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Introduction > Context

A context:

Data-driven machine learning/statistical models
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Introduction > Context

Prediction using (machine learning/statistical) models

• Data is collected to be used

(otherwise, better not to collect them1)

1Concept: Data minimization
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Introduction > Context

Prediction using (machine learning/statistical) models

• Application of a model for decision making

data ⇒ prediction/decision

Data−driven

model

prediction

(decision)

Data:

pacient record

• Example: predict the length-of-stay at admission
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Introduction > Context

Data-driven machine learning/statistical models

• From (huge) databases, build the “decision maker”

◦ Use (logistic) regression, deep lerning, neural networks, . . .

classification algorithms, decision trees, . . .

Machine 
Learning
Algorithm

Data

Base

(DB)

Data−driven

model

• Example: build a predictor from hospital historical data about length-

of-stay at admission
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Introduction > Privacy

Privacy for machine learning and statistics:

Data-driven machine learning/statistical models
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Introduction > Privacy

Data is sensitive

• Who/how is going to create this model (this “decision maker”)?

• Case #1. Sharing (part of the data)

?
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Introduction > Privacy

Data is sensitive

• Who/how is going to create this model (this “decision maker”)?

• Case #2. Not sharing data, only querying data

?
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Introduction > Motivation

Two motivating examples
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Introduction > Motivation

Data is sensitive

• Data privacy: core

◦ Someone needs to access to data to perform authorized analysis,

but access to the data and the result of the analysis should avoid

disclosure.

?

E.g., you are authorized to compute the average stay in a hospital, but

maybe you are not authorized to see the length of stay of your neighbor.
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Introduction > Motivation

Data is sensitive

• Case #1. Sharing (part of the data)

• Q: How different children ages and diagnoses affect this length of stay?

Average length of stay is decreasing in the last years due to new hospital

policies?

• Data: Existing database with previous admissions (2010–2019).

To avoid disclosure a view of the DB restricting records to children

born before 2019 and only providing for these records year of birth,

town, year of admission, illness, and length of stay.
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Introduction > Motivation

Data is sensitive

• Case #1. Sharing (part of the data)

Year birth Year Admission Town Illness Length stay (days)

2017 2019 Ume̊a a 3

2015 2020 Ume̊a b 2

2011 2020 Lule̊a c 5

2017 2019 Lule̊a a 2

2016 2020 Dorotea b 4

2016 2020 Holmöns d 2

2015 2019 Täfte̊a e 4

2015 2019 Täfte̊a e 4

2015 2018 Täfte̊a e 4

2015 2018 Täfte̊a e 4

• Is this data safe?
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Introduction > Motivation

Data is sensitive

• Case #1. Sharing (part of the data)

Year birth Year Admission Town Illness Length stay (days)

2017 2019 Ume̊a a 3

2015 2020 Ume̊a b 2

2011 2020 Lule̊a c 5

2017 2019 Lule̊a a 2

2016 2020 Dorotea b 4

2016 2020 Holmöns d 2

2015 2019 Täfte̊a e 4

2015 2019 Täfte̊a e 4

2015 2018 Täfte̊a e 4

2015 2018 Täfte̊a e 4

• Is this data safe?

Holmöns 63, Täfte̊a 1383, Lule̊a 49123, Ume̊a 83249, Dorotea 2366
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Introduction > Motivation

Data is sensitive: computation leads to disclosure

• Case #2. Sharing a computation.

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town (Bunyola)?
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Introduction > Motivation

Data is sensitive: computation leads to disclosure

• Case #2. Sharing a computation.

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town (Bunyola)?

◦ Mean income is not “personal data”, is this ok ? NO!!:
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Introduction > Motivation

Data is sensitive: computation leads to disclosure

• Case #2. Sharing a computation.

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town (Bunyola)?

◦ Mean income is not “personal data”, is this ok ? NO!!:

◦ Example 1000 2000 3000 2000 1000 6000 2000 10000 2000 4000 ⇒
mean = 3300
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Introduction > Motivation

Data is sensitive: computation leads to disclosure

• Case #2. Sharing a computation.

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town (Bunyola)?

◦ Mean income is not “personal data”, is this ok ? NO!!:

◦ Example 1000 2000 3000 2000 1000 6000 2000 10000 2000 4000 ⇒
mean = 3300

◦ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit
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Introduction > Motivation

Data is sensitive: computation leads to disclosure

• Case #2. Sharing a computation. Example 2

25 30 35 40 45 50 55

0
e

+
0

0
2

e
+

0
4

4
e

+
0

4
6

e
+

0
4

8
e

+
0

4
1

e
+

0
5

Without Dona Obdulia

age

in
c
o

m
e

30 40 50 60

0
e

+
0

0
2

e
+

0
4

4
e

+
0

4
6

e
+

0
4

8
e

+
0

4
1

e
+

0
5

With Dona Obdulia

age

in
c
o

m
e

• Regression of income with respect to age with (right) and without (left)
the record of Dona Obdúlia

◦ income = -4524.2 + 207.5 age (without Ms. Rich = Dona Obdúlia)
◦ income = -54307 + 1652 age (with Ms. Rich = Dona Obdúlia)
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Introduction > the core

Data privacy: the core
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Introduction > the core

Data is sensitive: Data privacy

• Data privacy

◦ Information leakage/disclosure

when there is some inference from the release

• Related fields / boundaries

◦ Access control: who can access a database

in general, we assume that access is granted

◦ Security in communications

in general, communications are protected

• So, data privacy: avoid disclosure because of inference
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Introduction > Difficulties

Data privacy: difficulties
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Introduction > Difficulties

Difficulties

• Difficulties: highly identifiable data

◦ (Sweeney, 1997) on USA population

⊲ 87.1% (216 million/248 million) were likely made them unique

based on

5-digit ZIP, gender, date of birth,

⊲ 3.7% (9.1 million) had characteristics that were likely made them

unique based on

5-digit ZIP, gender, Month and year of birth.

◦ Data from mobile devices / location data:

⊲ two positions can make you unique (home and working place)
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Introduction > Difficulties

Difficulties

• Difficulties: highly identifiable data and high dimensional data

◦ AOL2 and Netflix cases (search logs and movie ratings)

⇒ User No. 4417749, hundreds of searches over a three-month

period including queries ’landscapers in Lilburn, Ga’

−→ Thelma Arnold identified!

⇒ individual users matched with film ratings on the Internet Movie

Database.

◦ Similar with credit card payments, shopping carts, ...

