∈ Cp (with
length lc). As lj < lc, for the complete series we only consider the first lj entries
for the distance calculation. Dynamic Time Warping (DTW) is proposed as the
distance measure for comparing the sequences, which is a well-known measure
for this kind of data. The dependent version of DTW, DTWD, has been applied
in the case study [7].

This comparison is performed for each of the minority classes p. For each
class, we find the example from the complete set with the least distance to ij ,
i.e. the most similar in class p, denoted cp,simj .

cp,simj
= argmink(DTW (ij , cp,k)) ∀cp,k ∈ Cp (1)

Once we know the most similar complete series to an incomplete one, the
procedure for assigning the following missing values of the sequence depends on
being a numerical or categorical variable.

Categorical variables. We have three categorical variables: TTM, HTAR, and
the class label DR. Their values in the incomplete entries of ij are completed
using the categorical values of the most similar series, cp,simj

. This corresponds to
the missing time points t ∈ (lj , lc]. Regarding the class variable DR, which must
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be monotonic non-decreasing according to the medical specialists, a forward fill
is applied in the time points where copying the value would produce a decrease
from the previous DR level. This process mainly affects the first generated time
points, where some discrepancies between the incomplete and complete sequences
could be found.

Numerical variables. For the management of numerical values, we propose
a procedure based on fuzzy sets. Doctors usually work with ranges of values
with fuzzy boundaries rather than with precise numerical values. We consider
that for each numerical variable a, we can define a linguistic fuzzy variable fa
with a fixed set of ordered labels. Each label has a fuzzy set µa. In our case
study, ophthalmologists provided appropriate linguistic labels and fuzzy sets for
the numerical variables A = {CKDEPI,HbA1c,MA,BMI}. For each variable
(a ∈ A) and for all missing time points t ∈ (lj , lc], the following procedure is
applied.

First, a forecasting method is used to predict the next numerical value for
the incomplete time series, ij(a, t). Drift forecasting has been chosen because of
its simplicity. Moreover, the amount of available past data is limited, so more
complex forecasting techniques were not needed. It fits a line between the first
and last points of the series, and extrapolates them to the future.

Second, the same time point is obtained from the nearest complete time
series, cp,simj (a, t). The fuzzy sets of the variable fa are then used to obtain the
label with maximum activation for both the incomplete and complete time series
values, x and y, respectively. If x = y, the forecasted value is stored in ij(a, t).
Otherwise, a random value with maximum activation on the fuzzy term y is set
in ij(a, t).

By forcing the forecasted value to be similar to one in the complete sequence,
we can generate new examples that, although not having the same values, are
similar. The use of fuzzy sets permits to assign values that are fuzzified with the
same label, which means that they are falling the same category according to
the vocabulary given by the ophthalmologists.

4 Experimental results

This section presents the obtained experimental results, where random oversam-
pling is compared to this proposed approach on the DR dataset. In subsection
4.1 the dataset is presented. Subsection 4.2 shows and discusses the results.

4.1 Dataset

This subsection presents the data that has been used for the experiments. It
comes from Catalan diabetic population from period 2010 to 2021. It is a pri-
vate dataset provided to us in the framework of a national research project.
Table 1 shows the number of patients of the complete set for the 4 possible DR
classes. The dataset was split between training (20%) and testing (80%). All the
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sequences in these sets have length lc = 10. Although the negative class is not
used in the example generation process, it is also included on Table 1 to show
the clear imbalance towards the negative class.

Table 1. Diabetic retinopathy patients with complete time series

Class/Dataset Training (20%) Testing (80%) Total
DR = 0 354 (84.1%) 1376 (81.6%) 1730 (82.1%)
DR = 1 41 (9.7%) 168 (10%) 209 (9.9%)
DR = 2 22 (5.2%) 111 (6.6%) 133 (6.3%)
DR = 3 4 (1%) 32 (1.8%) 36 (1.7%)
Total 421 1687 2108

To balance the training set, we applied the presented method for completing
short sequences for the three minority classes. Here we use incomplete set I. It
is composed by previously discarded time series because of their short length.
In this work, we just considered the incomplete series of the maximum length
available, lj = 5, which correspond to 4547 patients. This is because the shorter
the incomplete time series are, more fictive data has to be introduced, increasing
the probabilities of introducing erroneous data.

After generating new examples for each minority class, we have oversampled
these classes on the training set to reach the number of elements in the majority
one (i.e. each class has 354 examples).

4.2 Results

The validity of the balanced data obtained with the proposed method has been
studied by training and testing a time series classifier. According to the results
we obtained in [6], the Convolutional Neural Network (CNN) is the time series
classifier that performs better in the DR dataset. We used a CNN architecture
specifically designed for time series classification [12]. The CNN configuration
used for the tests is the following one: 20 epochs, batch size of 16, kernel size of
5, average pool size of 2, softmax activation, and categorical crossentropy loss.

The obtained results have been compared with a baseline balancing method
consisting on making random oversampling. Even being a simple technique, it is
still quite used for balancing.

Figure 1 depicts the confusion matrices obtained with the CNN classifier
for both balancing methods. From the results, it can be seen how the proposed
method improves the random oversampling. It is able to correctly classify more
examples for classes DR = 0 and DR = 1. Moreover, it is clearly more capable
of detecting patients with severe retinopathy DR = 3.

Several standard performance metrics for multiclass classification have been
used to evaluate both methods, as shown in Table 2. Random oversampling re-
sults are quite high, but the proposed method obtains better results in all the
metrics. Taking into account that the testing set is imbalanced, some of the
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Fig. 1. Confusion matrices for proposed approach (left) and random oversample (right)

metrics may be biased towards the performance of the largest class. Even so,
accuracy, weighted recall and weighted F1 have an improvement of at least 10%
over random oversampling when using the proposed approach to balance the
training set. In macro metrics, for recall we have an improvement of 40% and
of 50% in macro F1, with respect to the baseline random oversampling. It is
worth to highlight the improvement in the macro metrics, which indicates that
the trained classifier with the proposed balancing method can better identify
the positive patients. Finally, the quadratic weighted kappa increase is specially
remarkable, reaching a value of 0.85. It indicates a substantial strength of agree-
ment between the predictions and the ground truth.

Table 2. Performance of the proposed approach and random oversampling

Metric/Balancing Proposed balancing Random oversampling
Accuracy (%) 93 82

Quadratic Weighted Kappa 0.85 0.59
Macro Recall (%) 73 53

Weighted Recall (%) 93 82
Macro F1 (%) 75 49

Weighted F1 (%) 93 83

5 Conclusions and future work

In this paper, we presented a new fuzzy-based approach to boost short time
series to solve class imbalance in health care data. We have generated completed
short sequences by using information from similar completed ones. Three types
of variables have been distinguished when completing their values. For medical
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numerical values, a method based on the use of linguistic fuzzy variables has been
proposed. By using the membership functions, we can find new input values that
generate series similar enough to real examples. The resulting DR dataset has
been compared to a set balanced with random oversampling, by using a CNN
time series classifier. The obtained results clearly indicate that our proposed
method for generating new positive examples is better on compensating for class
imbalance than using random oversampling. The time series classifier, CNN, is
able to better learn the underlying patterns of the minority DR examples, as
metrics depict. Moreover, as the quadratic weighted kappa indicates, when it
commits mistakes, they are closer to the ground truth.

As future work, we plan to test the proposed method on other time series
classifiers and other datasets to confirm the observations. A comparison with
other balancing techniques (T-SMOTE) will be made. The possibility of using
or adapting the proposed method for shorter incomplete time series should also
be studied.
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Abstract. The paper offers a fuzzy insight into differential entropy. Its formula is revised for
fuzzy measures using extended Choquet integrals and Choquet-Radon-Nikodym derivatives
as a fuzzy alternative to the additive Radon-Nikodym derivatives. The computational aspect
of entropy is examined for the particular class of distorted Lebesgue measures, and also some
of the basic entropy properties are studied resulting from modifying one of the measures in
the formula. Derivation from Kullback-Leibler divergence is introduced, and other types of
entropy, such as Rényi and Tsallis, are generalised on the same basis to the fuzzy setup.

Keywords: Differential entropy · Fuzzy measures · Extended Choquet integrals · Choquet-
Radon-Nikodym derivatives.

1 Introduction - Additive case

The notion of entropy originated in the 1870s in thermodynamics and statistical physics, where
it was derived from thermodynamical considerations based upon the second law of thermodynamics
[12]. Later, entropy was applied by Hartley in his study of random signals and also served as one of
the main concepts in the information theory developed by Shannon [8] in the 1940s. Since then, it
has been a very important concept in several areas of scientific research and has been widely used
in many distinct applications, such as engineering, finance, decision making, optimisation, system
modelling or image processing.

This article focuses on the original mathematical insight into entropy in the field of information
theory, according to Shannon. Our aim is to make an analogy from the already introduced differential
entropy in the additive (probability) case to the fuzzy (nonadditive) setup. The main difference
is replacing classic probability with fuzzy measure, which does not possess the key property of
additivity. This replacement leads to more necessary and not so trivial changes, namely in the
integral, RN derivatives and even the formula itself, which we study one by one in the following
parts of the article. To our best knowledge, the only article dealing with differential entropy for
fuzzy measures the way we would like to is [11], where the authors mainly focus on a more general
case of entropy called Kullback-Leibler divergence.

Since information theory can be simply considered a branch of applied probability theory, let
us recall some basic probabilistic concepts necessary for this paper. Consider a probability space
(Ω,A, P ), with a probability measure P . Then a mapping ξ : Ω → [−∞,+∞] is called a random

∗This paper was supported by Agency of the Ministry of Education, Science, Research and Sports of
the Slovak Republic and the Slovak Academy of Sciences under the contract No. VEGA 1/0267/21.
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variable (RV) if for all t ∈ R it holds {ω ∈ Ω : ξ(ω) < t} ∈ A. For a description of RV ξ, cumulative
distribution function (cdf) Hξ : R→ R is commonly used, having the form

Hξ(t) = P ({ω ∈ Ω : ξ(ω) ≤ t}) , t ∈ R.

The cdf is said to be absolutely continuous if there exists a function h : R → [0,∞] such that∫ ∞

−∞
h(t) dt = 1 and Hξ(t) =

∫ t

−∞
h(x) dx. Then h is called probability density function (pdf), and

it holds h(t) =
dHξ(t)

dt
= H′ξ(t) if the derivative exists.

It is obvious that probability measure, cdf and pdf are all closely interconnected, so a direct link
between probability measure and pdf exists, namely in the form of Radon-Nikodym derivative.

Theorem 1 (Radon-Nikodym theorem). On a measurable space (Ω,A), let us assume two
σ-finite1 measures µ, ν, where ν � µ2. Then there exists a measurable function f : Ω → [0,∞],
such that for any measurable set A ∈ A it holds

ν(A) =

∫

A

f dµ.

Function f from Theorem 1 is the Radon-Nikodym (RN) derivative, commonly written as

f =
dν

dµ
. Measure µ is also called reference measure.

Pdf can be written in our proposed setup as RN derivative h =
dP

dλ
, where λ is Lebesgue

measure. With all this in mind, differential entropy of continuous RV ξ with corresponding pdf h
is defined with the formula

Ent(ξ) = −
∫
h(t) lnh(t) dt,

with a convention 0 · ln 0 = 0 for a proper definition, resulting from the L’Hospital rule. In case when
corresponding RN derivative is used instead of pdf, the formula for differential entropy changes to
the form

Ent(P ) = −
∫

dP

dλ
ln

(
dP

dλ

)
dλ (1)

and after modification resulting from (change of variables) property of RN derivatives, it can be
shortened as

Ent(P ) = −
∫

ln

(
dP

dλ

)
dP. (2)

The notation for entropy changed because it is more convenient to assume measure in the argument
than RV, which even does not appear in the formula. These two formulas (1) and (2) are our starting
point for fuzzy insight into the definition of differential entropy.

It is necessary to mention that there are significant differences between discrete and differential
(continuous) entropy. One is that the final value of differential entropy cannot be directly inter-
preted. It is only interpretable when comparing values or after division with the pre-agreed reference

1measure µ is σ-finite if (∀(An)n∈N ∈ A : Ai ∩Aj = ∅ i 6= j, Ω =
⋃

n∈N
An) µ(An) <∞

2ν � µ is notation for absolute continuity of ν with respect to µ or (∀A ∈ A) µ(A) = 0 ⇒ ν(A) = 0.
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entropy. Another difference is that the final value of entropy can be any real number, even a negative
one, as shown in Example 1. The reason is that there is a pdf in the argument of the logarithm,
while in the discrete case, there is probability measure bounded in the interval [0, 1], resulting in a
nonnegative value.

Example 1. Let ξ be a random variable described through Laplace distribution with pdf hλ(x) =
λ

2
e−λx. Then its differential entropy is given as

Ent(ξ) = −2

∫ ∞

0

λ

2
e−λx ln

(
λ

2
e−λx

)
dx = ln

(
2e

λ

)
.

Taking e.g. λ = 10, Ent(ξ)
.
= −0.6094, so even for additive case entropy can be negative.

2 Main results - Fuzzy case

On a measurable space (Ω,A), a fuzzy measure µ : A → [0, 1] is a set function which satisfies
the following properties:

– (groundedness) µ(∅) = 0
– (normalisation) µ(Ω) = 1
– (monotonicity) (∀A,B ∈ A : A ⊆ B)µ(A) ≤ µ(B)
– (continuity from below) (∀n ∈ N) (∀C,Cn ∈ A : Cn ↗ C) µ(Cn)↗ µ(C)
– (continuity from above) (∀n ∈ N) (∀C,Cn ∈ A : Cn ↘ C, µ(C1) <∞) µ(Cn)↘ µ(C)

Using fuzzy measures in the integration leads to a transition from additive Lebesgue integral to its
fuzzy equivalent Choquet integral. For a nonnegative RV ξ and fuzzy measure µ, it is defined as
the indefinite Riemann integral [1], [2] in the form

(C)

∫
ξ dµ =

∫ ∞

0

Sµ,ξ(t) dt,

where
Sµ,ξ(t) = µ({ω ∈ Ω : µ(ω) > t}), t ∈ R

is the corresponding survival function, emphasising the use of the fuzzy measure in the lower index.
When assuming general RV with both positive and negative values, there are two different ways to
extend the Choquet integral, namely symmetric (Cs) and asymmetric (Ca) versions given as

(Ca)

∫
ξ dµ = (C)

∫
ξ+ dµ− (C)

∫
ξ− dµ,

(Cs)

∫
ξ dµ = (C)

∫
ξ+ dµ− (C)

∫
ξ− dµ.

Apparently, these two Choquet integrals differ in the formula only for the nonpositive part, where
the crucial is the dual measure3 appearing only in the asymmetric integral. This fact also influences
the integrals’ properties, which can be found in [1] mainly for nonnegative RV and in [7] for general
RV.

Further, we can generalise RN derivatives for fuzzy measures with the introduced Choquet
integral, as in [6].

3Dual measure with notation µ is defined as µ(A) = µ(Ω)− µ(Ac) for all A ∈ A.
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Definition 1 (Choquet-Radon-Nikodym derivatives). On a measurable space (Ω,A), let us
assume two σ-finite fuzzy measures µ, ν and Choquet integral of nonnegative measurable function g
for any measurable set A ∈ A given as

ν(A) = (C)

∫

A

g dµ.

Then g is a Choquet-Radon-Nikodym (CRN) derivative with notation g =
dν

dµ
distinguished from

the RN derivatives.

CRN derivatives are always nonnegative functions, so there is no need to use extended Choquet
integrals. Moreover, both assumed measures need to be fuzzy, otherwise we obtain the additive case.
Regarding their existence, absolute continuity is not satisfactory here as for additive measures,
so more conditions need to be assumed. Either submodularity of both measures is added [4] or
subadditivity of measures together with the strong decomposition property (derived from the Hahn
decomposition of measures) is further assumed [3]. There is also an additional condition on measures
assuming the uniqueness of CRN derivatives because dealing with Choquet integral, as given in [6].

Proposition 2 On a measurable space (Ω,A), let us have two fuzzy measures µ, ν.

i) If µ is subadditive4, g =
dν

dµ
and f is a A-measurable function on Ω such that f = g µ-a.e.,

then f =
dν

dµ
.

ii) If f =
dν

dµ
and g =

dν

dµ
, then f = g µ-a.e.

In the following two propositions, we focus on properties adopted from [6] necessary for the paper.
The first one is related to the change of variables in the Choquet integral using CRN derivatives,
and the second one deals with their basic calculus.

Proposition 3 On a measurable space (Ω,A), let us assume two fuzzy measures µ, ν with µ being

σ-finite, and existence of the CRN derivative
dν

dµ
. Then for a nonnegative random variable ξ, it

holds

(C)

∫
ξ dν = (C)

∫
ξ
dν

dµ
dµ,

where the existence of one side implies that of the other.

As a generalisation of Proposition 3, we take general RV ξ with positive and negative values. The
equation then holds only for symmetric, but not for asymmetric Choquet integral because positive
as well as negative homogeneity needs to be satisfied.

Lemma 1. Let µ, ν, τ be fuzzy measures and let us assume the existence of all the necessary CRN
derivatives. Then

i) (homogeneity) for k > 0 it holds
d(kν)

dµ
= k

dν

dµ
µ-a.e. and

dν

d(kµ)
=

1

k

dν

dµ
µ-a.e.

4Subadditive measure (∀A,B ∈ A) µ(A) + µ(B) ≥ µ(A ∪B).
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ii) (chain rule) for σ-finite µ it holds
dν

dτ

dτ

dµ
=

dν

dµ
µ-a.e.

iii) (inverse) it holds
dν

dµ
=

(
dµ

dν

)−1

iv) (duality) for subadditive [superadditive5] µ it holds
dν

dµ
≤ dν

dµ
µ-a.e.

[
dν

dµ
≥ dν

dµ
µ-a.e.

]

2.1 Definition

We have done all the necessary modifications from the probability case to the fuzzy setup,
namely from probability to fuzzy measure, from Lebesgue to Choquet integral with extensions
symmetric and asymmetric Choquet integrals, and from RN derivatives to CRN derivatives. Now,
we can finally generalise the differential entropy formula itself, derived from the additive formulas
(1) and (2).

Definition 2 (Fuzzy differential entropy). On a measurable space (Ω,A), let us have two fuzzy

measures µ, ν and let CRN derivative
dν

dµ
exist. Then fuzzy differential entropy of ν with respect to

µ with asymmetric Choquet integral is given as

Entaµ(ν) = −(Ca)

∫
dν

dµ
ln

(
dν

dµ

)
dµ (3)

and with symmetric Choquet integral by the formula

Entsµ(ν) = −(Cs)

∫
ln

(
dν

dµ

)
dν. (4)

The notation is adapted to the fuzzy case, so there is the reference measure in the lower index and
a type of Choquet integral in the upper index. We propose two definitions (3) and (4), which differ
in the type of Choquet integral resulting in their different forms. The first one with asymmetric
integral is a direct analogy to the longer additive formula (2). The second one with symmetric
integral is shortened according to Proposition 3 and comments below, so there is no CRN derivative
multiplying the logarithm and the integration measure has changed. It is also a direct analogy to
the shorter additive formula (2).

2.2 Computation

After properly defining differential entropy in the fuzzy case, it is interesting to look at the
practical computational aspect. First, we focus on the Choquet integral. To avoid a complicated
reordering process, a simplification is used only assuming monotone functions and subsets of the real
line, so when Ω ⊆ R. Particularly, in [9] and [10], only nondecreasing integrands and Ω = [0, τ ] are
used. Here, we study both nondecreasing and nonincreasing functions on more general Ω = [s, τ ],
where 0 ≤ s ≤ τ .

Proposition 4 Let us assume Ω = [s, τ ] ⊆ R, 0 ≤ s ≤ τ and fuzzy measure µ, generating functions
µ([t, τ ]) and µ([s, t]), which are supposed to be differentiable with respect to t. Then the Choquet
integral of nonnegative monotone continuous function g with respect to µ on [s, τ ] have the form

5Superadditive measure (∀A,B ∈ A) µ(A) + µ(B) ≤ µ(A ∪B).
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- for nondecreasing g (C)

∫ τ

s

g dµ = s µ([s, τ ])−
∫ τ

s

∂

∂t
µ([t, τ ]) g(t) dt,

- for nonincreasing g (C)

∫ τ

s

g dµ = s µ([s, τ ]) +

∫ τ

s

∂

∂t
µ([s, t]) g(t) dt.

If we restrict ourselves only to distorted Lebesgue measures6 as a special case of fuzzy measures,
the corresponding Choquet integrals on Ω = [s, τ ] are given as follows.

Corollary 5 Let Ω = [s, τ ] ⊆ R, 0 ≤ s ≤ τ and λm be a distorted Lebesgue measure. Then the
Choquet integral of nonnegative monotone continuous function g with respect to λm on [s, τ ] has
the form

- for nondecreasing g (C)

∫ τ

s

g dλm = s m(τ − s) +

∫ τ

s

m′(τ − t)g(t) dt,

- for nonincreasing g (C)

∫ τ

s

g dλm = s m(τ − s) +

∫ τ

s

m′(t− s)g(t) dt,

It is obvious that taking s = 0 in both proposition and corollary, we obtain already existing
results for Ω = [0, t] as a special case.

Our main task regarding computation is CRN derivatives, which can be seen as the argument
of the corresponding Choquet integral. Because it is quite challenging in general, we only restrict
ourselves to subsets of the real line Ω = [0, τ ], monotone functions and distorted Lebesgue measures,
so only formulas from Corollary 5 are needed.

In the case of a nondecreasing derivative, the Choquet integral coincides with the Riemann
integral in the form of convolution. The best way for its computation is therefore using Laplace

transform and its inverse. So putting ξ1(τ) =

∫ τ

0

m′(τ − t)g(t) dt, function g as the corresponding

CRN derivative is computed as

g(t) = L−1
{ L[ξ1]

sL[m]

}
. (5)

Even though this method with Laplace transform seems easy for computation, it yields some prac-
tical problems as shown in particular examples in [6]. In case of nonincreasing CRN derivative, let

us put ξ2(τ) =

∫ τ

0

m′(t)g(t) dt. From the integral form, it is clear that the CRN derivative can be

expressed through the fundamental theorem of integral calculus as

g(t) =
ξ′2(t)

m′(t)
. (6)

Regardless of the type of monotonicity, there is one particular inconvenience in this approach. At the
beginning of the computation, we do not know if the derivative is nondecreasing or nonincreasing.
So, we need to guess first and then check if the guess was correct or if we need to repeat the whole
procedure.

6Distorted Lebesgue measure λm is a fuzzy measure, where λm = m ◦λ with λ being Lebesgue measure
and m : R+ → R+ a distortion, so differentiable increasing function satisfying m(0) = 0 and m(1) = 1.
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Example 2. For nondecreasing CRN derivative, let us assume ξ1(t) =
1

10
t5 +

1

3
t3 and distorted

Lebesgue measure with distortion m(t) = t2. Then using (5), it holds

g1(t) = L−1
{L[ 1

10 t
5 + 1

3 t
3]

sL[t2]

}
= L−1

{
6

s4
+

1

s2

}
= t3 + t.

For nonincreasing CRN derivative, we assume ξ2(t) = −4te−
t
2 − 8e−

t
2 with the same distorted

Lebesgue measure. Then following (6), it holds

g2(t) =

(
−4te−

t
2 − 8e−

t
2

)′

(t2)
′ = e−

t
2 .

For both monotonicities in Example 2, the form of the CRN derivative can be checked by
inserting it into the formula for Choquet integral with respect to distorted Lebesgue measure λt2
in Corollary 5 and compare the result with corresponding ξ function.

After showing the computation of the Choquet integral and CRN derivatives in some restricted
setup, we compute the entropy itself from formulas (3) and (4) with the use of integrals’ definitions
and Corollary 5.

Example 3. Let Ω = [0, 1], µ = λm with m(t) = t3 and ν = λn with m(t) = t2. Our task is to
compute the entropy of ν with respect to µ with both extended Choquet integrals.

First, CRN derivative is
dν

dµ
=

(t2)′

(t3)′
=

2

3t
because it is nonincreasing.

Then entropy with symmetric Choquet integral is computed as follows

Entsµ(ν) = −(Cs)

∫

[0,1]

ln

(
2

3t

)
dλt2 = −(C)

∫

[0, 23 ]
ln

(
2

3t

)
dλt2 + (C)

∫

[ 2
3 ,1]

ln

(
3t

2

)
dλt2 =

= −
∫ 2

3

0

(t2)′ ln

(
2

3t

)
dt+

2

3

(
1− 2

3

)2

−
∫ 1

2
3

(
(1− t)2

)′
ln

(
2

3t

)
dt =

13

54
− ln

(
3

2

)
.
= −0.1647.

For asymmetric Choquet integral, the computation is very similar, with the one important change
in measure, because the dual measure for nonpositive values is needed

Entaµ(ν) = −(Ca)

∫

[0,1]

2

3t
ln

(
2

3t

)
dλt3 = −(C)

∫

[0, 23 ]

2

3t
ln

(
2

3t

)
dλt3+

+(C)

∫

[ 2
3 ,1]

2

3t
ln

(
3t

2

)
dλt3 = −

∫ 2
3

0

(
t3
)′ 2

3t
ln

(
2

3t

)
dt+

2

3

(
1− λt3

([
0,

2

3

]))
−

−
∫ 1

2
3

(1− λt3([0, t]))′
2

3t
ln

(
2

3t

)
dt =

85

162
− ln

(
3

2

)
.
= 0.1192.
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2.3 Properties

Next, we study basic properties of fuzzy differential entropy definitions (3) and (4) regarding
both the reference measure and the measure in the argument. We change these two input measures
and observe what happens with the resulting entropy. For their proof, the properties of integrals as
well as CRN derivatives are taken into account.

First, we look at the uniqueness of the proposed entropy definition, so how could the measures
resp. CRN derivatives differ without the change of the final entropy. For a more simple form of this
proposition, we use notation Entµ(f) with CRN derivative f in the argument.

Proposition 6 Let µ, ν be fuzzy measures and f1, f2 two different CRN derivatives of ν with respect
to µ. If µ, ν are subadditive and f1 = f2 ν-a.e., then

Entsµ(f1) = Entsµ(f2).

If µ is subadditive and f1 = f2 µ-a.e., then

Entaµ(f1) = Entaµ(f2).

Proof. From the uniqueness property of CRN derivatives in Proposition 2, measure µ needs to be
subadditive for both entropy versions. For asymmetric integral, when f1 = f2 µ-a.e. and µ as a
measure in the integral is subadditive, also f1 ln (f1) = f2 ln (f2) µ-a.e. and from [1, Example 9.1]

(Ca)

∫
f1 ln (f1) dµ = (Ca)

∫
f2 ln (f2) dµ. Analogously, it can be done for symmetric integral with

ν as a measure in the integral, so assuming further condition of its subadditivity.

The next two properties can be seen as a variation of positive homogeneity regarding both
measures. The first one, with respect to the reference measure, is in the additive case (emphasising
additive reference measure in the lower index) given as Entkλ(P ) = ln k + Entλ(P ) for all k > 0,
k 6= 1. Dealing with fuzzy measures, this does not hold in general.

Proposition 7 Let µ, ν be fuzzy measures, k > 0, k 6= 1, and let all the necessary CRN derivatives
exist. Then for both extended Choquet integrals

– Entkµ(ν) ≤ Entµ(ν) for k ∈ (0, 1)
– Entkµ(ν) ≥ Entµ(ν) for k > 1.

Moreover, further inequalities can be obtained for asymmetric Choquet integral, so

– Entakµ(ν) ≥ ln k + Entaµ(ν) for k ∈ (0, 1) and submodular µ
– Entakµ(ν) ≤ ln k + Entaµ(ν) for k ∈ (0, 1) and supermodular µ

Proof. Let us focus on asymmetric Choquet integral.

Entakµ(ν) = −(Ca)

∫
dν

d(kµ)
ln

(
dν

d(kµ)

)
d(kµ) = −(Ca)

∫
dν

dµ

[
− ln k + ln

(
dν

dµ

)]
dµ

where positive homogeneity of CRN derivatives from Lemma 1 i) and of the integral regarding
measure is used together with logarithm properties. The first approach is an estimation of the
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constant (− ln k). Since if k ∈ (0, 1) then − ln k > 0 and if k > 1 then − ln k < 0, estimating it
with zero (from below or above respectively) gives us the first two inequalities in the proposition.
The same can be done for symmetric Choquet integral. The second approach is the use of weaker
versions of the linearity (additivity) of the integral, where the further condition of submodularity
of µ resulting in ≥ or supermodularity of µ resulting in ≤ is assumed (only submodular measure is
taken in the derivation)

≥ −(Ca)

∫
dν

dµ
(− ln k) dµ− (Ca)

∫
dν

dµ
ln

(
dν

dµ

)
dµ = −(Ca)

∫
dν

dµ
(− ln k) dµ+ Entaµ(ν).

In the last integral, − ln k > 0 for k ∈ (0, 1), so with positive homogeneity and CRN derivatives
definition

−(Ca)

∫
dν

dµ
(− ln k) dµ = ln k (Ca)

∫
dν

dµ
dµ = ln k.

For k > 1, − ln k < 0 and the dual measure needs to be assumed from negative homogeneity.
Even though there exist inequalities comparing original and the dual measure, assuming both
estimations results in supermodular and subadditive measure or submodular and superadditive
measure, respectively. That leads to the additive case, which is not in our interest here. Estimations
for linearity cannot be used for symmetric Choquet integral because weaker linearity holds with
more strict conditions, which are not satisfied in general.

The second variation of homogeneity property is done regarding measure in the argument. The
additive form of this property is given as Ent(kP ) = −k ln k + kEnt(P ) for k > 0, k 6= 1. For fuzzy
measures, results are summarised in the following proposition.

Proposition 8 Let µ, ν be fuzzy measures, k > 0, k 6= 1, and let all the necessary CRN derivatives
exist. Then for both extended Choquet integrals

– Entµ(kν) ≥ kEntµ(ν) for k ∈ (0, 1)

– Entµ(kν) ≤ kEntµ(ν) for k > 1.

Furthermore, better boundaries can be obtained for asymmetric Choquet integral

– Entaµ(kν) ≤ −k ln k + kEntaµ(ν) for k > 1 and supermodular µ

– Entaµ(kν) ≥ −k ln k + kEntaµ(ν) for k > 1 and submodular µ

The proof can be done analogously to the previous proposition, with similar derivation steps
and the same explanations, so we will not repeat it here.

The following property arises from the situation when the original measure is replaced with its
dual. We observe if there is any relation between these two entropies.

Proposition 9 Let µ, ν be fuzzy measures, µ the dual measure to µ (also fuzzy) and let all the
necessary CRN derivatives exist.

- If µ is subadditive, then Entsµ(ν) ≤ Entsµ(ν).

- If µ is superadditive, then Entsµ(ν) ≥ Entsµ(ν).
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Proof. The proof is straightforward, so

Entsµ(ν) = −(Cs)

∫
ln

(
dν

dµ

)
dν ≤ −(Cs)

∫
ln

(
dν

dµ

)
dν = Entsµ(ν),

where the inequality follows from Lemma 1 iv), increasingness of logarithm and monotonicity of
symmetric Choquet integral.

For asymmetric Choquet integral, there is a problem in comparison because the estimation for
µ needs to be done in CRN derivative as well as in the integral measure, which yields measure to
be both subadditive and superadditive, so additive.

Dealing with the nonnegativity property of entropy, in Example 1 we already discussed that it
is not satisfied for the additive differential entropy. Moreover, as could be expected, the same is
true also for fuzzy differential entropy, with particular illustration for extended Choquet integrals
in Example 3.

The entropy formula can also be derived from Kullback-Leibler divergence, which is a particular
case of φ-divergence being one special class of information divergences. Introducing the derivation
step by step, general φ-divergence in the most extended form is written as

Daφ(ν1, ν2 : µ) = (Ca)

∫
dν2
dµ

φ

(
dν1/ dµ

dν2/ dµ

)
dµ

introduced for the fuzzy setup in [6] for asymmetric Choquet integral indicated in the upper index.
It can be modified to the form

Daφ(ν1, ν2 : µ) = (Ca)

∫
dν2
dµ

φ

(
dν1
dν2

)
dµ

because with Lemma 1 ii) and iii) it holds
dν1/ dµ

dν2/ dµ
=

dν1
dµ

dµ

dν2
=

dν1
dν2

. Going from general to

particular divergence, φ(t) = t ln t for Kullback-Leibler divergence, so

DaKL(ν1, ν2 : µ) = (Ca)

∫
dν1
dµ

ln

(
dν1
dν2

)
dµ

with the argument modification
dν2
dµ

dν1
dν2

ln

(
dν1
dν2

)
=

dν1
dµ

ln

(
dν1
dν2

)
, again according to Lemma 1

ii) and iii). Because of Proposition 3, it can be shortened for symmetric integral to the form

DsKL(ν1, ν2) = (Cs)

∫
ln

(
dν1
dν2

)
dν1,

where there is no need to use the original reference measure. The last two integrals are the final
forms for Kullback-Leibler divergence in the fuzzy case. Comparing them to fuzzy entropy formulas
(3) and (4), it can be easily seen that the entropy is obtained as their special case.