2http://www.nytimes.com/2006/08/09/technology/09aol.html
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Introduction > Difficulties

Difficulties

• Difficulties: highly identifiable data and high dimensional data

◦ Data from people: In some cases, it is the combination of

characteristics that make you unique. (Search logs, Market Basket

Analysis)

⊲ Manga

⊲ K-pop music

⊲ Opera

⊲ IF Björklöven

⊲ ...

→ |{ Manga ∩ k-pop ∩ Opera ∩ IF Björklöven }| = 1 = 1
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Introduction > Concepts

Concepts
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Introduction > Concepts

Related fields

• Technical solutions from three different communities

◦ Statistical disclosure control (SDC)

◦ Privacy preserving data mining (PPDM)

◦ Privacy enhancing technologies (PET)
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Introduction > Concepts

Concepts

• Attacker, adversary, intruder

◦ the set of entities working against some protection goal

◦ increase their knowledge (e.g., facts, probabilities, . . . )

on the items of interest (IoI) (senders, receivers, messages, actions,

etc.)
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Introduction > Concepts

Concepts

• Disclosure. Attackers take advantage of observations to improve their

knowledge on some confidential information about an IoI.

⇒ SDC/PPDM: Observe DB, ∆ knowledge of a particular subject

(the respondent in a database)

◦ Identity disclosure (entity disclosure). Linkability. Finding Mary in

the database.

◦ Attribute disclosure. Increase knowledge on Mary’s salary.

also: learning that someone is in the database, although not found.
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Introduction > Concepts

Concepts

• Disclosure. Discussion.

◦ Identity disclosure. Avoid.

◦ Attribute disclosure. A more complex case. Some attribute disclosure

is expected in data mining.

At the other extreme, any improvement in our knowledge about an individual

could be considered an intrusion. The latter is particularly likely to cause a

problem for data mining, as the goal is to improve our knowledge. (J. Vaidya

et al., 2006, p. 7.)
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Introduction > Concepts

Concepts

• On the difficulty of measuring attribute disclosure:

◦ In machine and statistical learning, models are expected to generalize

data and avoid over-fitting. When a model generalizes correctly and

there is no over-fitting, any inference for a particular individual x is

due to general properties and not to its particularities. In contrast,

bad generalization and over-fitting may imply that inferences are

due to memorization and to learning particular features of certain

records. When we require good data utility from a machine learning

perspective, attribute disclosure should avoid detecting general

information found in the data and focus on detecting these particular

features of individuals.

◦ This has connections with membership inference attacks, that, in

short, try to detect records that are known to have been used in

training a model, and they are detected because they are somehow

distinguishable from more common ones.
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Introduction > Concepts

Concepts

• If the model is a good generalization, (almost) coincidence may be ok.

• Compare:
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Introduction > Concepts

Concepts

• Anonymity set. Anonymity of a subject means that the subject is

not identifiable within a set of subjects, the anonymity set. Not

distinguishable!

• Unlinkability. Unlinkability of two or more IoI, the attacker cannot

sufficiently distinguish whether these IoIs are related or not.
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Introduction > Concepts

Concepts

• Plausible deniability

◦ I have nothing to do with this database, model, etc

◦ Is this statement credible?

• For a database

◦ at record level: This record is not mine!

◦ at database level: I am not in this database!
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Introduction > Concepts

Concepts

• Plausible deniability

◦ I have nothing to do with this database, model, etc

◦ Is this statement credible?

• For a database

◦ at record level: This record is not mine!

◦ at database level: I am not in this database!

• We will see that some privacy models provide guarantees for plausible

deniability
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Introduction > Concepts

Concepts

• Connections between plausible deniability and anonymity set

◦ Plausible deniabilty: perspective of the individual

◦ Anonymity set: perspective of the intruder
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Introduction > Concepts

Concepts

• Transparency

◦ DB is published: give details on how data has been produced.

Description of any data protection process and parameters

◦ Positive effect on data utility. Use information in data analysis.

◦ Negative effect on risk. Intruders use the information to attack.

• The transparency principle in data privacy3

Given a privacy model, a masking method should be compliant with this privacy

model even if everything about the method is public knowledge. (Torra, 2017, p17)

3Similar to the Kerckhoffs’s principle (Kerckhoffs, 1883) in cryptography: a cryptosystem should be

secure even if everything about the system is public knowledge, except the key
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Introduction > Concepts

Concepts

• Privacy by design (Ann Cavoukian, 2011)

◦ Privacy “must ideally become an organization’s default mode of

operation” (Cavoukian, 2011) and thus, not something to be

considered a posteriori. In this way, privacy requirements need

to be specified, and then software and systems need to be engineered

from the beginning taking these requirements into account.

◦ In the context of developing IT systems, this implies that privacy protection is a

system requirement that must be treated like any other functional requirement.

In particular, privacy protection (together with all other requirements) will

determine the design and implementation of the system (Hoepman, 2014)
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Disclosure

Disclosure, risk measures, and privacy
models
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Disclosure > protection?

But first protection?
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Disclosure > protection?

Disclosure, risk measures, and privacy models

• Disclosure, risk measures, and privacy models

• Protection mechanisms

◦ Data protection mechanisms,

◦ Privacy-preserving machine learning

Protection mechanisms need to be clearly disassociated of privacy models
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Disclosure > protection?

Disclosure, risk measures, and privacy models

• Privacy for data: data sharing, data publishing

?
X X’
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Disclosure > protection?

Disclosure, risk measures, and privacy models

• Privacy for computations

?

f(X) g(X)

X
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Disclosure >

Now, the risk et al. part
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Disclosure >

Disclosure, risk measures, and privacy models

• Three strongly related concepts

(and as we will see linked to possible attacks)

Risk measures Disclosure risk

Privacy models

Vicenç Torra; Data privacy: Introduction 40 / 177



Disclosure > Disclosure

Disclosure
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Disclosure > Disclosure

Disclosure

• Definition 3.1

◦ Disclosure takes place when intruders take advantage of the

observation and analysis of a release to improve their knowledge

on some item of interest.

• Release: data, statistics, data-driven machine learning model, output

from a running model (e.g., an LLM)
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Disclosure > Disclosure

Disclosure

• Definition 3.1

◦ Disclosure takes place when intruders take advantage of the

observation and analysis of a release to improve their knowledge

on some item of interest.

• Release: data, statistics, data-driven machine learning model, output

from a running model (e.g., an LLM)

• Intruder: the intruder attacks the release
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Disclosure > Disclosure

Disclosure

• Disclosure. Intruders take advantage of observations to improve their

knowledge

◦ Identity disclosure (entity disclosure). Linkability.

Finding Mary in the database.

◦ Attribute disclosure. Increase knowledge.

Learn Mary’s salary. Increase precision on Mary’s salary.