Lemma 2. Let us assume fuzzy measures µ, ν1, ν2 and existence of all the necessary CRN deriva-
tives. Then, there exists a relation between entropy and Kullback-Leibler divergence in the form

Entaµ(ν1) = −DaKL(ν1, ν2 : µ),

Entsµ(ν1) = −DsKL(ν1, ν2),

for ν2 = µ, so taking the second input measure as the reference measure in both cases.
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2.4 Other types of entropy

Besides the already mentioned entropy derived from original Shannon’s concept in the informa-
tion theory, there also exist some other types modified to particular applications. We focus here on
the two most common Tsallis entropy and Rényi entropy, which are parametrised entropies with
parameter q ∈ R. In the additive setup, taking q → 1 leads to Shannon entropy in both cases, so
they are its generalised versions. As explained in [5], the generalisation provides information about
the importance of specific events, for example, outliers or rare events.

Tsallis entropy can be directly modified into the nonadditive case with fuzzy measures and
Choquet integral in the form

T
q Entµ(ν) =

1

q − 1

(
1− (C)

∫ (
dν

dµ

)q
dµ

)
,

where the existence of CRN derivative
dν

dµ
is assumed. Notation is taken to correspond the whole

article with reference measure in the lower index, and to follow the usual notation with parameter
q in the lower index and T referring to Tsallis in the upper index. Because the integrand is always
nonnegative, only Choquet integral (without extensions to real functions) is sufficient to use and,
together with Proposition 3, it leads to possible shortening of the formula given as

T
q Entµ(ν) =

1

q − 1

(
1− (C)

∫ (
dν

dµ

)q−1
dν

)
.

Rényi entropy can be expressed in the fuzzy case similarly to Tsallis entropy as

R
q Entµ(ν) =

1

1− q ln

(
(C)

∫ (
dν

dµ

)q
dµ

)
,

again with assumed existence of the corresponding CRN derivative and the same explanation for
the notation. Similarly, since integrand is nonnegative, Proposition 3 allows shortening the formula
to

R
q Entµ(ν) =

1

1− q ln

(
(C)

∫ (
dν

dµ

)q−1
dν

)
.

The formula could be further modified with Jensen-like inequality for Choquet integral and concave
function. Assuming Choquet integral and convex function, it was already studied in [6] and from
that it can be easily derived that assuming nondecreasing concave function (as is logarithm) the
inequality holds with the opposite inequality sign. Since translation invariance needs to be satisfied,
this is true only for asymmetric Choquet integral. Applying this inequality to the fuzzy Rényi
entropy formula above leads to modifications given as

R
q Entµ(ν) ≥ 1

1− q (Ca)

∫
ln

(
dν

dµ

)q−1
dν = −(Ca)

∫
ln

(
dν

dµ

)
dν.

It is evident that changing order of the integral and logarithm causes that the integrand is no
longer nonnegative and an extended Choquet integral need to be used, in this case only asymmetric
Choquet integral because of Jensen inequality. Besides, the final form after applying inequality
resembles the original definition of fuzzy entropy, and they coincide for nonnegative integrand.
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3 Conclusions

The central notion of the article was differential entropy for fuzzy measures; its theoretical
background was studied with proper definition, computational aspect and properties. From the
practical point of view, introduced entropy can be used in all the application problems originally
suitable for additive entropy. Thanks to the fuzzy measures, this entropy could better illustrate the
situations where interactions are present. From the theoretical perspective, it is interesting to study
other properties of entropy, which are mostly derived from the properties of CRN derivatives. It
would also be beneficial to look at the maximum entropy principle in the fuzzy case. This principle
is based on the premise that when estimating the probability distribution, you should select the
distribution which leaves you the largest remaining uncertainty consistent with your constraints;
that way no additional assumptions or biases are introduced into the calculations. However, the
results are not so straightforward because even zero as a minimal entropy value does not hold
assuming fuzzy measures.
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Abstract. Saaty's method, Analytic Hierarchy Process (AHP), is a popular 

process in the multi-criterion decision making. The Hierarchy used in AHP 

usually has an object, some criteria and alternatives (over 3 levels). In the criteria 

and alternatives level, plural elements are contained. Each elements in a same 

level must be independent enough in classical original AHP. For cases in which 

elements in a levels are not sufficiently independent, the extended inner 

dependence AHP is useful. We treat the “partial” inner dependence AHP, i.e. 

only some elements in a level are not independent. On the other hand, in many 

examples, data of AHP do not have the reliability, because data matrix 

themselves are often inconsistent. We first analyze sensitivity of consistency and 

weight, then attempt to present a weight using results from sensitivity analyses 

and a concept of fuzzy set when the data matrix is not sufficiently reliable in 

partial inner dependence AHP.   

Keywords: decision-making, Analytic Hierarchy Process (AHP), sensitivity 

analysis, fuzzy set, inner dependence structure. 

1   Introduction 

The Analytic Hierarchy Process (AHP) proposed by T.L. Saaty in 1977 [1][2] is 

widely used in decision making for selecting alternatives. It is useful for the system 

containing humans, because it can reflects humans feelings naturally. A classical AHP 

assumes independence among both criteria and alternatives, although it is difficult to 

choose enough independent elements. Inner dependence method AHP [3] is used to 

solve this problem even for criteria or alternatives having dependence. The inner 

dependence AHP employs influence and dependency matrices to solve this problem.           

In this paper, we treat the “partial” inner dependence AHP, i.e. only some elements are 

not independent. 

When AHP or inner dependence AHP is used, some comparison matrices may not 

have enough consistency because, for instance, a hierarchical structure may contain too 

many criteria or alternatives for decision making. In such a case, answers from 

decision-makers, i.e., comparison matrix components, do not have enough reliability, 

since they are too ambiguous or too fuzzy [4]. To avoid this problem, we usually have 

to revise again or abandon the data, but it takes a lot of time and costs [2][3]. Then, we 

consider that weights should also have ambiguity or fuzziness. Therefore, it is necessary 
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to represent these weights using fuzzy sets. Then fuzzy weights using results of 

sensitivity analyses are proposed. They are efficient even if hierarchy do not have 

enough independence in some levels 

Our research first applied sensitivity analyses [5] to AHP to analyze how much the 

components of a pairwise comparison matrix influence the weights or consistency of a 

matrix [6]. This may enable us to show the magnitude of fuzziness in weights. We 

previously proposed new representation for criteria and alternatives weights in AHP, 

also representation for criteria weights for inner dependence, as L-R fuzzy numbers [7]. 

In the next step, we deal with partial inner dependence structure and consider 

compositions of weights to obtain overall alternative weights for partial inner 

dependence structure AHP, using results from sensitivity analyses and fuzzy operations 

when a comparison matrix does not have enough consistency.  

In section 2, we introduce the AHP methodology and its inner dependence method. 

The sensitivity analyses for AHP are described in section 3. The calculation of fuzzy 

weight in partial inner dependence AHP are defined in section 4, and section 5 is 

conclusions. 

2   AHP Methodology and Inner dependence Structure 

2.1   Process of Classical AHP  

  In this section, we introduce the process of classical AHP and consistency index 

proposed by Saaty [1][2] 

(Process 1) Representation of structure by a hierarchy. The problem under 

consideration can be represented in a hierarchical structure. The highest level of the 

hierarchy consists of a unique element that is the overall objective. At the lower levels, 

there are multiple criterion (i.e. elements within a single level) with relationships among 

elements of the adjacent higher level to be considered. The criterion are evaluated using 

subjective judgments of a decision maker. Elements that lie at the upper level are called 

parent elements while those that lie at lower level are called child elements. Alternative 

elements are put at the lowest level of the hierarchy 

(Process 2) Paired comparison between elements at each level. A pairwise 

comparison matrix A is created from a decision maker's answers. Let n be the number 

of elements at a certain level. The upper triangular components of the comparison 

matrix aij (i< j = 1,…,n) are 9, 8, .. , 2, 1, 1/2, …, or 1/9. These denote intensities of 

importance from element i to j. The lower triangular components aji are described with 

reciprocal numbers as follows 

aa ijji /1  (1) 

In addition, for diagonal elements, let aii = 1. The lower triangular components and 

diagonal elements are occasionally omitted from the written equation as they are 

evident if upper triangular components are shown. The decision maker should make 

n(n-1)/2 paired comparisons at a level with n elements. 
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(Process 3) Calculations of weight at each level. The weights of the elements, which 

represent grade of importance among each element, are calculated from the pairwise 

comparison matrix. The normalized eigenvector that corresponds to a positive 

maximum eigenvalue of the matrix is used in calculations throughout in this paper. 

(Process 4) Priority of an alternative by a composition of weights. The composite 

weight can be calculated from the weights of one level lower. With repetition, the 

weights of the alternative, which are the priorities of the alternatives with respect to the 

overall objective, are finally found. 

2.2   Consistency 

Since components of the comparison matrix are obtained by comparisons between 

two elements, coherent consistency is not guaranteed.  In AHP, the consistency of the 

comparison matrix A is measured by the following consistency index (C.I.) 

,
1

C.I.





n

nA  
(2) 

 

where n is the order of matrix A, and λA is its maximum eigenvalue. 

It should be noted that C.I. 0 holds. And if the value of C.I. becomes smaller, then 

the degree of consistency becomes higher, and vice versa. The comparison matrix is 

consistent if the following inequality holds. 

1.0C.I.  (3) 

2.3   Inner Dependence Structure 

The conventional AHP ordinarily assumes independence among criteria and 

alternatives, although it is difficult to choose sufficiently independent elements in 

practice. This dependency indicates some kind of interaction among the elements. An 

inner dependence AHP [3] is used to solve this type of problem even when criteria have 

dependency. 

In the method, using a dependency matrix F={ fij }, we can calculate real weights 

w(N) as follows, 

w(N)=Fw (4) 

where w is weights from independent criteria or alternatives, i.e. normal weights of 

classical AHP, F consists of eigenvectors of influence matrices showing dependency 

among criteria or alternatives.  
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However, the inner dependence method requires a dependency matrix for all 

elements, even if some criteria are independent.  In this research, we employ a partial 

inner dependence structure, i.e. only some elements are not independent, that enables 

us to easily understand the relationships among elements. In partial inner dependence 

AHP, we can divide an element set 
1 2{ , ,..., }nA X X X into 2 subsets, the dependent 

part (1) (1) (1)

1 1 2 1{ , ,..., }nA X X X  and independent part (2) (2) (2)

2 1 2 2{ , ,..., }nA X X X , where

1 2n n n  . The parts consist of elements that are dependent and independent criteria, 

respectively. Let the weights of 
1A be

1

(1) (1)

1 1( ),   1, ,kw k n w , and the weights of 

2A be
2

(2) (2)

2 2( ),   1, ,kw k n w . 

3   Sensitivity Analyses of AHP 

When AHP is used, the comparison matrix is often inconsistent or large differences 

among the overall weights of the alternatives do not appear. Thus, it is very important 

to investigate how the components of a pairwise comparison matrix influence the 

consistency or weights. Sensitivity analysis is used to analyze how results are 

influenced when certain variables change. Therefore, it is necessary to establish a 

sensitivity analysis of AHP. 

In our research, a previously proposed method [7] is used to evaluate the fluctuation 

of the consistency index and weights when a comparison matrix is perturbed. This 

method is useful as it does not change the structure of the data. 

Evaluating the consistency index and the weights of a perturbed comparison matrix 

are performed as follows. 

(1) Perturbations εaijdij are imparted to component aij of a comparison matrix, and 

the fluctuation of the consistency index and the weight are expressed by the 

power series of ε. 

(2) Fluctuations of the consistency index and the weights are represented by the 

linear combination of dij. 

(3) By the coefficient of dij, it can be shown that how the component of the 

comparison matrix gives influence on the consistency index and the weight. 

Since the pairwise comparison matrix A is a positive square matrix, the following 

Perron- Frobenius theorem [4] holds. 

Theorem 1 (Perron – Frobenius) For a positive square matrix A, the following 

holds true. 

1. Matrix A has a positive eigenvalue. If λA is the largest eigenvalue then λA is a 

simple root. The positive eigenvector w, corresponding to λA, exists. λA is 

called the Frobenius root of A. 

2. Any positive eigenvectors of A are the constant multiples of w. 

3. The absolute value of the eigenvalues of A, except for λA, is smaller than λA. 

4. The Frobenius root of the transposed matrix A' is equivalent to the Frobenius 
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root of A. 

This theorem ensures the existence of a weight vector in a pairwise comparison 

matrix. 

From Theorem 1, the following theorem regarding a perturbed comparison matrix 

holds true [7]. 

Theorem2 Let A = (aij), i,j = 1,…,n be a comparison matrix and let A(ε) = A+εDA, 

DA=(aijdij) be a matrix that has been perturbed. Moreover, let λA be the Frobenius root 

of A with w1 being the corresponding eigenvector. Let w2 be the eigenvector 

corresponding to the Frobenius root of transposed matrix A', then, the Frobenius root 

λ(ε) of A(ε) and the corresponding eigenvector w1(ε) can be expressed as follows 

),()( )1(  oA   (5) 

),()( )1(

11  owww   (6) 

where 

,
1

'
2

1

'
2)1(

ww

ww DA  

(7) 

w(1) is an n-dimension vector that satisfies 

,)()( 1

)1()1(
ww IDIA AA    (8) 

where o(ε) denotes an n-dimension vector in which all components are o(ε). 

 

Proof of this theorem can be found in Ohnishi’s paper [7]. 

3.1 Sensitivity analysis for consistency index 

Regarding a fluctuation of the consistency index, the following corollary can be 

obtained from Theorem 2. 

Corollary 1 Using an appropriate gij, we can represent the consistency index C.I.(ε) 

of the perturbed comparison matrix as follows 

C.I.( ) C.I. ( ).
n n

ij ij

i j

g d o      
(9) 

 (Proof) 

From the definition of the consistency index (4) and (5),  
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)(
1

C.I.)(C.I.
)1(




 o
n




 . 

Let w1=(w1i) and w2=(w2i) from (7). λ(1) is can now be represented as 

,
1

12

12

)1(
dwaw ijj

n

i

n

j
iji




ww
  

therefore, the second part of the right side is expressed by a linear combination of dij. 

(Q.E.D) 

gij in equation (9) in Corollary 1 shows the influence of   comparison matrix 

components on the consistency. 

On the other hand, since the comparison matrix A(ε) = (aij(ε)) is reciprocal, then  

         ijji dd   (10) 

is obtained. The impact on the consistency can be easily shown by use of this property. 

3.2   Sensitivity analysis for weights 

With regards to the fluctuation in weighs, the following corollary can also be obtained 

from Theorem 2. 

Corollary 2 Using an appropriate hij
(k), we can represent the fluctuation w(1)=(wk

(1)) 

of the weight (i.e. the eigenvector corresponding to the Frobenius root) as follows 

(1) ( )
n n

k

k ij ij

i j

w h d  
(11) 

(Proof) 

The k-th row component of the right side of (7) in Theorem 2 is represented as 

 


n

i

n

j
ijjij

jijik
dwaki

waww
,}),({ 1

12

121


ww
 

and is expressed by a linear combination of dij. Here,δ(i,k) is Kronecker's symbol 

 










).(0

),(1
),(

ki

ki
ki  
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In contrast, since λA is a simple root, Rank(A-λAI) = n-1. Accordingly, the weight 

vector is normalized as  

(1)( ) 1
n n

k k k

k k

w w w    , 

Then the condition is as follows. 

 
n

k
kw .0)1(

 
(12) 

By using an elementary transformation to formula (8) in the condition above, we 

also can represent wk
(1) by linear combinations of dij. (Q.E.D) 

As seen in equation (6) in Theorem 2, the component that has a great influence on 

weight w1(ε) is the component which has the greatest influence on w(1). hij
(k) in equation 

(11) from Corollary 2 shows how the influence by the components of a comparison 

matrix on the weights can be calculated.  

The influence can also be shown easily by use of equation (10). 

4   Fuzzy Weight Representation 

The comparison matrix often has poor consistency (i.e. 0.1<C.I.<0.2) because it 

encompasses too many criteria or alternatives. In these cases, the components of a 

comparison matrix are considered to have fuzziness since they result from the fuzzy 

judgment of humans. Therefore, weights should be treated as fuzzy numbers. 

4.1 Fuzzy Weight of Criteria or Alternatives in Classical AHP 

From the fluctuation of the consistency index, the multiple coefficient gijhij
(k) in 

Corollaries 1 and 2 is considered as the influence on aij. 