• Another dimension for disclosure: Boolean vs. measurable

◦ Boolean: Disclosure either takes place or not.

focus on one performance measure. Minimize information loss

◦ Measurable: Disclosure is a matter of degree that can be quantified.

Some risk is permitted.

multiobjetive optimization problem. Both performance and risk.
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Disclosure > Disclosure

Disclosure

• Two dimensions. Privacy models / risk measures

Boolean

Quantitative

Identity disclosureAttribute disclosure

Interval disclosure Re−identification

     (record linkage)

Uniqueness

Differential privacy

Result privacy

Secure multiparty computation

k−Anonymity
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Disclosure > Attribute disclosure

Risk measures for attribute disclosure
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Disclosure > Attribute disclosure

Attribute disclosure: for a variable

• Original data X, and a data release X ′ = ρ(X)

◦ Comparison between V (x) and V ′(x)?

◦ Value associated to V ′(x) is too similar to V (x)?

◦ Risk measure := proportion of too similar values
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Disclosure > Attribute disclosure

Attribute disclosure: Through Membership Inference

Attacks

• For data-driven models m

◦ Given x, was x in the training model of m?

(Is my data used to build m?)

◦ Idea:

⊲ We build a classifier mia
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Disclosure > Attribute disclosure

Attribute disclosure: Membership Inference Attacks

• For data-driven models m built from DB using A

• Notation:

◦ D1, . . . ,Dk: data sets for building shallow models

(each Di partitioned into training and testing Dtr
i , Dte

i )

◦ A: algorithm to build shallow models

• We train sm1, . . . , smk (shallow models from D1, . . . ,Dk)
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Disclosure > Attribute disclosure

Attribute disclosure: Membership Inference Attacks

Algorithm Model for membership inference attack: mia(Ctr, A).
Data: Di: data sets for building shallow models (each Di partitioned into training and testing Dtr

i ,

Dte
i ); A: algorithm to build shallow models

Result: Classifier for membership inference attack

begin
smi = A(Str

i ) for all i = 1, . . . , k

tuples = ∅
for i = 1, . . . , k do

forall the x ∈ Dtr
i do

tuples = tuples ∪{(x, smi(x), training)}

end

forall the x ∈ Dte
i do

tuples = tuples ∪{(x, smi(x), no − training)}

end

end

mia = build-classifier(tuples)

return mia

end
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Disclosure > Attribute disclosure

Attribute disclosure: Membership Inference Attacks

• Once we have the mia classifier, we define the

membership inference attack attribute disclosure risk as

miaAR =
|{x|mia(x) = training}|

|X|

(correctly identified members)

• In general, we can use performance measures (recall, precision, F1-

score)
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Disclosure > Identity disclosure

Risk measures for identity disclosure
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Disclosure > Identity disclosure

Identity disclosure

• Re-identification. Estimation of correct re-identifications. Theoretically

or empirically.

• Uniqueness. Probability that rare combinations in the protected data

are also rare in the population.
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Disclosure > Identity disclosure

Identity disclosure

• Privacy from re-identification. Identity disclosure. Scenario:

◦ A: File with the protected data set

◦ B: File with the data from the intruder (subset of original X)

?
X

Record linkage

X’ / A

B
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Disclosure > Identity disclosure

Identity disclosure

• Distance-based record linkage: d(a, b) with a ∈ A and b ∈ B.

◦ Assign to the record at a minimum distance, ideally an intruder wants

• Compute and check

◦ b′ = argminb∈B d(a, b)

◦ ai linked to b′ = bi?
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Disclosure > Identity disclosure

Identity disclosure

• Re-identification. Given A = X ′ = ρ(X) and B ⊂ X, a measure:

Reid(B,A) =

∑

b∈B c(r(b), true(b))

|B| . (1)

where

◦ true : B → A, for each record b (of the intruder) returns the correct

record for re-identification,

◦ r : B → A, models the re-identification algorithm.

Note: In order to make the definition general, we consider that r

returns a probability distribution on A. That is, given a record b in

B, it assigns to each record a in A a probability of matching.

◦ c a function, with c(r(b), true(b)) we evaluate the result for each

record in [0, 1].
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Disclosure > Identity disclosure

Identity disclosure

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure

◦ A protected file using a masking method

◦ B (intruder’s) is a subset of the original file.
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Identity disclosure

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure

◦ A protected file using a masking method

◦ B (intruder’s) is a subset of the original file.

→ intruder with information on only some individuals
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Identity disclosure

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure
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◦ B (intruder’s) is a subset of the original file.
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Disclosure > Identity disclosure

Identity disclosure

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure

◦ A protected file using a masking method

◦ B (intruder’s) is a subset of the original file.

→ intruder with information on only some individuals

→ intruder with information on only some characteristics

◦ But also,

⊲ B with a schema different to the one of A (different attributes)

⊲ Other scenarios. E.g., synthetic data

⊲ Other type of data: graph data

(reidentifying people in a social network)
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Disclosure > Identity disclosure

Identity disclosure

• Privacy from re-identification. Worst-case scenario

(maximum knowledge) to give upper bounds of risk:

◦ transparency attacks (information on how data has been protected)

◦ largest data set (original data)

◦ best re-identification method (best record linkage/best parameters)

?
X

Record linkage

X’ / A

B
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Disclosure > Identity disclosure

Identity disclosure

• Privacy from re-identification. Worst-case scenario.

◦ ML for distance-based record linkage parameters. (A and B aligned)

◦ Goal: as many correct reidentifications as possible.

◦ Minimize Ki: minimize the number of records ai that fail

• Formalization:

Minimize

N
∑

i=1

Ki

Subject to :

Cp(diff1(ai, bj), . . . , diffn(ai, bj))−
− Cp(diff1(ai, bi), . . . , diffn(ai, bi)) + CKi > 0

Ki ∈ {0, 1}
Additional constraints according to C
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Privacy models

Privacy models
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Privacy models > Definition

Definition
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Privacy models > Definition

Privacy models

Definition

• A privacy model is a computational definition of privacy.

Vicenç Torra; Data privacy: Introduction 61 / 177



Privacy models > Summary

Summary of privacy models
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Data privacy > Privacy models

Privacy models

Privacy models. Publish a DB

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• k-Anonymity, l-diversity. l possible categories

• Interval disclosure. The value for an attribute is outside an interval

computed from the protected value: values different enough.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

?
X X’
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Data privacy > Privacy models

Privacy models

Privacy models. Compute result

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.

• Homomorphic encryption. We want to avoid access to raw data

and partial computations.

?

f(X) g(X)

X
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Data privacy > Privacy models

Privacy models

Privacy models. Compute / Share a result

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

?
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Privacy models > Re-identification

Privacy from re-identification
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Privacy models > Re-identification

Privacy from re-identification

• A protected database A satisfies privacy from re-identification given

intruder’s knowledge B when

Reid(B,A) ≤ rR1

with a certain privacy level rR1 (e.g., rR1 = 0.25),

• or, alternatively (knows is correct, percentage)

KR.Reid(B,A) ≤ (rK, rR1)

with certain privacy levels rK and rR1 (e.g., rK = 0 and rR1 = 0.5).
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Privacy models > k-Anonymity

k-Anonymity
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Privacy models > k-Anonymity

k-Anonymity

Definition 3.4

• A database A satisfies k-anonymity with respect to a set of quasi-

identifiers QI when the projection of A in this set QI results into a

partition of DB in sets of at least k indistinguishable records.

City Age Illness

Barcelona 30 Cancer

Barcelona 30 Cancer

Tarragona 60 AIDS

Tarragona 60 AIDS
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Privacy models > k-Anonymity

k-Anonymity

• Indistinguishability w.r.t. quasi-identifiers

• k-Anonymity and re-identification

KR.Reid(B,A) ≤ (0, 1/k).

• Plausible deniability
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Privacy models > k-Anonymity

k-Anonymity

• Indistinguishability w.r.t. quasi-identifiers

• k-Anonymity and re-identification

KR.Reid(B,A) ≤ (0, 1/k).

• Plausible deniability

◦ at record level

◦ but not at database level

• Records are independent
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Privacy models > k-Anonymity

k-Anonymity

• k-confusion. Drop indistinguishability

◦ Example

⊲ Original data: X = {(1, 2), (−2, 4), (4,−2), (−3,−4)}.
⊲ k-Anonymity: X ′ = {(0, 0), (0, 0), (0, 0), (0, 0)}.
⊲ k-Confusion: using X ′′ = {(x, 0), (−x, 0), (0, y), (0,−y)},

with standard deviations in X ′′ equal to the ones in X
� x =

√
10/
√

2/3 = 3.872983, y =
√
12.8333/

√

2/3 = 4.387476
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◦ Discussion: k-confusion and re-identification
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Privacy models > k-Anonymity

k-Anonymity

• Attacks

◦ Homogeneity attack (external attack)

◦ External knowledge attack (internal attack)

• These are attribute disclosure attacks

◦ while k-anonymity is for identity disclosure

• Variations of k-anonymity to avoid attribute disclosure

Vicenç Torra; Data privacy: Introduction 72 / 177



Privacy models > k-Anonymity

k-Anonymity

• p-sensitive k-anonymity for k > 1 and p ≤ k

◦ if it satisfies k-anonymity and, for each group of records with the

same combination of values for a set of quasi-identifiers, the number

of distinct values for each confidential value is at least p (within the

same group).
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Privacy models > k-Anonymity

k-Anonymity

• p-sensitive k-anonymity for k > 1 and p ≤ k

◦ if it satisfies k-anonymity and, for each group of records with the

same combination of values for a set of quasi-identifiers, the number

of distinct values for each confidential value is at least p (within the

same group).

• l-diversity

◦ forces l different categories in each set. However, in this case,

categories should have to be well-represented. Different meanings

have been given to what well-represented means.
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Privacy models > k-Anonymity

k-Anonymity

• t-closeness.

◦ The distribution of the attribute in any k-anonymous subset of the

database is similar to the one of the full database. Similarity: distance

between the two distributions, distance below a given threshold t.

The Earth Mover distance is used in the definition.
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Privacy models > k-Anonymity

k-Anonymity

• k-anonymity and computational anonymity

◦ Relaxation: not-all quasi-identifiers

“We say that unconditional anonymity is theoretical anonymity.

Computational anonymity is conditioned by the assumption that

the adversary has some limitation. The limitations can be (...)

restricted memory or knowledge.” (Stokes (2012)).

◦ A data set X satisfies (k, l)-anonymity if it is k-anonymous with

respect to every subset of attributes of cardinality at most l.

⇒ Intruder’s knowledge limited to l attributes

• Example: (2,2)-anonymity

D = {(a, b, e), (a, b, f), (c, d, e), (c, d, f),

(c, b, e), (c, b, f), (a, d, e), (a, d, f)}.
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Differential privacy
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Differential privacy

• Computation-driven/single database

◦ Privacy model: differential privacy4

◦ We know the function/query to apply to the database: f

• Example:

compute the mean of the attribute salary of the database for all those living in Town.

4There are other models as e.g. query auditing (determining if answering a query can lead to a privacy

breach), and integral privacy

Vicenç Torra; Data privacy: Introduction 77 / 177



Privacy models > differential privacy

Differential privacy

• Differential privacy (Dwork, 2006).

◦ Motivation:

⊲ the result of a query should not depend on the presence (or absence)

of a particular individual

⊲ the impact of any individual in the output of the query is limited

differential privacy ensures that the removal or addition of a single database item

does not (substantially) affect the outcome of any analysis (Dwork, 2006)
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Privacy models > differential privacy

Differential privacy

• Mathematical definition of differential privacy

(in terms of a probability distribution on the range of the

function/query)

◦ A function Kq for a query q gives ǫ-differential privacy if for all

data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),
Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

(with 0/0=1) or, equivalently,

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S].

• ǫ is the level of privacy required (privacy budget). The smaller the ǫ,

the greater the privacy we have.
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Privacy models > differential privacy

Differential privacy

• Differential privacy

◦ A function Kq for a query q gives ǫ-differential privacy if . . .

⊲ Kq(D) is a constant. E.g.,

Kq(D) = 0

⊲ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise

3160 3180 3200 3220 3240

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Kq(D)

Values

P
ro

b
a

b
ili

ty
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Privacy models > differential privacy

Differential privacy

• Properties

◦ Plausible deniability: to an extend, in terms of ǫ
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Privacy models > differential privacy

Differential privacy: Variations of differential privacy

• Def. 3.17. (ǫ, δ)-differential privacy (or δ-approximate ǫ-

indistinguishability)

◦ A function Kq for a query q gives (ǫ, δ)-differential privacy if for

all data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S] + δ.