Since gij is always positive, if the coefficient hij
(k) is positive, the real weight of 

criterion k is considered to be larger than w1k.  Conversely, if hij
(k) is negative, the real 

weight of element k is considered to be smaller. Therefore, the sign of hij
(k) represents 

the direction of the fuzzy number spread. The absolute value gij|hij
(k)| represents the size 

of the influence. On the other hand, if C.I. becomes bigger, then the judgment becomes 

fuzzier. 

Consequently, multiple C.I. gij|hij
(k)| can be regarded as a spread of a fuzzy weight 

kw  concerned with aij. 

Definition 1 (fuzzy weight) Let wk be a crisp weight of element k, and gij |hij
(k)| 

denote the coefficients found in Corollaries 1 and 2. If 0.1<C.I.<0.2, then a fuzzy weight 

kw  is defined by 
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( , , )k k k k LRw w    (13) 

where 
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i j
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Using same way, we can define fuzzy weight for inner dependence structure AHP.  

Definition 2 (fuzzy weight for dependence AHP) Let w(N)
k be a crisp weight of 

element k of inner dependence structure, and gij |hij
(k)| denote the coefficients found in 

Corollaries 1 and 2. If 0.1<C.I.<0.2, then a fuzzy weight 
(N)

kw  is defined by 

(N) (N)( , , )k k k k LRw w    (16) 

 

4.2 Overall Fuzzy Weights of Alternatives for Partial Inner Dependence 

We consider about overall fuzzy weight of alternatives for partial inner dependence 

structure AHP. In this subsection, we assume inner dependence structure among criteria 

and partial inner dependence structure among alternatives. 

Let ( ),  ( 1...., )k klu l m 　u  be weights of alternatives with only respect to criterion 

k, and divide the element set 
1 2{ , ,..., }mA X X X into 2 subsets, the dependent part

(1) (1) (1)

1 1 2 1{ , ,..., }mA X X X  and independent part (2) (2) (2)

2 1 2 2{ , ,..., }mA X X X , where
1 2m m m  .  

Let the weights of 
1A be

1

(1) (1)

1 1( ),   1, ,k klu l m u , and the weights of 
2A be

2

(2) (2)

2 2( ),   1, ,k klu l m u , we calculate the modified weight of dependent subset 

1

(N1) (N1)( )k kluu  using dependency matrix 
AF as follows:  

(N2) (2)

k A kFu u .                              (17) 

Then, the partial crisp (i.e., not yet fuzzy) weight
(PN) (PN)( )k kluu , 1,...,k n  is 

made by the following concatenation. 
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1 2

(PN) ( N) (N1) (N1) (2) (2)

1 1( ) ( , , , , , )P

k kl k km k kmu u u u u u               (18) 

Then, using definitions 1 and 2, we can make fuzzy local weight
( N)P

klu  of alternative l 

from crisp weight
( N)P

klu . 

Let the modified fuzzy local weight of criteria, (N) (N)( )kww , 1,...,k n , using 

dependency matrix 
CF , at last, we can calculate fuzzy overall weights of alternative l, 

(N)

lv  can be calculated as follows: 

(N) (N) (PN)
n

l k kl

k

v w u                     (19) 

where  denotes fuzzy multiplication defined by extension principal. 

5   Conclusions 

When we use AHP, there are a lot of cases that data of AHP do not have enough 

consistency or reliability. For these cases, we propose fuzzy weight of alternatives using 

representation of fuzzy set and compositions for partial inner dependence AHP.  

Our approach can show how to represent weights. And also it will be efficient to 

investigate how the result of partial inner dependence AHP has fuzziness even if data 

are not sufficiently consistent or reliable and element of hierarchy do not have enough 

independence in some levels. 
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Abstract. In the context of information fusion, penalty-based functions
have proven to be a powerful tool for selecting the best out of a set of
possible reductions, in terms of minimizing the distance between the
output and the input values. However, different reductions can help pre-
serve different information, and the combination of their outputs can
produce a more informed and useful final representative. In this work,
we show how penalty functions can be used to combine different fu-
sion functions, weighting the contribution of each of them according to
the chosen penalty. We present an extension of penalty-based functions
which we call wPA-functions and offer construction methods for tuning
their behaviour. We illustrate the usefulness of the proposed functions in
the context of an image classification problem, for reducing the features
extracted by a Deep Learning model, obtaining favourable results.

Keywords: Penalty functions · Aggregation functions · Convolutional
Neural Networks · Pooling functions.

1 Introduction

Data fusion is a crucial task in most areas of computational sciences [4–6, 13].
When working with multivalued data, fusion and aggregation functions can be
used in order to reduce the available information into a single representative.
However, choosing the best possible aggregation is usually a task-specific prob-
lem, and the used function ends up behaving as a hyperparameter of the problem.

Penalty functions can alleviate this problem, since they offer a measure of
the spread between n values and another one [2]. They have been used with
success for tasks such as decision making [3] and image downsampling [10], in
order to find the best aggregation function to perform either of those tasks.

However, this strategy only takes into account one of the possible reductions
and discards the contribution of the rest. Furthermore, it has been proven that

⋆ Supported by the grants VEGA 1/0267/21, VEGA 1/0545/20 and Public University
of Navarre.
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each averaging aggregation function minimizes a particular penalty function,
which limits the applicability of the method [2, 10].

We consider that the capability of measuring the suitability of a fusion func-
tion can be further exploited in order to combine the information of all reduc-
tions. Penalty functions could be used to measure the fitness of each of a set of
different reductions, in order to assign more weight to the best outputs.

In this paper, we present wPA-functions, an extension of the concept of
penalty based function which generates a convex combination of fusion func-
tions, according to the extent that each of them minimize the chosen penalty.
We present a construction method which allows to set the relationship between
penalty value and the contribution of each fusion function, offering more drastic
or soft behaviours.

Similar to how penalty-based functions have been succesful in image down-
sampling tasks, we show how both this functions and wPA-functions can improve
the behaviour of Convolutional Neural Networks (CNNs) [7, 9]. This family of
artificial neural networks perform image reduction in order to reduce the di-
mensionality of the features they extract from a given image. We have trained
several variants of a well-known model of CNN and checked that the proposed
family of function outperforms traditional techniques.

The remainder of this paper is structured as follows: Section 2 recalls some
well-known concepts about fusion and aggregation functions; Section 3 presents
the generalization of penalty-based functions and studies its main properties in
depth; in Section 4, the suitability of the method is proven according to the
performed experiments; finally, Section 5 closes the work with some conclusions
and ideas for future research lines.

2 Preliminaries

We will denote vectors by x = (x1, . . . , xn). In particular, we will make use of
the vectors 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

In this work we will focus on the information fusion task. The more general
family of functions which can be used to this end are fusion functions. Let n ∈
{2, 3, . . .}. An n-ary fusion function is an arbitrary function A : [0, 1]n → [0, 1].

If we add the monotonicity property and bounding conditions to the previous
functions we end up with the concept of aggregation function.

Definition 1. An aggregation function is any function A : [0, 1]n → [0, 1] which
satisfies

(A1) A is increasing;
(A2) A(0) = 0 and A(1) = 1.

Fuzzy integrals are examples of aggregation functions which model the inter-
action among subsets of the input values through fuzzy measures.

A fuzzy measure on N is a map ν : 2N → [0,∞[ such that ν(∅) = 0 and that,
if S ⊆ T ⊆ N , then ν(S) ≤ ν(T ).
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Example 2. Let σ be the permutation of {1, . . . , n} such that
xσ(1) ≤ . . . ≤ xσ(n). We will denote by Nσ

i = {σ(i), . . . , σ(n)}.
Then:

◦ The Choquet integral Cν associated to the fuzzy measure ν is the map Cν :
Rn → R given by Cν(x) =

∑n
i=1 xσ(i)(ν(N

σ
i )− ν(Nσ

i+1)). We set xσ(0) = 0.
◦ The Sugeno integral Sν associated to the fuzzy measure ν is the map Sν :
Rn → R given by Sν(x) = maxni=1(min(xσ(i), ν(N

σ
i )).

◦ The Sugeno-like function Dν associated to the fuzzy measure ν is the map
Dν : Rn → R given by Dν(x) =

∑n
i=1 xσ(i)ν(N

σ
i ).

The requirement of monotonicity for aggregation functions leaves out several
important fusion functions such as the mode. A more relaxed condition can be
found in the concept of directional monotonicity.

Let r be a real n-dimensional vector, r ̸= 0. A fusion function A : [0, 1]n →
[0, 1] is r-increasing (r-decreasing) if for all x ∈ [0, 1]n and all c > 0 such that
x+ cr ∈ [0, 1]n, it holds that

A(x+ cr) ≥ A(x) (A(x+ cr) ≤ A(x)).

Substituting property (A1) in the definition of aggregation function by mono-
tonicity in a direction r, we end up with the concept of pre-aggregation func-
tion [1]

Definition 3. A pre-aggregation function is a function A : [0, 1]n → [0, 1] such
that A is r-increasing for some real vector r ∈ [0, 1]n, r ̸= 0 and A(0) = 0,
A(1) = 1.

3 Fusion functions based on penalty function

3.1 P -functions

We say that a function f : Rn → R is quasi-convex in the k-th variable if

f
(
x1, . . . , xk−1, λu+ (1− λ)v, xk+1, . . . , xn

)

≤ max
(
f
(
x1, . . . , xk−1, u, xk+1, . . . , xn

)
, f
(
x1, . . . , xk−1, v, xk+1, . . . , xn

))
,

for all λ ∈ [0, 1] and all x1, . . . , xk−1, xk+1, . . . , xn, u, v ∈ R.

Definition 4. A function P : [0, 1]n+1 → [0,∞[ is a penalty function if it
satisfies:

(P1) P (x, y) = 0 if xi = y for all i ∈ {1, . . . , n};
(P2) P (x, y) is quasi-convex in y for any x.

Penalty functions can be used to construct fusion functions, some of them
are aggregation functions, according to the following definition.
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Definition 5. Let P : [0, 1]n+1 → [0,∞[ be a penalty function. Then the penalty
based function f (P -function, for short) is

f(x) = arg min
y

P (x, y)

if y is the unique minimizer, and f(x) = a+b
2 if the set of minimizers is the

interval [a, b].

3.2 PA-functions

Given k fusion (or aggregation) functions Ai : [0, 1]
n → [0, 1], a penalty function

P can be used to choose the “best” fusion (or aggregation) function for given
input vector x ∈ [0, 1]n in such a way that the fusion (or aggregation) function
with the smallest penalty is applied.

Definition 6. Let P : [0, 1]n+1 → [0,∞[ be a penalty function and Ai : [0, 1]
n →

[0, 1], for i ∈ {1, . . . , k}, be fusion functions. Let x ∈ [0, 1]n. Then the PA-
function f : [0, 1]n → [0, 1] defined by

f(x) =

∑
i∈Mx

Ai(x)

|Mx| (1)

where Mx ⊆ {1, . . . , k} is such that j ∈ Mx if and only if P (x, Aj(x)) is a
minimum of the set {P (x, A1(x)) , . . . , P (x, Ak(x))}.

Proposition 7. Under the assumptions of Definition 6 it holds f(0) = 0 when-
ever Ai(0) = 0 for all i ∈ {1, . . . , k}, and f(1) = 1 whenever Ai(1) = 1 for all
i ∈ {1, . . . , k} .

Proof: First observe that M0 = M1 = {1, . . . , k}. Then the first equality
follows from the consideration P

(
0, Ai(0)

)
= 0 for all i ∈ {1, . . . , k} and the

second from P
(
1, Ai(1)

)
= 1 for all i ∈ {1, . . . , k}. 2

According to Proposition 7, each PA-function satisfies border conditions,
however, even if all considered fusion functions A1, . . . , Ak are increasing, the
induced PA-function need not be increasing. Thus, taking aggregation functions
A1, . . . , Ak, the induced PA-function need not be an aggregation function.

Proposition 8. Under the assumptions of Definition 6, the PA-function f is
idempotent whenever Ai is idempotent for each i ∈ {1, . . . , k} and f is averaging
whenever Ai is averaging for each i ∈ {1, . . . , k}.

Proof: The idempotency as well as averagingness directly follows from
Equation (1). 2
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Definition 9. We say that a penalty function P : [0, 1]n+1 → [0,∞[ is shift-
invariant if, for all x ∈ [0, 1]n, y ∈ [0, 1], r ∈]0, 1] such that x+ r1 ∈ [0, 1]n and
y + r ∈ [0, 1], it holds

P (x+ r1, y + r) = P (x, y).

Recall that a function f : [0, 1]n → [0, 1] is shift-invariant if, for any s ∈ [0, 1],
we have f(x+ s1) = f(x) + s for all x ∈ [0, 1]n such that x+ s1 ∈ [0, 1]n.

Theorem 10. Under the assumptions of Definition 6, the PA-function f is
1⃗-increasing and shift-invariant whenever A1, . . . , Ak and P are shift-invariant.

Proof: First observe that from the shift-invariancy of a fusion function Ai and
penalty function P it follows:

P (x+ r1, Ai(x+ r1)) = P (x+ r1, Ai(x) + r) = P (x, Ai(x)),

for all x ∈ [0, 1]n and r ∈]0, 1] such that x + r1 ∈ [0, 1]n. Thus, the order of
penalties is preserved in the following sense:

P (x+ r1, Ai(x+ r1)) ≤ P (x+ r1, Aj(x+ r1))

whenever

P (x, Ai(x)) ≤ P (x, Aj(x)).

It means that Mx = Mx+r1 and consequently

f (x+ r1) =

∑
i∈M

Ai (x+ r1)

|Mx+r1| =

∑
i∈M

(Ai(x) + r)

|Mx| =

∑
i∈M

Ai(x)

|Mx| + r = f (x) + r

which proves that f is shift-invariant. The proof of 1⃗-increasingness is similar. 2

Corollary 11. Under the assumptions of Definition 6, the PA-function is a
pre-aggregation function.

3.3 wPA-functions

The definition of PA-function is based on the idea that we consider a set of fusion
functions A1, . . . , Ak and, for a given input x, we choose the fusion function(s)
with the smallest penalty, i.e., with the smallest value P (x, Ai(x)). In the fol-
lowing step, we change our approach in the sense that we do not choose only a
single fusion function (or a few fusion functions) with the smallest penalty, but
we consider all of them and assign them weights in such a way that the lesser
the value P (x, Ai(x)) is, the greater weight is assigned.
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Definition 12. Let P : [0, 1]n+1 → [0,∞[ be a penalty function and Ai :
[0, 1]n → [0, 1], for i ∈ {1, . . . , k}, be fusion functions. Let x ∈ [0, 1]n. Let

wx = (wx
1 , . . . , w

x
k ) be a vector such that

k∑
i=1

wx
i = 1 and, for all i, j ∈ {1, . . . , n},

wx
i ≤ wx

j whenever P (x, Aj(x)) ≤ P (x, Ai(x)). Then the function f : [0, 1]n →
[0, 1] defined by

f(x) =
k∑

i=1

wx
i Ai(x), (2)

is called a wPA-function.

Remark 13. Considering Definition 6 and Definition 12, it is easy to see that
PA-function is a special case of wPA-function for the following weights:

wx
i =





1
|Mx| , if i ∈ Mx,

0, if i /∈ Mx.

Taking into account the assertion in Remark 13 we obtain that, in general,
a wPA-function need not be an aggregation function (need not be increasing)
even if Ai are aggregation functions (increasing) for all i ∈ {1, . . . , k}. However,
as can be seen in the following proposition, the border conditions, idempotency
and averagingness of functions Ai imply the same properties of the induced
wPA-function.

Proposition 14. Under the assumptions of Definition 12 it holds:

1. the PA-function f satisfies f(0) = 0 whenever Ai(0) = 0 for each i ∈
{1, . . . , k}, and f(1) = 1 whenever Ai(1) = 1 for each i ∈ {1, . . . , k};

2. the PA-function f is idempotent whenever Ai is idempotent for each i ∈
{1, . . . , k};

3. the PA-function f is averaging whenever Ai is averaging for each i ∈
{1, . . . , k}.

Proof: The properties directly follow from Equation (2) and the properties of
weighted averages. 2

Theorem 15. Under the assumptions of Definition 12, the wPA-function f is
1⃗-increasing and shift-invariant whenever A1, . . . , Ak and P are shift-invariant.

Proof: The proof is straightforward. 2

Corollary 16. Under the assumptions of Definition 12, the wPA-function is a
pre-aggregation function.

Remark 17. In order to obtain a wPA-function f as given in Definition 12,
the problem of obtaining a weighting vector wx should be solved. The natural
procedure of solving this problem can be split into the following two steps:
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(i) Choose a decreasing function g : [0,∞[→ [0,∞[ and calculate

g
(
P
(
x, Ai(x)

))
for all i ∈ {1, . . . , k}. The results can be considered as

non-normalized weights which are ordered in an opposite way as the corre-
sponding penalties.

(ii) Choose a normalization function s : [0,∞[k→ [0, 1]k, i.e., a function which

satisfies
k∑

i=1

(
s(z)

)
i
= 1 for all z = (z1, . . . , zk) ∈ [0,∞[k, and

(
s(z)

)
i
≤

(
s(z)

)
j
whenever zi ≤ zj. Apply the function s to the result of step (i) and

calculate the weighting vector wx:

wx = s
(
g
(
P
(
x, A1(x)

))
, . . . , g

(
P
(
x, Ak(x)

)))
. (3)

So we obtained a normalized weighting vector wx whose coordinates are ordered
in an opposite way as the corresponding penalties. Now, the wPA-function can
be calculated:

f(x) =

k∑

i=1

(
s
(
g
(
P
(
x, A1(x)

))
, . . . , g

(
P
(
x, Ak(x)

))))

i

·Ai(x) (4)

which can be simplified by denoting pi = P
(
x, Ai(x)

)
, for all i ∈ {1, . . . , k}, as

follows:

f(x) =
k∑

i=1

(
s
(
g
(
p1
)
, . . . , g

(
pk
)))

i

·Ai(x). (5)

4 Experimental Validation

In this section we will present an illustrative example of the suitability of wPA-
functions in the context of feature downsampling for a Convolutional Neural
Networks (CNN).

CNNs are a family of Deep Learning models which automate the process of
extracting the most relevant spatial features of data where local information is
relevant [9]. In particular, they have seen lots of popularity in the Computer
Vision field as tools which can solve problems such as image classification [7] or
image segmentation [12].

CNNs work in a sequential manner, outputting more complex representations
of the data the deeper they become. The convolution operator which gives
name to this family of neural networks is used to generate feature maps from
the received input image at different points, in convolutional layers. At each
layer, a series of 2D linear “filters” are convolved over all positions of the input
image. Therefore, each convolution layer outputs several feature maps and, as a
consequence, increases the dimensionality of the data.

In order to generate compact and informed representations of these features,
CNNs need to downsample the generated feature maps. This process is usually
taken care of in “pooling layers”, which apply simple fusion functions such as
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the arithmetic mean or the maximum to the values of disjoint submatrices of
the feature image. In this work, we show that this operation can benefit from
combining different fusion functions, and that wPA-functions are a direct tool
to be applied to this end.

4.1 Dataset

We exemplify the suitability of the proposed method to an image classification
task. The chosen dataset is the CIFAR-10 dataset [8] composed of 60000 small
RGB images of the real world, representing animals or vehicles. There are 10
different possible classes each image can belong to, and the dataset is split into a
train partition of 50000 samples, and a test partition with the remaining 10000
samples. Both partitions are balanced in terms of class proportion.

4.2 Deep Learning model

We have chosen to apply wPA-functions as the pooling operator of a RESNet
model. RESNets are a particular example of CNN network which have gained
lots of popularity thanks to their design, which allows to increase the number
of layers of the model (and therefore be able to model more complex functions)
without degrading their performance [7].

RESNets consists of several blocks of convolution layers (as well as additional
layers which help the algorithm learning process), which are separated by down-
sampling operations. Thus, posterior blocks of the network work with smaller
feature maps than previous ones. Although traditionally RESNets take care of
these downsampling task through additional convolution layers, pooling layers
can be used instead with no impact to the performance of the model.

We have trained several variants of a small RESNet20 model (i. e. a RESNet
model with a total sum of 20 layers) in which we test different pooling functions
and analize their different behaviours.

4.3 Pooling functions proposed

Several aggregation functions were applied as pooling operator in our model.
In particular, the commonly used arithmetic mean and maximum have been
tested. We have added the Choquet integral, the Sugeno integral and the Dν

Sugeno-like integral.
Additionally, we combine the outputs of couples of these functions which

include the arithmetic mean, using different PA and wPA-functions. We have
tested the following combination of functions in order to gain a more in depth
vision of the problem:

– Penalty function. We have tested the penalty function P1 : [0, 1]n → [0, 1]
given by:

• P1(x, y) =
n

max
i=1

|xi − y|
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– Weighting functions. The following functions g : [0, 1] → [0, 1] assign a
higher value to smaller penalty results:
• g1(x) = 1− xλg , with λg ∈ {1, 2}
• g2(x) = (1− x)

1
λg , with λg ∈ {1, 2}

– Normalization functions. The following functions s : Rk → [0, 1]k guar-
antee that the resulting coefficients add up to 1, and therefore the resulting
function is a convex combination of the chosen aggregation functions:

•
(
s1(x)

)
i
=

xλs
i∑k

l=1 xλs
l

, with λs ∈ {1, 2}
•
(
s2(x)

)
i
= λ

xi
s∑k

l=1 λ
xl
s

, with λs ∈ {1, 2}

An alternative method for combining different aggregation functions in the
pooling process was presented in [11]. In this paper, a linear combination of
k aggregation functions A1, . . . , Ak is used, in which the k coefficients of the
combination are learnt through the optimization algorithm of the network. We
compare our proposal to this method and normalize the resulting learnt coef-
ficients in order to guarantee that the resulting combination is also a convex
combination.

4.4 Experimental results

In this section we present the results of our experiments. Each of the variants of
the model has been trained 5 times with different random initializations, leading
to 5 different models. For each variant, we report the mean accuracy (ratio of
correctly classified samples) of the 5 final models.

Results obtained with the individual aggregation functions are presented in
Table 1. The Choquet integral is the function which performs better by it-
self, closely followed by the arithmetic mean. Despite its usual popularity, the
maximum offers poor results for this model and dataset combination.

Table 2 summarizes results obtained with CombPool layers as well as PA-
functions. It becomes clear that the combination of aggregation functions out-
performs individual methods in most cases. Unsurprisingly, combining the arith-
metic mean and the Choquet integral obtains good results, while combinations
of the arithmetic mean with other fuzzy integrals seem to be equally promising.

Finally, the results obtained constructing wPA-functions through different
combinations of parameters are shown in Table 3. Once again, combinations
tend to improve upon individual functions, which proves the suitability of the
method. In terms of comparability with the other combination techniques, there
are cases for which wPA-functions outperform the remaining methods, while
offering all around good results for some specific wPA-functions. In particular,
the combination of g1 weighting function with λg = 1 offers good results for all
sets of aggregation functions.

Although similar in performance with CombPool layers, PA-functions and
wPA-functions have the advantage of identifying the importance of each aggre-
gation function without the need to learn additional parameters. This makes the
method suitable in contexts where supervised learning is not an option, unlike
plain CombPool layers.
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Table 1. Mean results obtained for models which use individual aggregation functions

Individual functions
AM Max Cν Sν Dν

0.8581± 0.0010 0.8476± 0.0041 0.8592± 0.0019 0.8505± 0.0016 0.8567± 0.0027

Table 2. Mean results obtained for models which use PA-functions, as well as
CombPool layers. CombPool layers learn the coefficients of the convex combination
directly, using the optimization algorithm of the model. However, they are only ap-
plicable in contexts where training data is available, unlike PA-functions and wPA-
functions.

P1

AM +Max AM + Cν AM + Sν AM +Dν

0.8598± 0.0015 0.8617± 0.0032 0.8610± 0.0013 0.8602± 0.0042

CombPool layers
AM +Max AM + Cν AM + Sν AM +Dν

0.8559± 0.0010 0.8607± 0.0009 0.8624± 0.0004 0.8607± 0.0026

Table 3. Mean results obtained for models which use different combinations of aggre-
gation functions, combined using different wPA-functions. The combination of penalty
function P , weighting function g and normalization function s determines different valid
wPA-functions. Results marked with an slash mean that that particular combination
of wPA-function and aggregation functions leads to difficulties in the optimization
method of the model and should be avoided.

wPA-function Aggregation functions
Penalty Weighting Normalization

AM + Max AM + Cν AM + Sν AM + Dνfunction function function

P
1

g 1

λ
g
=

1 s1
λs = 1 0.8552± 0.0016 0.8618± 0.0009 0.8548± 0.0032 0.8599± 0.0058
λs = 2 0.8560± 0.0036 0.8634± 0.0015 0.8571± 0.0025 0.8604± 0.0042

s2
λs = 1 0.8572± 0.0038 0.8603± 0.0031 0.8599± 0.0023 0.8588± 0.0011
λs = 2 0.8562± 0.0009 0.8602± 0.0009 0.8567± 0.0014 0.8608± 0.0027

λ
g
=

2 s1
λs = 1 0.8549± 0.0007 0.8595± 0.0056 0.8557± 0.0013 0.8588± 0.0021
λs = 2 0.8571± 0.0034 0.8609± 0.0062 0.8556± 0.0017 0.8571± 0.0023

s2
λs = 1 0.8549± 0.0051 0.8594± 0.0029 0.8579± 0.0021 0.8594± 0.0032
λs = 2 0.8539± 0.0021 0.8601± 0.0039 0.8570± 0.0050 0.8607± 0.0019

g 2

λ
g
=

1 s1
λs = 1 0.8569± 0.0063 0.8624± 0.0054 0.8563± 0.0015 0.8583± 0.0018
λs = 2 0.8559± 0.0010 0.8591± 0.0020 0.8557± 0.0016 0.8583± 0.0055

s2
λs = 1 0.8556± 0.0034 0.8624± 0.0001 0.8584± 0.0032 0.8601± 0.0013
λs = 2 0.8555± 0.0015 0.8605± 0.0011 0.8553± 0.0028 0.8597± 0.0013

λ
g
=

2 s1
λs = 1 − 0.8605± 0.0071 0.8567± 0.0054 0.8592± 0.0059
λs = 2 − 0.8605± 0.0010 0.8587± 0.0027 0.8617± 0.0016

s2
λs = 1 − 0.8577± 0.0025 0.8582± 0.0031 0.8565± 0.0006
λs = 2 − 0.8615± 0.0008 0.8557± 0.0029 0.8575± 0.0027
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5 Conclusion

In this work we have presented an extension of the concept of penalty-based
function in the form of PA-functions and wPA-functions. We have shown that
they can be useful when combining the reductions performed by several fusion
and aggregation functions, and that the properties of the resulting functions
depend on the sets of fusion functions selected.

In addition, we have exemplified the suitability of these functions in the
feature downsampling process of a CNN network. We have proven that combin-
ing the reductions of different aggregation functions improves upon the classical
pooling operators, and that PA-functions and wPA-functions correctly identify
the most important values in a completely unsupervised way.

In the future we would like to explore additional construction methods for
PA-functions and wPA-functions which may combine the output of different
fusion functions through generic aggregation functions rather than weighted
means. We would also like to test the suitability of wPA-functions empiri-
cally, learning the most optimal hyperparameters for their construction with
supervised techniques, which we think could improve their performance even
further.
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Abstract. Limitations of clinical practice guidelines regarding treat-
ment recommendations include the lack of personalisation and user par-
ticipation in the decision-making process. APPRAISE-RS has been de-
veloped to overcome such challenges by enabling users (both clinicians
and patients) to express their preferences over treatments. However,
APPRAISE-RS follows a heuristic that uses preferences to provide treat-
ment information with five possible recommendations. This paper pro-
poses the use of multiple criteria decision analysis (MCDA) as an exten-
sion of the existing APPRAISE-RS methodology, such that preferences
enhance information about the best treatment by providing outcomes
in an numerical interval, providing a finer ranking of final interventions.
The experiments were conducted in the context of attention deficit hy-
peractivity disorder (ADHD).

Keywords: Clinical decision support systems · Multiple criteria deci-
sion making · Participatory medicine · ADHD.

1 Introduction

Participation, personalization, and evidence-based medicine are essential in mak-
ing informed and effective treatment recommendations. Unfortunately, clinical
practice guidelines (CPGs) often do not take into account patient participation
neither provide personalized treatments for them, resulting in recommendations
that may not fully align with the individual needs and preferences of patients.
As a consequence, many patients may discontinue their prescribed treatment.

To address this issue, APPRAISE-RS [6] has been proposed as a solution
that allows both patients and clinicians to express their preferences regarding
treatment outcomes. APPRAISE-RS adapts the Cochrane/GRADE heuristic for
formulating treatment recommendations. This heuristic follows these steps: scor-
ing the relevance of the outcomes of interest using a 9 point-rating scale, selecting
the outcomes that have been rated 7 or above, formulating a PICO (Patient, In-
tervention, Comparison and Outcome) treatment question, meta-analyzing those

190



studies that answer said question, assessing the risk-benefit relationship of the
studied interventions and generating treatment recommendations accordingly
which can be of 5 types: “strong in favour”, “weak in favour”, “weak in against”,
“strong against”, and “no recommendation” for each studied treatment [1]. The
limitations of this heuristic are that when answering the PICO question, only
those outcomes or preferences that are deemed “critical” (score of 7 or above)
are considered, and their weight within the heuristic is the same regardless of
their score. Furthermore, this implementation of the GRADE heuristic gives
equal weight to clinician and patient preferences, which might be unfair given
the difference in clinical knowledge between them. Therefore, the objective of
this work is to utilize multiple criteria decision analysis (MCDA) [4] to manage
preferences “as-needed” and enhance the treatment recommendations.

MCDA allows for a more comprehensive analysis of drug recommendations
compared to APPRAISE-RS. By assigning scores within the interval [0,1], we can
provide a wider ranking compared to the five options provided by APPRAISE-
RS. Two MCDA-based approaches are explored: a utility-based approach and
a preference-based (using Borda) approach. In our first approach, we propose a
strategy to separate positive and negative results to more effectively combine pa-
tient and clinician preferences. In our second approach, we use the Borda method
[3] to emphasize and differentiate the contributions of the clinician’s preferences
with respect to the patient’s preferences. These contributions improve the per-
sonalization and evidence-based nature of the recommendations.

The experiments are done in the field of attention deficit hyperactivity dis-
order (ADHD). The proposed MCDA-based approaches provide a solution to
the limitations of APPRAISE-RS and contribute to the development of patient-
centered care.

This paper is organized as follows. Section 2 provides a preliminary descrip-
tion on how APPRAISE-RS works. Next, in Section 3 the MCDA approaches
are detailed. In Section 4, the results obtained with ADHD, including the com-
parison with the previous APPRAISE-RS approach, are provided. We end the
paper in Section 5 with some conclusions and future work.

2 Background

This work is based on the methodology called APPRAISE-RS [6], which is a
recommender system that automates, adapts, extends, and iterates the Grad-
ing of Recommendations Assessment, Development and Evaluation (GRADE)
working group methodology [5,1]. The main purpose of APPRAISE-RS is to
formulate automated, up-to-date, participatory, and personalized treatment rec-
ommendations based on an updated database of clinical studies. The process
involves several steps, including gathering the patient’s demographic and clini-
cal data and preferences, filtering relevant studies from the database, generating
scientific evidence through meta-analysis techniques, assessing the quality of ev-
idence using a rule-based system, evaluating the benefit-risk relationship of each
intervention with the use of a second rule-based system, and finally, generating
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a clinical recommendation. APPRAISE-RS is currently being developed specifi-
cally for attention deficit hyperactivity disorder (ADHD) and requires two visits
in the point-of-care scenario: The first visit provides information to the patient,
while the second involves expressing preferences and obtaining treatment rec-
ommendations. The patient and the clinician then select the final intervention
together. The goal of the methodology is to help, and not replace, clinical judge-
ment and improve the validity of CPGs while reducing the rate of patients who
fail to receive the most suitable care based on available evidence.

3 Methodology

This section explains the two MCDA approaches proposed in this paper to
generate treatment recommendations. To use these approaches, inputs from
APPRAISE-RS are required and must be used in a specific manner to ensure
that the recommendations generated are useful for the MCDA approaches.

3.1 APPRAISE-RS for MCDA

Given the patient’s demographic and clinical data, as well as the preferences of
users (clinician and patient) preferences, APPRAISE-RS returns a single ranking
of treatments.

Preferences are expressed by both patients and clinicians using a Likert scale
[2] that ranges from 1 (not at all important) to 9 (very important). Preferences
are related to treatment outcomes regarding efficacy and safety, including adverse
events such as vomiting, somnolence, dizziness, etc. These outcomes are referred
to as variables in APPRAISE-RS. Variables are used by APPRAISE-RS to select
the studies in the literature that considered such outcomes, and which conclude
in the convenience or not of a given treatment regarding the patient at hand.
APPRAISE-RS analyze all the variables related to the preferences expressed by
the users at once, providing a single ranking for all of them.