• Relaxes ǫ-DP, events with a probability smaller than δ for D1 are still

permited even if they do not occur in D2.
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Privacy models > Summary

Summary of privacy models
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Privacy models > Summary

Summary

Privacy risk Attribute Identity database query Boolean

model/measure disclosure disclosure release release

Re-identification X X Quantitative

Uniqueness X X Quantitative

Result-driven X X Boolean

k-Anonymity X X Boolean

k-confusion X X Boolean

k-concealment X X Boolean

p-sensitive k-Anonymity X X X Boolean

k-Anonymity, l-diversity X X X Boolean

k-Anonymity, t-closeness X X X Boolean

Interval disclosure X X Quantitative

Differential privacy X X Boolean

Local differential privacy X X Boolean

Integral privacy X X Boolean

Homomorphic encryption X X Boolean

Secure multiparty computation X X Boolean
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Data: Masking methods

Privacy for data: Masking methods
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Data: Masking methods > Microaggregation

Microaggregation
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Data: Masking methods > Microaggregation

Microaggregation

• Informal definition. Small clusters are built for the data, and then each

record is replaced by a representative.
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Data: Masking methods > Microaggregation

Microaggregation

• Informal definition. Small clusters are built for the data, and then each

record is replaced by a representative.

• Disclosure risk and information loss

◦ Low disclosure is ensured requiring k records in each cluster

◦ Low information loss is ensured as clusters are small
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Data: Masking methods > Microaggregation

Microaggregation

• Operational definition. It is defined in terms of

◦ Partition. Records are partitioned into several clusters, each of them

consisting of at least k records.

◦ Aggregation. For each of the clusters a representative (the centroid)

is computed

◦ Replacement. The original records are replaced by the representative

of the cluster to which they belong to.
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Data: Masking methods > Microaggregation

Microaggregation

• Graphical representation of the process.
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Microaggregation

• Formalization. uij to describe the partition of the records in X. That

is, uij = 1 if record j is assigned to the ith cluster. Let vi be

the representative of the ith cluster, then a general formulation of

microaggregation with g clusters and a given k is as follows:

Minimize SSE =
∑g

i=1

∑n
j=1 uij(d(xj, vi))

2

Subject to
∑g

i=1 uij = 1 for all j = 1, . . . , n

2k ≥
∑n

j=1 uij ≥ k for all i = 1, . . . , g

uij ∈ {0, 1}
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Data: Masking methods > Microaggregation

Microaggregation

• Optimality

◦ Polynomial solution when only one variable

◦ Optimal solution is NP-hard for more than 2 variables

◦ Heuristic methods have been developed:

MDAV, Projected microaggregation
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Microaggregation

• Heuristic approaches

◦ usually follow the operational approach

⊲ Build a partition.

⊲ Define an aggregation. Mean of the records in the cluster

⊲ Replacement.
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Data: Masking methods > Microaggregation

Microaggregation

• Multivariate case

◦ When a file has several variables

⊲ Microaggregate all the variables at once

⊲ Microaggregate sets of variables

⊲ Microaggregate one variable at a time: individual ranking
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Data: Masking methods > Microaggregation

Microaggregation

• Discussion and summary

◦ The larger the k, the lower the risk, the larger the information loss

◦ Microaggregation is related to k-anonymity:

all variables together ⇒ k-anonymity

◦ It is easy to define microaggregation for any type of data

⊲ define distance,

⊲ define aggregation method (plurality rule - most frequent value)

E.g, application to logs, sets of documents (via bags of words),

graphs

time series (different distances produce different effects)
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Functions: Implementing DP

Privacy for functions: Implementing
differential privacy
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Functions: Implementing DP > Definition

Privacy model: definition
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Differential privacy

• Recall: Mathematical definition of differential privacy

(in terms of a probability distribution on the range of the

function/query)

◦ A function Kq for a query q gives ǫ-differential privacy if for all

data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),
Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

(with 0/0=1) or, equivalently,

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S].

• ǫ is the level of privacy required (privacy budget). The smaller the ǫ,

the greater the privacy we have.
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Differential privacy

• Differential privacy: A KEY ELEMENT

◦ for all data sets D1 and D2
differing in at most one element
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Functions: Implementing DP > Definition

Understanding the definition:

Differential privacy for numerical data
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Functions: Implementing DP > Definition

Differential privacy

• Differential privacy

◦ A function Kq for a query q gives ǫ-differential privacy if . . .

⊲ Kq(D) is a constant. E.g.,

Kq(D) = 0

⊲ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise
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Functions: Implementing DP > Definition

Differential privacy

• Differential privacy

◦ Kq(D) for a query q is a randomized version of q(D)

⊲ Given two neighbouring databases D and D′

Kq(D) and Kq(D
′) should be similar enough . . .

◦ Example with q(D) = 5 and q(D′) = 6 and adding a Laplacian noise

L(0, 1)
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◦ Let us compare different ǫ for noise following L(0, 1) . . .
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Differential privacy
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Functions: Implementing DP > Definition

Differential privacy

Is 0 + 1 acceptable? I.e., are distributions L(0,1) L(1,1) similar enough?
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Functions: Implementing DP > Definition

Differential privacy

• These examples use the Laplace distribution L(µ, b).

◦ I.e., probability density function:

f(x|µ, b) = 1

2b
exp

(

−|x− µ|
b

)

where

⊲ µ: location parameter

⊲ b: scale parameter (with b > 0)

• Properties

◦ When b = 1, the function for x > 0 corresponds to the exponential

distribution scaled by 1/2.

◦ Laplace has fatter tails than the normal distribution

◦ When µ = 0, for all translations z ∈ R, h(x+ z)/h(x) ≤ exp(|z|).
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Differential privacy for numerical data:

appropriate noise
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Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise

◦ What is and some appropriate noise?
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Differential privacy

• Implementation of differential privacy for a numerical query.

• Sensitivity of a query

◦ Let D denote the space of all databases; let q : D → R
d be a query;

then, the sensitivity of q is defined

∆D(q) = max
D,D′∈D

||q(D)− q(D′)||1.

where || · ||1 is the L1 norm, that is, ||(a1, . . . , ad)||1 =
∑d

i=1 |ai|.
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Differential privacy

• Sensitivity of a query

◦ Definition essentially meaningful when data has upper & lower bounds
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Functions: Implementing DP > DP-mean

An example: the case of the mean
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Functions: Implementing DP > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Sensitivity of the mean:

∆D(mean) = (max−min)/S

where [min,max] is the range of the attribute, and S is the minimal
cardinality of the set.
⊲ If no assumption is made on the size of S: ∆D(mean) = (max−min)
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Functions: Implementing DP > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Sensitivity of the mean:

∆D(mean) = (max−min)/S

where [min,max] is the range of the attribute, and S is the minimal
cardinality of the set.
⊲ If no assumption is made on the size of S: ∆D(mean) = (max−min)

◦ Proof. Assume S − 1 values all in one extreme of the [min,max]
interval (say, max) and then we add one in the other extreme of the
interval (say, min). Then, difference between the means is

(S − 1) · max

S − 1
−

(S − 1) · max + min

S
= max −

(S − 1) · max

S
−

min

S

=
S · min − (S − 1) · max − min

S
=

max − min

S

Vicenç Torra; Data privacy: Introduction 110 / 177



Functions: Implementing DP > DP-mean

Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Differential privacy via noise addition to the true response

◦ Noise following a Laplace distribution L(0, b) with

mean equal to zero and scale parameter b = ∆(q)/ǫ.

(∆(q) is the sensitivity of the query)

• Theorem. The Laplace mechanism satisfies ǫ-differential privacy

(proof Section 5.1.1, also later here)
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Functions: Implementing DP > DP-mean

Differential privacy

• Implementation of the Laplace mechanism

Algorithm Differential privacy for a numerical response LM(D, q, ǫ)
Data: D: Database; q: query; ǫ: parameter of differential privacy

Result: Answer to the query q satisfying ǫ-differential privacy

begin
a := q(D) with the original data
Compute ∆D(q), the sensitivity of the query for a space of databases D
Generate a random noise r from a L(0, b) where b = ∆(q)/ǫ
return a+ r

end
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Differential privacy

• Def. 3.17. A function Kq for a query q gives (ǫ, δ)-differential privacy

if for all data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S] + δ.

◦ Interpretation. It relaxes ǫ-DP as events with a probability smaller

than δ for D1 are still permited even if they do not occur in D2.

• Prop. 5.1. Algorithm 14 replacing the expression for b above by

b =
∆(q)

ǫ− log(1− δ)

satisfies (ǫ, δ)-differential privacy, for ∆(q) being the sensitivity of

function q.
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Differential privacy

• Example. ∆ = 1, ǫ = 0.5

◦ δ = 0.1

⊲ b = 1/(0.5− log(0.9)) = 1.651908

⊲ But, with ǫ−DP , we only need b = 1/0.5 = 2
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An example: the case of the mean

now with numbers
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Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Example5:

⊲ D = {1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
⇒ mean = 3300

⊲ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit

⇒ Differential privacy to solve this problem

5Average wage in Ireland (2018): 38878 ⇒ monthly 3239 Eur

https://www.frsrecruitment.com/blog/market-insights/average-wage-in-ireland/
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Differential privacy

• Implementation of differential privacy: The case of the mean

◦ Consider the mean salary
◦ Range of salaries [1000, 100000]
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Functions: Implementing DP > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean

◦ Consider the mean salary
◦ Range of salaries [1000, 100000]

• Compute for ǫ = 1, assume that at least S = 5 records

◦ sensitivity ∆D(q) = (max−min)/S = 19800
◦ scale parameter b = 19800/1 = 19800
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 19800)

• Compute for ǫ = 1, assume that at least S = 106 records

◦ sensitivity ∆D(q) = (max−min)/S = 0.099
◦ scale parameter b = 0.099/1 = 0.099
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 0.099)
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Differential privacy

• Comparing

◦ (i) (S = 5, ǫ = 1) Kmean(D) = 3300 + L(0, 19800) and

◦ (ii) (S = 106, ǫ = 1) Kmean(D) = 3300 + L(0, 0.099)
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Functions: Implementing DP > DP-mean

Differential privacy

• Laplace mechanism for differential privacy (numerical query)

Kq(D) = q(D) + L(0,∆(q)/ǫ)

◦ Proposition. For any function q, the Laplace mechanism satisfies
ǫ-differential privacy.
⊲ Proof. Let X ∼ L(0,∆(q)/ǫ), then the probability that the output is r for D is

Pr(Kq(D) = r) = Pr(q(D) +X = r) = Pr(X = r − q(D))

= L(0, b)(r − q(D)) =
1

2b
exp

(

−|r − q(D)|
b

)

⊲ Similarly for D′:

Pr(Kq(D
′) = r) = · · · = 1

2b
exp

(

−|r − q(D′)|
b

)
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⊲ Now,

Pr(Kq(D) = r)

Pr(Kq(D′) = r)
=

exp
(

−|r−q(D)|
b

)

exp
(

−|r−q(D′)|
b

) = exp

(|r − q(D′)| − |r − q(D)|
b

)

as |a| − |b| ≤ |a− b| (triangle inequality)

exp

(|r − q(D′)| − |r − q(D)|
b

)

≤ exp(
|q(D)− q(D′)|

b
).

⊲ As ∆D(q) = maxD,D′∈D ||q(D)− q(D′)||1, then, ∆D(q) ≥ ||q(D)− q(D′)||1 for
a pair of neighbouring D, D′. Therefore

exp

(|q(D)− q(D′)|
b

)

≤ exp

(

∆D(q)

b

)

= exp

(

∆D(q)

∆D(q)/ǫ

)

= exp(ǫ)

�
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Means: Bounded and truncated
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Differential privacy

• If the range of values is large, and sensitivity is large

◦ Can we reduce the amount of noise?
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Differential privacy: truncated mean

• Let us assume that the outcome is in the range [mn,mx]

(with mn 6= mx)

• Sensitivity is reduced: it is at most [mx,mn]

• Revisit the function mean, forcing output to be in [mx,mn]

◦ We use

q′mn,mx(x) =











mn if x < mn

x if mn ≤ x ≤ mx

mx if mx < x

◦ Then, define q(D) = mean(D), and

◦ q̃(D) = q′mn,mx(mean(D))
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Differential privacy

Algorithm truncated mean

Data: D: Database; S: minimum size ofD; ǫ: parameter of differential

privacy; mn,mx: real; max,min: real

Result: truncated-mean satisfying ǫ-differential privacy and within the

interval [mn,mx]

begin
∆(mean) = min((max−min)/S,mx−mn)

b = ∆(mean)/ǫ

m0 = q′mn,mx(mean(D)) // A truncated mean

m1 = m0 + L(0, b) // We add noise to the mean

m2 = q′(m1) // Our output should also be in [mn,mx]

return (m2)

end
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Differential privacy

• Sensitivity of the truncated mean

◦ If the range of the attribute is [min,max],

◦ S corresponds to the size of the database,

◦ Sensitivity of the mean is:

∆D(mean) = (max−min)/S.

Vicenç Torra; Data privacy: Introduction 125 / 177



Functions: Implementing DP > DP-mean

Differential privacy

• Sensitivity of the truncated mean

◦ If the range of the attribute is [min,max],

◦ S corresponds to the size of the database,

◦ Sensitivity of the mean is:

∆D(mean) = (max−min)/S.

◦ But as truncated, and output in [mn,mx]

∆D(q̃) = min((max−min)/S, (mx−mn)).
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Differential privacy

• Sensitivity of the truncated mean. Example:

◦ [mn,mx] = [2000, 4000] and with S = 5

◦ Sensitivity

∆D(q̃) = min((max−min)/5, (mx−mn))

= min((1000000− 1000)/5, (4000 − 2000)) = 2000.