Analogously, if we provide APPRAISE-RS with a single preference, the rec-
ommendations will be related to a single variable. Since we have a total of 18
preferences per user, we need to run APPRAISE-RS 18 times, obtaining a to-
tal of 18 rankings. Each ranking include all the interventions available, each
of which is labelled according to the five possible outcomes of APPRAISE-RS
(“strong in favour”, “weak in favour”, “weak in against”, “strong in against”,
and “no recommendation”). These 18 rankings are used as the input for the
MCDA methods.

3.2 Utility Approach

The Utility Approach involves generating two rankings based on the recom-
mendations obtained from APPRAISE-RS. Figure 1 illustrates the workflow
methodology for this approach.
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Fig. 1. Workflow methodology of the Utility Approach.

First, two MCDA are performed to generate two rankings. The “in favour”
MCDA takes the treatments that fall in the “in favour” category as input, while
the “in against” MCDA takes the treatments that fall in the “in against” cate-
gory. The treatments are the alternatives being evaluated by the MCDA meth-
ods, and the different variables (e.g., side effects, efficacy) are the criteria used
by the MCDA methods to evaluate and rank the treatments. The maximum val-
ues for each preference (from the clinician and patient) are used as weights for
both MCDA. Only preferences with a value greater than or equal to 7 are consid-
ered, which is done to match the GRADE methodology used on APPRAISE-RS.
However, preferences below a value of 7 could be taken into consideration.

The value of each treatment/criteria is coded according to the APPRAISE-
RS recommendations. Recommendations categorized as “weak in favour” and
“strong in favour” are given one and two points respectively in the “in favour”
ranking, while recommendations categorized as “weak in against” and “strong in
against” are given one and two points respectively in the “in against” ranking.
The “no recommendation” result is not used in either ranking.

Finally, the two rankings are merged using a coherence analysis. Assuming
that the MCDA method returns a numerical score for each possible alternative
(treatment), this step involves subtracting the score obtained on the “in against”
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ranking from the score obtained on the “in favour” ranking for each treatment.
The resulting scores are then used to generate the final ranking.

The Utility Approach provides separate rankings for “in favour” (positive
values) and “in against” (negative value) recommendations, which can be useful
in certain decision-making contexts. It allows for the use of different methods,
such as the Weighted Average (WA), but also other methods that only accept
positive inputs, such as the Weighted Product (WP).

However, it does not explicitly consider the relative importance of prefer-
ences from the clinician and patient, which may result in overshadowing of one
agent’s preferences when the other agent gives higher weights to their own. As
a result, the method may not always yield an optimal ranking of treatments
that considers both the clinician and patient needs and preferences. Therefore,
additional methods that fully account for the relative importance of preferences
from both users may need to be employed.

3.3 Preference Approach

The Preference Approach involves separating the clinician preferences and the
patient preferences in order to generate separated rankings. This approach builds
upon the previous method, resulting in four initial rankings: “in favour” and “in
against” rankings using clinician preferences, and “in favour” and “in against”
rankings using patient preferences. Figure 2 shows the workflow methodology
for this approach.

In the first step, we separate the “in favour” recommendations from the
“in against” recommendations and assign codes as described on the previous
method.

Next, we perform two MCDA for each group using clinician preferences in
one ranking and patient preferences in the other. As in the previous method,
preferences below a value of 7 are not taken into account.

Then, the two rankings within each group are merged using the Borda count
[3,4]. This involves assigning scores to treatments based on their position in each
ranking and summing the scores across rankings.

Finally, the “in favour” and “in against” rankings are merged using the co-
herence analysis described earlier.

This approach may result in different scores assigned to treatments compared
to the previous method, resulting in potentially different final rankings. How-
ever, unlike the Utility Approach, the Preference Approach explicitly considers
the relative importance of preferences from the clinician and patient by merging
the rankings. Consequently, this approach is helpful as it provides a more com-
prehensive decision-making process that takes into account the preferences and
needs of both the clinician and patient.
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Fig. 2. Workflow methodology of the Preference Approach.

4 Results

The two MCDA approaches have been applied for ADHD intervention recom-
mendations, and tested over the same 28 simulated patients used on APPRAISE-
RS [6].

Three different scenarios has been considered for experimentation:

– Utility Approach versus Preference Approach: We use the Weighted Average
(WA) as MCDA method to compare the two approaches presented in this
paper, with the previous work APPRAISE-RS.

– Verification of the Utility Approach with WA: To verify that the Utility
Approach, when using WA in the intermediate steps, should be equivalent
to the WA in a single step (see Figure 3).

– Weighted product (WP): To show the flexibility of our approach to consider
other MCDA methods that do not handle negative information.

Results are analyzed in terms of the number of treatment recommended, and
the top recommendations, meaning that a more accurate ranking should provide
fewer treatments at the top.
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4.1 Utility Approach versus Preference Approach

Table 1 compares the two MCDA approaches, when using the Weighted Av-
erage (WA), with APPRAISE-RS based on the number of recommendations
made to each patient. MCDA recommendations could be positive or negative,
depending on the last step of the methods. The Table only shows the number of
positive value recommendations for each patient. Analogously, only “in favour”
recommendations of APPRAISE-RS are displayed in the Table. Additionally,
the table presents the number of recommendations that match with those made
by APPRAISE-RS and the number of interventions recommended in the first
position by both approaches.

Patient APPRAISE-RS
Utility Approach Preference Approach

Number Match Top Number Match Top

P1 7 21 6 2 23 5 1

P2 8 17 6 1 16 5 2

P3 4 21 4 1 3 1 1

P4 6 20 5 1 15 4 1

P5 1 21 0 1 11 0 1

P6 0 2 0 1 32 0 2

P7 0 3 0 2 31 0 1

P8 0 2 0 2 34 0 1

P9 0 1 0 1 35 0 1

P10 1 6 0 1 28 0 1

P11 1 9 1 1 32 1 1

P12 7 16 5 1 10 4 1

P13 0 22 0 1 27 0 2

P14 7 16 5 2 9 3 1

P15 8 23 6 1 14 3 1

P16 5 11 4 1 29 4 1

P17 1 7 0 1 32 0 1

P18 0 1 0 1 1 0 1

P19 1 1 0 1 34 1 32

P20 8 13 6 1 19 5 1

P21 5 10 3 1 24 2 1

P22 2 17 2 1 15 1 1

P23 2 20 2 1 9 0 1

P24 3 16 3 1 7 2 1

P25 2 14 0 1 30 2 2

P26 3 21 3 1 29 3 1

P27 1 8 1 1 33 1 1

P28 1 17 1 1 26 1 1

Median 2 15 1.5 1 25 1 1
Table 1. Comparison of the number of recommendations by patient of the two MCDA
approaches against APPRAISE-RS.
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It can be observed that the recommendations made by both MCDA ap-
proaches match those made by APPRAISE-RS for most patients. Moreover, the
two MCDA approaches only provide 1 or 2 interventions as top recommenda-
tions, in contrast to APPRAISE-RS, which is assigning the same value to all
interventions recommended in favour.

There is an exception for patient 19, who received only one recommenda-
tion from APPRAISE-RS and the Utility Approach, but was recommended 32
interventions in the first position by the Preference Approach.

4.2 Verification of the Utility Approach with Weighted Average
(WA)

To verify the equivalence of the Utility Approach to traditional MCDA with
Weighted Average (WA), we applied the latter approach using the recommenda-
tions obtained from APPRAISE-RS. As depicted in Figure 3, each recommenda-
tion from APPRAISE-RS is assigned a value ranging from -2 to 2, where positive
values denote treatments recommended by APPRAISE-RS, and negative values
denote those not recommended. Next, the MCDA method is applied in a similar
way as in the Utility Approach.

Fig. 3. Workflow methodology of the WA approach.

The results obtained from this approach were compared to those obtained
using the Utility Approach when using WA on the intermediate steps, and we
found that they were exactly the same. Thus, we concluded that the Utility
Approach was indeed equivalent to using MCDA with a WA.
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4.3 Weighted Product (WP)

To demonstrate the flexibility of our approach in accommodating other MCDA
methods that are unable to handle negative information, we tested the Utility
Approach using the Weighted Product (WP). The results showed that the in-
terventions recommended using WP were identical to those recommended using
WA, with only the order of treatment recommendations in the rankings varying.
Consequently, the top-ranked treatment may differ between the two approaches.
Table 2 displays the frequency at which each treatment intervention has been rec-
ommended as the first option. It is evident that the recommendations provided
by the Utility Approach using WP are similar to those of the Utility Approach
using WA, but differ from the recommendations of the other two approaches.

4.4 Discussion

Regarding the results, none of the three methods leaves any patient without
a recommendation, which sets them apart from APPRAISE-RS (rule-based),
which in many cases does not identify any treatment. As a notable context,
clinicians also do not prescribe treatment in some patients, but clinical practice
guidelines and the methods proposed in this paper always recommend some
treatment.

It is interesting to note that the MCDA methods provide a more concise set
of recommendations than APPRAISE-RS, as they recommend fewer treatments
in the first position (Table 1).

However, the Utility Approach and Preference Approach demonstrate dif-
ferent characteristics in terms of the diversity of the recommended treatments.
While the Utility Approach, when using WA or WP, provides a similar range of
recommended treatments as APPRAISE-RS, the Preference Approach recom-
mends a more diverse set of treatments in the top position, which enhances the
personalization of recommendations (Table 2).

It is important to note that the Preference Approach is limited by the as-
sumption that the preferences of the clinician and patient are contributing as if
both users have the same expertise, which may not always be the case. There-
fore, further development of the method may be needed to take into account the
expertise of the user when managing the preferences from both the clinician and
patient. In that regard [7] could be an interesting starting point.

5 Conclusions

This work presents two MCDA approaches for selecting medical treatments to
overcome some limitations of current treatment recommendation methods that
do not fully consider patient and clinician preferences. The experiments were
carried out in ADHD and the results were compared with the previous approach
APPRAISE-RS.
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Treatment intervention APPRAISE-
RS

Utility
Approach

(WA)

Utility
Approach

(WP)

Preference
Approach

atomoxetine high 12 5 5 3

atomoxetine low 10

bupropion high 1

clomipramine 1

clonidine high 1

clonidine low 1

desipramine high 1

desipramine low 1

dexamphetamine high 1

dexamphetamine high and
paroxetine

1

dexamphetamine low 1

dexmethylphenidate high 1 1 2

dexmethylphenidate low 1

guanfacine high 10 1 1 2

guanfacine low 1

lisdexamfetamine high 12 1

lisdexamfetamine low 6 1

memantine 1

methylphenidate high 14 2 2 2

methylphenidate high and
clonidine low

1

methylphenidate low 11 16 17 15

methylphenidate low and
clonidine high

1

methylphenidate low and
nicotine

1

mixed amfetamine salts high 7 4 10

mixed amfetamine salts low 1

modafinil high 9 1

modafinil low 1

nicotine 1

paroxetine 1

pindolol 1

reboxetine 1

selegiline 1

serdexmethylphenidate low 1

viloxazine high 2

viloxazine low 1

Total 84 32 30 63
Table 2. Comparison of the number of times each treatment intervention is recom-
mended as the first choice using four different methods: APPRAISE-RS, Utility Ap-
proach with Weighted Average (WA), Utility Approach with Weighted Product (WP),
and Preference Approach.
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Both approaches recommended a median of one treatment in the first posi-
tion. There was a high degree of similarity in the treatments recommended by
both MCDA approaches, with psycho-stimulants such as methylphenidate and
amphetamine derivatives being the most recommended medications. Atomoxe-
tine was recommended less frequently than in the previous work APPRAISE-
RS. Importantly, both methods were able to provide recommendations for all
patients, which is an improvement over APPRAISE-RS.

Based on our results, we suggest that the MCDA methods are useful tools
for selecting ADHD treatments and can complement CPGs. The Borda method-
based approach demonstrated the highest participation of clinician and patient
preferences, indicating that it may be the most effective method for incorporating
multiple perspectives into treatment decision-making.

Future research could involve adding another level of MCDA to weight clin-
ician and patient preferences according to their expertise.
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Abstract. In this study, we propose the use of hesitant term sets to
capture the uncertainty of people’s interest to food waste. A real case
example, in which users assess their interest on the use of the “Too Good
to Go” platform, shows the applicability of the proposed approach in a
real context related to people’s interest in the reduction of food waste.
We propose a methodology, using unbalanced hesitant fuzzy linguistic
term set (HFLTSs) to aggregate rating values. The objective is to fuse
the opinions of different profiles of users when assessing an alternative
in a complex context. The proposed approach allows considering differ-
ent linguistic or ordinal scales to better capture human being’s cogni-
tive models. To this end, the concept of linguistic perceptual map and
projections among perceptual maps are introduced to model and ag-
gregate users’ different profiles. HFLTSs provide a useful and powerful
form to represent opinions in the decision-making process. An automated
methodology which aggregates opinions across users’ is defined based on
rating values and perceptual maps. In addition, we compute a measure
to capture the degree of consensus representing the agreement among
the sentiment of users’.

Keywords: Decision making under uncertainty · Linguistic modeling ·
Unbalanced hesitant fuzzy linguistic term sets · Rating scales.

1 Introduction

Food waste is a huge problem for the humanity. More than one third of the food
produced globally is lost or wasted [1]. This amount of food waste can be reduced
by considering "localness" of food systems [2]. By promoting the purchase of
unsold food products from both grocery stores and restaurants through online
platforms, we can effectively reduce food waste [3]. The use of on-line platforms
and apps to explore shops and restaurants in local area and sale surprise bags

⋆ Corresponding author
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of surplus food from going to waste at a great price is considered as a new way
to reduce food waste.

In this paper we consider an ordinal scale with unbalanced terms to mea-
sure the interest and expectations on the on-line platform "Too Good to Go"
from different consumers’ profiles. “Too Good to Go” is a mobile app that con-
nects customers to restaurants and food stores that have unsold food, helping to
achieve a better balance between economy, environment, and society. We con-
sider different linguistic scales to better capture human being’s cognitive models
([4], [5]). To this end, the concept of linguistic perceptual map and projections
among perceptual maps are introduced to model and aggregate users’ different
profiles. HFLTSs provide a useful and powerful form to represent opinions in the
decision-making process ([6], [7]). An automated methodology which aggregates
opinions across users’ is defined based on rating values and perceptual maps. In
addition, we compute a measure to capture the degree of consensus representing
the agreement among the sentiment of users’ [8].

2 Preliminaries

This section contains the definitions of and some preliminary concepts on HFLTSs
and linguistic perceptual maps based on [9] that are necessary for the method-
ology presented.

Let S be a totally ordered set of basic linguistic terms (BLTs), S={s1, . . . , sn},
with s1 < . . . < sn and we consider the concept of HFLTSs introduced by Ro-
driguez et al. in [7] to allow users to consider hesitancy in their opinions.

Definition 1. ([7]) A hesitant fuzzy linguistic term set (HFLTS) over S is a
subset of consecutive BLTs of S, i.e., {x ∈ S | si ≤ x ≤ sj}, for some i, j ∈
{1, . . . , n} with i ≤ j. The HFLTS S is called the full HFLTS. Moreover, the
empty set {} = ∅ is also considered as a HFLTS and it is called the empty
HFLTS.

The non-empty HFLTS {x ∈ S | si ≤ x ≤ sj} denoted by [si, sj ]. If i =
j, [si, si] is the singleton {si}. The set of all non-empty HFLTSs over S is
denoted by HS , that is, HS = {[si, sj ] : i, j ∈ {1, . . . , n}, i ≤ j}. In this way, the
set of all HFLTSs over S is HS ∪ {∅}.

In HS , the set inclusion relation (⊆) provides a partial order. The connected
union of two HFLTSs is defined as the least element of HS ∪ {∅}, based on the
subset inclusion relation ⊆, that contains both HFLTSs. The connected union
together with the intersection provide to the set of HFLTSs, HS ∪ {∅}, a lattice
structure, as proven in [5].

Considering that in a specific context different users can consider differently
the meaning of linguistic labels [10], the concept of linguistic perceptual map is
introduced in [9] as a normalized measure of HFLTSs.

Definition 2. A basic linguistic perceptual map is a pair (S, µ) where S =
{s1, s2, ..., sn} is a set of BLTs, and µ is a normalized measure over S, i.e.,
µ : S → R+such that

∑n
i=1 µ(si) = 1.
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Hereafter, for any si ∈ S, we call µ(si) ≡ µi the width of the basic label si.
The following definition, on the one hand, extends to HS this width provided
by the normalized measure µ over S and, on the other, introduces the concept
of linguistic perceptual map.