When we apply q̃ to

1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000

we have that the real mean is mean = 3300.

◦ So, L(0, b)

⊲ For ǫ = 1, we have b = ∆D/ǫ = 2000/1 = 2000

⊲ For ǫ′ = 0.4, we have b′ = ∆D/ǫ
′ = 2000/0.4 = 5000,

⊲ For ǫ′′ = 2, we have b′′ = ∆D/ǫ
′′ = 2000/2 = 1000.
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Differential privacy

• Truncated mean, ǫ = 1 and ǫ′′ = 2

◦ D and D′ = D ∪ {Dona Obdúlia’s} with income 1000000,

◦ Figures: applying q̃ 10000 times.
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Differential privacy

• Alternatives

◦ If output is in D = [mn,mx], use a bounded Laplace distribution

L′(x;µ, b) =

{

0 if x /∈ D
1
Cq

1
2bexp

(

−|x−µ|
b

)

if x ∈ D

⊲ ǫ-DP guaranteed for sensitivity (mx−mn) and b = ∆(q)/ǫ.

Not otherwise.

◦ Use the Laplace mechanism and re-draw the mechanism until a value

in D is obtained.
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Composition theorems
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Differential privacy: Composition theorems

• Sequential composition. q1, . . . , qn with ǫ1, . . . , ǫn all applied to X

provide ǫ =
∑n

i=1 ǫi differential privacy

◦ Example #1. Apply mean and variance to X

◦ Example #2. Apply mean 5 times: ǫ = 5 · ǫ′

• Parallel composition. q1, . . . , qn with ǫ1, . . . , ǫn each applied to a

disjoint Xi provide ǫ = maxni=1 ǫi differential privacy

◦ Max ǫi means smallest protection

◦ Example: mean income of different towns

• Post-processing. q with ǫ applied to X, and q′ applied to the result

of q, then q′(q(X)) provides ǫ differential privacy

◦ Example. Compute mean, then change currency
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Differential privacy

• Properties of differential privacy

◦ On the ǫ:
⊲ Small ǫ, more privacy, more noise into the solution
⊲ Large ǫ, less privacy, less noise into the solution

◦ On the sensitivity:
⊲ Small sensitivity, less noise for achieving the same privacy
⊲ Large sensitivity, more noise for achieving the same privacy

◦ Discussion here is for a single query (with privacy budget ǫ). Multiple

queries (even multiple applications of the same query) need special

treatment. E.g., additional privacy budget.

◦ Randomness via e.g. Laplace means that any number can be selected.

Including e.g. negative ones for salaries. Special treatment may be

necessary.
◦ Implementations for other type of functions

⊲ The exponential mechanism for non-numerical queries
⊲ Differential privacy for machine learning and statistical models
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Computing histograms
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Histograms

• Histogram: frequency of a set of items for a set of buckets (or bins).

• Differential privacy: Key aspects

◦ Absolutely relevant whether the set of buckets is predefined or not.

⊲ Buckets are defined independently of the computation of the

histogram, or they are built somehow from the data.

◦ B = {b1, . . . , bb} be a set of b buckets,

◦ D database

◦ cD(bi) counts for each bucket i = 1, . . . , b

• Given D1 and D2 that differ in a single record,

sensitivity of the two corresponding histograms is one
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Histograms

• ǫ-DP histogram

◦ c′D(bi) = cD(bi) + ri with ri following L(0, b)

◦ b = ∆(q)/ǫ = 1/ǫ
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Histograms

• Example: ǫ-DP histogram

◦ Buckets: b1 = [1000, 1999], b2 = [2000, 2999], b3 = [3000, 3999]

◦ Data:

D = {1234, 1300, 1233, 1250, 1284, 2000, 2300, 2044, 2573,
2745, 2853, 2483, 3633, 3182, 3274, 3935}

◦ Histogram(D) = (5, 7, 4)

◦ Draw r1, r2, r3 (independently) from L(0, b) with ǫ = 1, so, b = 1

◦ Say, r = (0.7534844,−0.6143575,−1.5725160)

◦ ǫ-DP histogram:

histogram(B,D) = (c′D(b1), c
′
D(b2), c

′
D(b3)) = (5, 7, 4) + r

(5.753484, 6.385643, 2.427484)
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Histograms and composition

• Use composition to compute the mean from an histogram

◦ D a database,

◦ B = {b1, . . . , bb} buckets with range bi = [bin, bix)

◦ c(bi) counts

◦ m(bi) the mean value of the interval.

• Approximate average as follows:

◦ mean(B, histogram(B,D)) =
∑b

i=1 c(bi)m(bi)
∑b

i=1 c(bi)
.

• Approximate average:

the larger the buckets, the less acurate the mean
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Histograms and composition

• Use composition to compute the mean from an histogram

◦ D, b1 = [1000, 2000), b2 = [2000, 3000), b3 = [3000, 4000)

◦ histogram (5, 7, 4)

◦ mean:

mean(B, histogram(B,D)) =
∑b

i=1 c(bi)m(bi)
∑b

i=1 c(bi)
= 5·1500+7·2500+4·3500

5+7+4

◦ output: 2437.5

• Compare this result with the mean of D which is 2332.688

(i.e., non-DP)

• Other discretizations, another result!

• NOTE: We are here working with the histogram,

but all computations are with non-private histograms

this is not ǫ-differentially private
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Histograms and composition

• Now, differentially private, using composition

◦ Step 1. Compute c = histogram(B,D)

◦ Step 2. Produce a differentially private histogram c′

◦ Step 3. mean(B, c′) =
∑b

i=1 c
′(bi)m(bi)

∑b
i=1 c

′(bi)

• If c′ is ǫ-DP, mean(c′) is also ǫ-DP (composition theorems)

• Example.

◦ Using DP-histogram (5.753484, 6.385643, 2.427484)

mean(B, c′) =

∑b
i=1 c

′(bi)m(bi)
∑b

i=1 c
′(bi)

=
5.753484 · 1500 + 6.385643 · 2500 + 2.427484 · 3500

5.753484 + 6.385643 + 2.427484

= 2271.67
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Histograms and composition

• Histograms and domain

◦ We can apply this approach to compute the mean for any database.

◦ We need buckets to span over the whole range of incomes.

⊲ So, if we consider the incomes in the range [1000, 100000] as when

Dona Obdúlia was in the database, we need either a large bucket

(with e.g., all incomes larger than 10000) or a large number of

buckets.

◦ This will have effects on the output.
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Differential privacy: Categorical data
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Categorical data

• Categorical output: C = {c1, . . . , cc}

• Differential privacy, same definition applies

◦ A function Kq for a query q gives ǫ-differential privacy if for all

data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),
Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

(with 0/0=1) or, equivalently,

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S].