Definition 3. Given H = [si, sj ] ∈ H(S,µ), then the width of H is µ ([si, sj ]) =∑j
k=i µk. The pair (HS , µ), that we also denote as H(S,µ), is called linguistic

perceptual map.

Any linguistic perceptual map is uniquely associated with a partition of the
interval [0, 1] into n sub-intervals of lengths µ1, . . . , µn and landmarks λ0 =
0, λ1, . . . , λ(n − 1), λn = 1. The relationship between the landmarks and the
width of the basic linguistic labels is λm =

∑m
i=1 µi and µm = λm − λm−1, for

any m = 1, . . . , n.
To aggregate the opinion of users when they use different linguistic perceptual

maps, in this paper, following the concept introduced in [9], we consider the
common perceptual map that provides the appropriate unified context to work
with different user profiles.

Definition 4. Let H(Sm,µm),m ∈ {1, · · · , k} a set of k linguistic perceptual
maps. Let {λm

0 = 0, λm
1 , · · · , λm

nm
= 1}, for m ∈ {1, · · · , k}, the sets of landmarks

of the k partitions associated. The common perceptual map is the linguistic
perceptual map associated to the partition of landmarks

⋃k
m=1

⋃ni

i=0{λk
i }. The

cardinality of this partition satisfies N ≡ #PU ≤∑k
j=1 nj − 1.

In this way, the common perceptual map is the adequate framework to ag-
gregate the assessments of all individuals. In addition, based on the linguistic
perceptual maps lattice structure, a perceptual-based distance between HFLTSs
is defined. This distance will allow us to introduce the concept of centroid and
measure the agreement among a set of users’ opinions.

Definition 5. Let H(S,µ) be a linguistic perceptual map. Given H1, H2 ∈ H(S,µ),
the perceptual-based distance between H1 and H2 is defined as:

Dµ(H1, H2) = 2 · µ(H1 ⊔H2)− µ(H1)− µ(H2) (1)

In ([9]) it is proved that this definition is indeed a distance in HS .
In this article, the centroid of a set of HFLTS is considered in order to

aggregate user opinion to obtain a collective opinion of different profiles on an
online platform.

Definition 6. Let H(S,µ) be a linguistic perceptual map. Let
{Hj = [sLj

, sRj
] ∈ H(S,µ) : j ∈ {1, . . . , k}} be a set of HFLTSs, the centroid of

this set, denoted as HC , is defined as:

HC = arg min
H∈H(S,µ)

k∑

j=1

Dµ(H,Hj). (2)
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In [9], it was proved that this centroid can be obtained by:

HC = {[sL, sR] ∈ H(S,µ) | L ∈ M(L1, · · · , Lk), R ∈ M(R1, · · · , Rk), L ≤ R} (3)

where M is the set that contains just the median if k is an odd number or the
two central values and any integer number between them if k is even.

From the centroid of the opinions of a group of users, a measure of the
agreement of the group can be obtained using the following concept.

Definition 7. Let H(S,µ) be a linguistic perceptual map. Let Λ be an ob-
ject to be assessed using HFLTS from H(S,µ). Given a group of users, G =
{d1, d2, . . . , dk}, let Hj = [sLj

, sRj
] ∈ H(S,µ) be the assessment of Λ made by

user dj for j ∈ {1, . . . , k} and HC their centroid. The degree of consensus of the
group is defined as:

δΛ(G) = 1−
∑k

j=1 Dµ(Hj , H
C)

ζ
(4)

with ζ = k
2 · (2− µ1 − µn) if k is even and ζ = k−1

2 · (2− µ1 − µn) if k is odd.

Note that ζ is a normalization factor that ensures that δ is between 0 and 1.

3 An application considering a food waste reduction
platform

In this section we show the applicability of the proposed approach in a real
context related to the reduction of food waste. “Too Good to Go” platform is
a mobile app that connects customers to restaurants and food stores that have
unsold food. These types of platforms help to achieve a better balance between
economy, environment, and society. Using the concepts presented in Section 2,
we consider a specific approach for this case.

3.1 Methodology

The methodology of the use case follows five steps (see Figure 1): 1) Determine
groups of users, 2) Deduce groups’ linguistic perceptual maps, 3) Obtain common
perceptual map, 4) Compute centroid and degree of consensus in the common
perceptual map.

1. Determine Groups of Users: We consider that different users interpret the
same linguistic terms in different ways. Users from the same group use similar
linguistic terms, and linguistic terms associated to different groups may be
different. Each rating profile has a linguistic perceptual map specific to the
group denoted by H(S,µ).

205



Fig. 1. Scheme of the methodology.

2. Deduce Groups’ Linguistic Perceptual Maps: Each rating value is associated
with a basic linguistic term si. For each group, the linguistic perceptual map
{(HSj , µj) | j ∈ 1, . . . , k}, is calculated based on the relative frequency with
which the group assigns a particular rating. These relative frequencies are
the widths of the basic labels in the group’s perceptual map.

3. Obtain Common Perceptual Map: Once a perceptual map, H(Sj ,µj), has been
determined for each group, the common perceptual map, H(SU ,µU ) is calcu-
lated following Definition 4. The labels in the common perceptual map are
renamed {λ1, λ2, ..., λN} for ease of reference and computation.

4. Compute Centroid and Degree of Consensus in the Common Perceptual Map:
After the common perceptual map, H(SU ,µU ), has been calculated, the cen-
troid, HC , and the degree of consensus, δΛ(G), are computed in this space
for each group of users following Definitions 6 and 7, respectively.

3.2 Results

In this case, we have grouped users considering different countries. We assume
that users from the same country use similar linguistic terms, and that linguistic
terms associated to different countries may be different. For the sake of simplicity,
we have considered just three groups of users: Spanish, Danish and English. Out
of the 7972 users, 535 from the Spanish group , 4955 were from the Danish group
and 2482 users from the English group.

For each country, we computed the relative frequency of the ratings (see
Table 1) to define the landmarks in the partition associated to the linguistic
perceptual map. The corresponding partitions of the unit interval, and their
resulting perceptual maps, are the following:

H(S1,µ1) : {0, 0.64, 0.74, 0.8, 0.86, 1.0};
H(S2,µ2) : {0, 0.09, 0.12, 0.15, 0.26, 1.0};
H(S3,µ3) : {0, 0.38, 0.45, 0.51, 0.57, 1.0}.
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Table 1. Distribution of customers’ ratings for the three countries considered.

Rating England Spain Denmark
5 1055 76 3683
4 154 31 502
3 146 33 181
2 174 53 144
1 953 342 445

2482 535 4955

Next, the common perceptual map is obtained following Definition 4. The
partition associated with the common perceptual map is:

H(SU ,µU ) : {0, 0.09, 0.12, 0.16, 0.26, 0.38, 0.45, 0.57, 0.64, 0.74, 0, 8, 0.86}

Note that the cardinals of S1, S2 and S3 are n1 = n2 = n3 = 5 in all
countries, while the cardinal of SU is N = 13 in this case.

Ultimately, we calculate the collective centroid and degree of agreement
across all countries’ ratings within the common perceptual map. The collective
centroid is [s∗5, s

∗
13] and the degree of consensus is 0.61.

Table 2 shows the centroids for each country computed in their respective
linguistic perceptual maps, together with their expressions in the common per-
ceptual map. As it can be seen, the centroids in the initial linguistic perceptual
maps are basic labels. In contrast, their expressions in the common perceptual
map are wider (less precise).

Table 2. Distribution of the assements centroids as computed in the common percep-
tual map.

Centroids for each country England Spain Denmark
In the original scales {s3} {s1} {s5}
In the common scale {s∗7} [s∗1, s

∗
9] [s

∗
5, s

∗
13]

Finally, in Figure 2, we compare the results obtained in each country’s lin-
guistic perceptual map with the collective centroid.

4 Conclusions and future research

In this paper we present a methodology to aggregate ratings coming from an on-
line platform to aggregate users’ opinions based on multiple unbalanced linguistic
scales that allow us to aggregate and compare ratings from different profiles.

Results are shown to be relevant in rating contexts, where different individu-
als may assign different meanings to available linguistic labels. Individuals may
even use different sets of linguistic terms.
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Fig. 2. Comparison of groups’ centroids and collective centroid.

The presented real case, using real data from T rustpilot platform
( https://www.trustpilot.com/) , proves the reliability of the proposed method-
ology. Users with a similar reviewing profile are grouped together. Three different
groups of users are considered: Danish, German and Spanish profiles. Using the
defined methodology, we obtain not only the aggregated opinion in each group,
but also their level of consensus.

As a future work, from the theoretical point of view, we will analyze the
definition of an interpretability function able to translate the results obtained in
the common perceptual map to each one of the initial linguistic perceptual maps.
And, from the application point of view, we plan to consider a larger variety
of profiles and introduce the sentiment extracted from the written reviews to
introduce it in the definition of the linguistic perceptual map for each profile.
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Abstract. The enforcement of privacy notions over datasets is the main
procedure to guarantee syntactic privacy to the individuals contributing
their data. Continuous data publishing consists in the republication of
updating microdata. The most relevant syntactic notions in continuous
data publishing are based on m-invariance. To achieve m-invariance, the
existing methods must first alter the dataset to satisfy a property called
m-eligibility. Essentially, a dataset can be made m-invariant if and only
if it satisfies the m-eligibility constraint. Although guaranteeing the m-
eligibility property is a crucial step, no theoretical study of the best
strategies to achieve it has been conducted. This work performs such a
study by giving strategies and demonstrating their optimality under two
approaches: insertion of counterfeit tuples and partial publication.

Keywords: m-invariance · syntactic privacy · m-eligibility.

1 Introduction

During the last decades an increasing number of privacy mechanisms have been
proposed in the literature for microdata that is, information to the users level.
Among the classical mechanisms, there exist a distinction between syntactic
methods, such as k-anonymity [10], l-diversity [9] and t-closeness [8] which base
their protection in some enforcement of structure on the microtada and semantic
methods headed by (ϵ, δ)-differential privacy [5, 6] which perturb the real values
of microdata with random noise. In general each approach has its own strengths
and weaknesses but syntactic approaches are preferred to retain utility on the
data at the expense of a rigid definition of the attacker.

With the increased necessity to access other forms of data, different dynamic
publishing scenarios for microdata have emerged such as Multiple data release
[15], Sequential data release [12, 11] and Continuous data publishing [4]. The
latter being a framework where a dataset that is being updated is published in
several releases. In continuous data publishing, the main syntactic mechanisms
are based on the m-invariance notion [14] and their variations [2, 3, 16, 13, 1, 7].
This notion is deeply related to the m-eligibility property [9], that is, that the
dataset has no more than 1

m fraction of tuples with the same sensitive value.
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The problem of imposing m-eligibility is of relevance since it is a necessary
condition to achieve recursive l−diversity [9] and m-invariance. Essentially, a
dataset can be made m-invariant if and only if it satisfies the m-eligibility con-
straint. This relation was already considered in [14]. To solve this limitation
the main approach in the literature has been adding artificial tuples (counter-
feits) to the dataset to make it m-eligible. However, no study on how to achieve
m-eligibility efficiently has been developed.

The aim of this paper is to provide effective methods to obtain m-eligible
datasets with minimal perturbation with respect to the original microdata. Due
to the profound connection between m-eligibility and m-invariance we focus on
this notion.

The paper is structured as follows. First Section 2 introduces the basic def-
initions of m-eligibility, the m-invariance problem and preliminary results.Then
Section 3 presents the main contributions of this paper for the different ap-
proaches to obtain m-eligible datasets, providing proofs for upper bounds, cor-
rect execution and optimality of the algorithms. After that, an evaluation of
behaviour is done in Section 4 where the different methods are compared. The
paper ends with Section 5, which summarizes the conclusions and possible future
work.

2 Preliminaries

M-invariance [14] was the first method to allow the republication of microdata,
after being modified with insertions and deletions. It consists in enforcing on
each publication that each class, i.e., subset of tuples with common quasi iden-
tifiers, has: at least m tuples; no two tuples with the same sensitive value and
that if a tuple appears in two releases, both classes where it appears share the
same set of sensitive values (signature). The motivation behind this definition is
to avoid intersection attacks. An intersection attack is based on partially iden-
tifying a user to a reduced set of tuples of each publication. The sensitive value
must appear in the intersection of the signatures of each candidates set. Since
m-invariance enforces that two classes with a common tuple share the same sig-
nature, this attack may not reduce such intersection to less than m sensitive
values. See Figure 1 for an example.

Most algorithms that implement m-invariance or their variations have the
same core structure; on the first publication, it enforces that the input dataset
is m-eligible, after that, the m-invariant structure is established and the dataset
published.

For the consecutive releases a distinction between never published tuples
(new) and published ones (old) is made. The old tuples are structured on the
same class of their last publication. If a class is missing a tuple due to a deletion,
a new tuple is put in as a replacement. If none exists, a counterfeit tuple is
inserted. To the remaining new tuples that are not in a class the m-invariant
structure is enforced. Finally the whole dataset is published.
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Id AGE S.D.
1 [18-20] HIV
2 [18-20] FLU

(a) First 2-diverse publi-
cation.

Id AGE S.D.
1 [18-19] HIV
3 [18-19] ACNE
2 [20-21] FLU
4 [20-21] COUCH

(b) Second not 2-invariant
publication.

Id AGE S.D.
1 [18-20] HIV
2 [18-20] FLU
3 [19-21] ACNE
4 [19-21] COUCH

(c) Second 2-invariant
publication.

Fig. 1: Example of intersection attack. If an attacker is searching information of
a participant with age = 18 then from the Table 1a deduces that it has sensitive
value HIV or FLU and from the Table 1b that it has HIV or ACNE. Intersecting
both cases, the attacker deduces that the attacked tuple has HIV. Such attacks
are avoidable using m-invariance, in this case, publishing Table 1c instead of
Table 1b.

Methods that rely on this procedure lack a detailed explanation on how to
impose m-eligibility over the datasets. Most publications argue that they can
achieve it with the insertion of few counterfeits but without a deeper insight on
how they accomplish it. Our results show that an optimal strategy exists.

2.1 M-invariance and m-eligibility

Let T be a microdata table (dataset) of n individuals and d attributes, i.e., a
matrix A ∈ Rn×d. The matrix A has the form (QI|SD) where QI ∈ Rn×d−1

and SD ∈ Nn×1. We denote the row ai1, ..., aid−1 as the quasi identifiers of tuple
i and the value aid as the sensitive value of tuple i. We define the m-invariant
problem as follows:

Definition 1 (m-invariant problem). Given a dataset T with l distinct sen-
sitive values and a number m ∈ [2, l], the m-invariant problem is partitioning T
into subsets of tuples (clusters) of at least size m satisfying that no two tuples
in the same subset have the same sensitive value.

In general, this problem can have no feasible solutions, for instance when a
sensitive value is much more frequent than the rest (see Proposition 1).

Definition 2. Let T ∈ Rn×d be a dataset with l distinct sensitive values.

– We denote by |T | the number of tuples, i.e., the number of rows in T .
– We denote by {c1, ..., cl} the counts of each sensitive value (there are c1 tuples

with sensitive value sd1 and so on).

Now we state the m-eligibility condition.

Definition 3. A dataset T ∈ Rn×d is m-eligible if no more than |T |
m tuples have

the same sensitive value in the dataset.

With the previous definitions we are now able to present the main relation
between m-eligibility and the m-invariance problem
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3 m-eligibility with minimum counterfeits and deletions

This Section contains the main results of this paper. We start with the necessary
definitions and results, and then introduce the m-invariant problem with counter-
feits and with partial publication. Each subsection provides different properties
that are used to prove a strategy to obtain m-eligible datasets minimizing the
counterfeits and deletions necessary respectively. Additionally, for each problem,
an upper bound to the minimal number of counterfeits/deletions necessary to
obtain m-eligibility is provided. To conclude, the hybrid problem is presented
and a fast strategy to compute a solution discussed.

Proposition 1 A dataset T ∈ Rn×d has a feasible solution for the m-invariant
problem if and only if T is m-eligible.

Proposition 1 implies that in order to guarantee a solution for non m-eligible
datasets some form of relaxation to the combinatorial problem must be made.
Two possible variations exist: the counterfeit method and the partial publication
(Cach) [7].

Definition 4. A dataset T ′ ∈ Rp×d is:

– A subset of dataset T ∈ Rn×d if it is a submatrix of p rows of T . We indicate
it as T ′ ⊆ T .

– A superset of dataset T ∈ Rn×d if T ⊆ T ′.
– A maximal m-eligible subset of T (if it is an m-eligible subset and) if |T ′| ≥

|T ′′| holds for any m-eligible subset T ′′ of T .
– A minimal m-eligible superset of T (if it is an m-eligible superset and) if

|T ′| ≤ |T ′′| holds for any m-eligible superset T ′′ of T .

3.1 m-invariant problem with counterfeits

Since the first publication on m-invariance [14] the necessity to enforce m-
eligibility has been tackled with the addition of counterfeit tuples to the dataset
[2, 3, 13]. Despite that, no study on how to minimize the number of counterfeit
tuples has been carried on. This Section gives tight results, showing the minimal
number of counterfeit tuples needed to enforce m-eligibility and an algorithm
that achieves that optimal bound.

Definition 5 (m-invariant problem with counterfeits). Given a dataset
T with l distinct sensitive values and a number m ∈ [2, l], the m-invariant with
counterfeits problem is partitioning T ′ ⊇ T into subsets of tuples (clusters) of
at least size m satisfying that no two tuples in the same subset have the same
sensitive value, where T ′ is a minimal m-eligible superset of T .

Proposition 2 determines the minimum number of tuples needed to obtain a
minimal m-eligible superset.
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Proposition 2 Let T ∈ Rn×d be a dataset and let T ′ ∈ Rj×d be a minimal
m-eligible superset of T then

|T ′| − |T | = max(0, cm− n)

where c is the number of tuples with the most frequent sensitive value in T .

Proof. Observe that the m-eligibility condition c − n
m ≤ 0, whenever we add a

tuple with a new sensitive value changes to c − n
m − 1

m and, in general, for x
tuples to c− n

m − x
m , is then straightforward that the minimal number of tuples

to be added to ensure c ≤ j
m is at least cm− n. That can be achieved if we add

cm− n tuples each with a unique sensitive value not appearing in the dataset.

In general, the previous result can be of no interest since the addition of new
sensitive values can be detrimental for the practical objectives of the computa-
tion. Next we present an improvement of Proposition2 since it does not need the
insertion of new sensitive values.

Proposition 3 Let T ∈ Rn×d be a dataset with l ≥ m distinct sensitive values
and let T ′ ∈ Rj×d be a minimal m-eligible superset of T with SD(T ′) ⊆ SD(T )
then

|T ′| − |T | = max(0, cm− n),

where c is the number of tuples with the most frequent sensitive value in T and
SD(T ) is the set of sensitive values of T .

Proof. Assume T is not m-eligible, otherwise the proof is trivial. Consider T ′

the minimal m-eligible superset of the proof of Proposition 2. The counts of
sensitive values of T and T ′ are {c1, ..., cl} and {c1, ..., cl, cl+1 = 1, ..., ck = 1}, in
descending order respectively. Now observe that c1 ≥ cl+1 otherwise ci = cj for
all i, j ∈ [1, l] which would imply that T is m-eligible. Consider now the process
of changing the sensitive value of the tuple with sensitive value k to cl, that yields
a dataset T1 with counts {c1, ..., cl + 1, 1, ..., 0} which is clearly m-eligible since
cl+1 ≤ c1 ≤ |T ′|

m , as previously stated. We can repeat this strategy with T1, i.e.,
at each step remove a tuple with sensitive value in [l + 1, ..., k] and add a new
tuple with the least frequent sensitive value in [1, l] and thus maintaining the m-
eligibility of the dataset. After the last tuple with sensitive value in [l+1, ..., k] is
replaced we will have a minimal m-eligible superset of T with l distinct sensitive
values.

From the proof of Proposition 3 we yield an algorithm to compute minimal
m-eligible supersets.

Corollary 1. Let T ∈ Rn×d be a non m-eligible dataset with l ≥ m sensitive
values. The following strategy computes T ′, a minimal m-eligible superset of T :

1) T ′ = T ∪ {t}, where t is a tuple with sensitive value with least frequency in
T .
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2) If T ′ is m-eligible, then stop. Otherwise T = T ′ and go to 1.

Proof. Straightforward from the proof of Proposition 3.

Observe that step 1 of the algorithm of Corollary 1 could choose in-between
several options showing that more than one optimal solution exists.

3.2 m-invariant problem with partial publication

Recently, the authors of [7] raised a new strategy to tackle the m-invariant prob-
lem: instead of adding counterfeits, they considered the removal of a small sam-
ple of tuples which they used in substitution of counterfeits. This subsection is
devoted to the presentation of our results in relation to this problem, namely,
we provide an upper bound on the minimal number of deletions, as well as an
algorithm which constructs an optimal solution.

First we state the m-invariant problem with partial publication.

Definition 6 (m-invariant problem with partial publication). Given a
dataset T with l distinct sensitive values and a number m ∈ [2, l], the m-invariant
partial publication problem is partitioning T ′ ⊆ T into subsets of tuples (clusters)
of at least size m satisfying that no two tuples in the same subset have the same
sensitive value, where T ′ is a maximal m-eligible subset of T ′.

This process demands a previous computation of T ′. We present a fast strat-
egy to find one instance.

Proposition 4 If T ′ ⊆ T is a maximal m-eligible subset of T and {c1, ..., cl},
{c′1, ..., c′l} are the counts of each sensitive value in T and T ′ respectively (possibly
0) then for all i ∈ [1, l] c′i ≤ ci −max(0, ⌈mci−n

m−1 ⌉).

Proof. Observe that a dataset T is m-eligible if for all i ∈ [1, l] holds ci − n
m ≤

0. Notice that the function fi(x, y) = ci − x − n−x−y
m returns the difference

in-between the elements of the m-eligibility condition after removing from the
dataset x tuples with sensitive value i and y tuples with a different sensitive
value. It is straightforward to see that removing tuples with sensitive values i
reduces fi and removing tuples with sensitive value different from i increases fi.
Since we want fi ≤ 0, we compute the minimum number of tuples with sensitive
value i that need to be removed to make fi ≤ 0:

fi(x, y) ≤ 0

c− x− n− x− y

m
≤ 0

mc− n+ y

m− 1
≤ x,

which implies that at least ⌈mc−n+y
m−1 ⌉ tuples must be removed. Since y ≥ 0 we

conclude the desired result.
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This results gives a simple lower bound on the difference |T | − |T ′| and, as
we see next, a method to compute T ′.

Proposition 5 Let T ∈ Rn×d be a dataset, T ′ a subset of T and T ◦ a maximal
m-eligible subset of T ′ and let {c1, ..., cl} and {c′1, ..., c′l} be the sensitive values
counts of T and T ′ respectively, then if for all i ∈ [1, l] holds c1 − c′i ≤ ⌈mci−n

m−1 ⌉
then T ◦ is also a maximal m-eligible subset of T .

Proof. Suppose otherwise, that is that T ◦ is not maximal w.r.t. T , then there
exists T̄ a maximal m-eligible subset of T such that |T ◦| < |T̄ |. Since T ◦ is
maximal m-eligible subset of T ′ we know that T̄ ⊈ T ′, in other words there is
some sensitive value i such that c′i < c̄i where c̄i is the count of that attribute
in T̄ . However we deduce that ci − c̄i < ci − c′i ≤ ⌈mci−n

m−1 ⌉ contradiction with
Proposition 4.

Proposition 5 allows for a fast method to compute a maximal m-eligible
subset since, as we see next, it can be used algorithmically.

Proposition 6 Let T ∈ Rn×d be a dataset with l ≥ m sensitive values. The
following strategy computes T ′, a maximal m-eligible subset of T :

1 Compute {c1, ..., cl} and {r1, .., rl} where ri = max(0, ⌈mci−n
m−1 ⌉).

2 For each i ∈ [1, l] remove ri tuples from T with the ith sensitive value. Obtain
T ′.

3 If T ′ is m-eligible, then stop. Otherwise repeat with T ′.

Proof. First we prove that the algorithm halts and then that the output is the
expected result.

With each loop we are removing tuples from dataset T and checking the m-
eligibility of the result. Let us prove that if we do not remove at least one tuple
from T then T ′ is m-eligible. If no element is removed, then mci−n

m−1 ≤ 0 which
implies ci ≤ n

m for all i ∈ [1, l] exactly the condition of m-eligibility. Now, since
each extra iteration implies the removal of at least one tuple, no more iterations
than tuples can be done. We conclude that the algorithm always halts and that
the output is m-eligible.

During the execution of the strategy we have created a finite list T ⊇ T1 ⊇
... ⊇ Tk verifying the hypothesis of Proposition 5. Since Tk is a maximal m-
eligible subset of itself we deduce, using Proposition 5, that Tk is a maximal
m-eligible subset of Tk−1, ..., T1, T .

This leads to a fast way to obtain an m-eligible subset, which can be then
used to compute the desired solution. Notice the non unicity of solutions should
be taken into account (a removed tuple is interchangeable with an existing one if
they have the same sensitive value) if a utility metric is being considered in the
solution as an objective to minimize (reduce the SSE,...). Such considerations
are out of the scope of this paper.
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3.3 Hybrid m-invariance problem

We define the hybrid m-invariance problem as allowing, simultaneously, the re-
moval and insertion of tuples. Consider a dataset with counts {10, 9, 7, 1} where
we seek 3-invariance. Via 3 additions we obtain {10, 9, 7, 4}, a minimal 3-eligible
superset. Via 3 deletions we obtain {8, 8, 7, 1}, a maximal 3-eligible subset. But
the frequencies {9, 9, 7, 2} are obtained with only one addition and one dele-
tion strictly reducing the number of modifications in the dataset while obtaining
3-eligibility.

The hybrid approach has not been extensively tackled in the literature, only
in a particular case of [7], so the following results are focused on establishing the
basis for future algorithms that need a fast enforcement of m-eligibility with a
reduced number of changes on the dataset over the disjoint choice of counterfeits
or deletions. Since the desired output is not a subset nor a superset, we define
the similarity of two datasets as follows.

Definition 7. Let T, T ′ ∈ Rn×d be datasets with l distinct sensitive values and
respective sensitive value counts {c1, ..., cl} and {c′1, ..., c′l} (possibly 0). We define
the distance d(T, T ′) as

d(T, T ′) =
l∑

i=1

|ci − c′i|,

where |a| denotes the absolute value of a. That is the sum of absolute differences
between the counts of each sensitive value on each dataset.

Observe that the defined distance can be conceptualized as the sum of non-
redundant1 additions and deletions performed in the dataset T to obtain T ′ or
viceversa. Now we define the concept of closest m-eligible dataset.

Definition 8. Let T ∈ Rn×d be a dataset, we say that T ′ ∈ Rj×d is a closest m-
eligible dataset of T if it is m-eligible, SD(T ′) ⊆ SD(T ) and d(T, T ′) ≤ d(T, T ′′)
for any T ′′ m-eligible dataset with SD(T ′′) ⊆ SD(T ). Where SD(T ) is the set
of distinct sensitive values of tuples of T .

From the results of the m-invariant problem with counterfeits and partial
publication we obtain an upper bound for the hybrid problem.

Proposition 7 Let T ∈ Rn×d be a dataset and T ′ a closest m-eligible dataset
of T then

d(T, T ′) ≤ min(d(T, Tsuper), D(T, Tsub)) ≤ max(0, cm− n)

where Tsuper is a minimal m-eligible superset of T and Tsub a maximal m-eligible
subset of T .
1 Redundant means that a tuple has been deleted and a counterfeit with their sensitive

value has been added.
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Proof. From Proposition 3 we know that there exists Tsuper a minimal m-
eligible superset of T such that |Tsuper| − |T | = d(T, Tsuper) = max(0, cm − n)
and SD(Tsuper) ⊆ SD(T ). Now since T ′ is closest to T we have d(T, T ′) ≤
d(T, Tsuper) = max(0, cm−n). Similarly, since SD(Tsub) ⊆ SD(T ) holds d(T, T ′) ≤
d(T, Tsub).

Proposition 7 gives us a reduced search space for the optimal solution, in
other words, no more than cm − n modifications will be needed to obtain a
closest m-eligible dataset for a non m-eligible dataset T .

Proposition 8 Let T ◦ be a closest m-eligible dataset of a dataset T , and let a, d
be the minimal number of necessary additions and deletions, respectively, done
to T to obtain T ◦, then the dataset T̄ ◦ made by iteratively adding a times a tuple
with minimal frequency sensitive value and iterativey removing d times a tuple
with maximal frequency sensitive value, is also a closest m-eligible dataset of T .

Proof. Let c◦1 be the count of the most frequent sensitive value in T ◦ and c̄◦i the
ith most frequent sensitive value in T̄ ◦. From the construction of T̄ ◦ we have c̄◦1 ≤
c◦1. Since the same number of additions and deletions have been performed on T ◦

and T̄ ◦, we know that |T ◦| = |T̄ ◦|. We conclude that c̄◦i ≤ c̄◦1 ≤ c◦1 ≤ |T◦|
m = |T̄◦|

m
which proves the m-eligibility. It is easy to see that d(T, T ◦) = a+ b = d(T, T̄ ◦)
completing the proof.

From last Proposition we reduce the search space, at each step, choosing
between adding minimal sensitive value frequency tuple or removing a maxi-
mal sensitive value frequency tuple. The following algorithm does that process
greedily.

Proposition 9 Let T be a dataset with l ≥ m distinct sensitive values. The
following algorithm outputs a m-eligible dataset of T .

– While T not m-eligible:
• Compute Tadd = T ∪ {tmin} and Tdel = T \ {tmax}.
• Compute Rdel =

∑l
i=1 max(0, cdeli − |Tdel|

m ).

• Compute Radd =
∑l

i=1 max(0, caddi − |Tadd|
m ).

• If Rdel ≤ Radd then T = Tdel else T = Tadd.

– Return T .

Where tmin is a counterfeit tuple with sensitive value with minimal frequency in
T , tmax is a tuple of T with maximal frequency sensitive value, Tdel and Tadd

have sensitive value counts cdeli and caddi respectively for i ∈ [1, l].

Although we do not have a formal proof of optimality for the algorithm
of Proposition 9, we have observed that its results are good, outperforming in
many cases the non-hybrid approaches. We expect to develop a provably optimal
output algorithm as future research.

218



4 Evaluation

We evaluate the different strategies presented in this paper for a real dataset
commonly used in data privacy known as the adult dataset.2

4.1 Empirical evaluation

For our experimental evaluation we implemented the algorithms of Section 3
and compute their results, setting as sensitive value the columns work-class,
occupation, education, marital status and relationship.

Figure 2 was formed by, for each sensitive value with l distinct values, for each
m ∈ [2, l−1] a computation on the number of modifications needed to achieve m-
eligibility. Figure 2 compares the number of modifications over the relation m/l,
that is the eligibility parameter over the number of distinct sensitive values of
the dataset. On Figure 2a the dashed horizontal line corresponds half the dataset
size, if a value surpasses such line more than one third of dataset is formed by
counterfeits. If more than half the dataset is made with counterfeits the values
are not reported on the figure to maintain the scale of the figures. Figure 2d is
the not cropped version of Figure 2a. On Figure 2b the dashed horizontal line
is placed at half the dataset size. If a value surpasses such line then more than
half the dataset has been deleted.

4.2 Observations

As we can see from Figure 2 the number of modifications needed to enforce
m-eligibility grows as the parameter m increases, that was expected since m-
eligibility is a descendent property, that is, m-eligibility implies (m-1)-eligibility.
The use of counterfeits over deletions or vice-versa is not trivial since non im-
proves on the other in all cases. The heuristic algorithm of Proposition 9 presents
the best results making the hybrid method the preferred approach if the objec-
tive is reducing modifications. Although the hybrid approach is best, for small
values of m the use of any method yields similar results (see Figure 2).

5 Conclusions and future work

This paper gives a formal approach to the problem of enforcing m-eligibility over
a dataset. We present upper bounds on the number of necessary modification
to achieve m-eligibility for the m-invariant problem with counterfeit and with
partial publication. Effective algorithms to compute optimal m-eligible dataset
are presented with proofs of their correctness. We illustrate the novel hybrid
problem and give initial results for practical implementations. We end up with
an empirical evaluation of our results using a classical dataset in statistical dis-
closure control. We expect our results to ease the comparison of future empirical
2 https://www.kaggle.com/uciml/adult-census-income
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(d) Not cropped version of Figure 2a.
Dashed line indicates original dataset size.

Fig. 2: Nº of modifications to obtain m-eligibility via counterfeits, deletions and
the hybrid method. The x-axis is the relation m/l between m the eligibility
parameter and l the number of distinct sensitive values. The dashed horizontal
lines indicate when the number of modifications reaches half the size of the
dataset

evaluations of novel approaches to the m-invariance problem, for example as a
lower bound on the amount of modification needed to achieve m-invariance.

As future work we expect to extend our results on the hybrid m-invariant
problem proving the optimality of our algorithm or of a new one that we design.
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