• Differential privacy using randomized response
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Categorical data

• Randomized response:

introduced for sensitive questions (Warner, 1965)

◦ Categorical output, 2 outcomes: C = {Y es,No}
◦ Example:

⊲ Have you consumed drugs this week? / Is your car now exceeding

the speed limit?

◦ Implementation:

⊲ toss a coin

⊲ if heads, return Yes

⊲ if tails, return the true answer

Vicenç Torra; Data privacy: Introduction 142 / 177



Functions: Implementing DP > Categorical data

Categorical data

• Given all answers, we can estimate the true proportion

◦ True proportion of Yes: pN , True proportion of No: pN .

⊲ Naturally, pY = 1− pN
⊲ r: proportion of answered No

⊲ Then, pN = 2 ∗ r, so, pY = 1− 2 ∗ r
◦ Graphically

50%
heads

Y

Y

N

Y

N

Vicenç Torra; Data privacy: Introduction 143 / 177



Functions: Implementing DP > Categorical data

Categorical data: Example

• Given all answers, we can estimate the true proportion

• Example

◦ We ask 100 people about their drug consumption

◦ We get 45 Nos, and 55 Yes

• Answer
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Functions: Implementing DP > Categorical data

Categorical data: Example

• Given all answers, we can estimate the true proportion

• Example

◦ We ask 100 people about their drug consumption

◦ We get 45 Nos, and 55 Yes

• Answer

◦ 50 answered Yes by default

◦ so, 55− 50 = 5 answered a true yes

◦ So, real yes was 2 ∗ 5 = 10

◦ And true No was r = 45, So, total No is r = 2 ∗ 45 = 90.
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Categorical data

• In general,

◦ probability p of returning right answer

◦ probability p′ of returning Y when false answer, 1− p′ of N
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Categorical data

• Algorithm randomized response: rr(f(X), p, p′)
Data: f(X): the true outcome of the query; p, p′: probability in [0,1]

Result: Randomized response for f(X) with probabilities p, p′

begin
r := random number in [0,1] according to a uniform distribution
if r < p then

return f(X)

else
r′ := random number in [0,1] according to a uniform distribution
if r′ < p′ then

return Y

else
return N

end

end

end
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Categorical data

• In general,

◦ probability p of returning right answer

◦ probability p′ of returning Y when false answer, 1− p′ of N

• π true proportion of Yes, o observed proportion of Yes

o = p ∗ π + (1− p) ∗ p′.

• So, given observed proportion o of Yes, we estimate π:

π̂ = (o− (1− p) ∗ p′)/p.
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Categorical data

• In general, but with an example

◦ probability p = 0.5 of returning right answer
◦ probability p′ = 0.75 of returning Y when false answer, 1− p′ of N

• We compute (assuming π = 0.1 Yes, as in the previous example)

◦ π true proportion of Yes, o observed proportion of Yes

o = p ∗ π + (1− p) ∗ p′ = 1/2 ∗ 0.1 + 1/2 ∗ 3/4 = 0.425

◦ So, given observed proportion o of Yes, we estimate π:

π̂ = (o− (1− p) ∗ p′)/p = (0.425− (1− 0.5) ∗ 3/4)/0.5 = 0.1
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Categorical data

• In general, but with an example

◦ probability p = 0.5 of returning right answer
◦ probability p′ = 0.75 of returning Y when false answer, 1− p′ of N

• We compute (assuming π = 0.1 Yes, as in the previous example)

◦ π true proportion of Yes, o observed proportion of Yes

o = p ∗ π + (1− p) ∗ p′ = 1/2 ∗ 0.1 + 1/2 ∗ 3/4 = 0.425

◦ So, given observed proportion o of Yes, we estimate π:

π̂ = (o− (1− p) ∗ p′)/p = (0.425− (1− 0.5) ∗ 3/4)/0.5 = 0.1

• However, in general, the larger the noise (i.e., p is very small),

the more difficult to recover π: observe, p = 0. (Warner, 1965)
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Differential privacy: general case with
multiple categories
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Categorical data

• General case: C = {c1, . . . , cc}.
◦ Randomized response, with a probability distribution for each ci
◦ from ci to cj

P (ci, cj) = P (X ′ = cj|X = ci).
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Functions: Implementing DP > Categorical data

Categorical data

• General case: C = {c1, . . . , cc}.
◦ Randomized response, with a probability distribution for each ci
◦ from ci to cj

P (ci, cj) = P (X ′ = cj|X = ci).

◦ Naturally, for each ci we have

P (X ′ = c1|X = ci), . . . , P (X ′ = cc|X = ci)

for all ci it holds
∑

j P (ci, cj) =
∑

j P (X ′ = cj|X = ci) = 1.
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Categorical data

• General case: C = {c1, . . . , cc}.
◦ Randomized response, with a probability distribution for each ci
◦ from ci to cj

P (ci, cj) = P (X ′ = cj|X = ci).

◦ Naturally, for each ci we have

P (X ′ = c1|X = ci), . . . , P (X ′ = cc|X = ci)

for all ci it holds
∑

j P (ci, cj) =
∑

j P (X ′ = cj|X = ci) = 1.

◦ P (ci, cj) a transition matrix P where the rows add to one

◦ This is (like) PRAM
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Categorical data

• General case: C = {c1, . . . , cc}.

• Algorithm randomized response via PRAM: rrPRAM(c, P )

Data: c: the true outcome of the query; P : transition matrix

Result: Randomized response for c according to transition matrix P

begin
r := random number in [0,1] according to a uniform distribution

Select k0 in {1, . . . , c} such that
∑k0−1

k=1 P (c′ = ci, |C = c) < r ≤
∑k0

k=1P (c′ = ci, |C = c)

return ck0

end
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Categorical data

• General case: C = {c1, . . . , cc}, true proportions?

◦ After protection we observe: o = (o1, . . . , oc)

◦ but, the true response was π = (π1, . . . , πc)

here πk is the proportion of respondents of class ck
◦ How to compute π from o?
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Categorical data

• General case: C = {c1, . . . , cc}, true proportions?

◦ After protection we observe: o = (o1, . . . , oc)

◦ but, the true response was π = (π1, . . . , πc)

here πk is the proportion of respondents of class ck
◦ How to compute π from o?

◦ We know o from π:

oj =
c
∑

i=1

πiP (X ′ = cj|X = ci)

in matrix form:

o = Pπ

◦ So, we can estimate

π̂ = P−1o
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Categorical data

• Randomized response = PRAM

◦ The approach discussed here corresponds to PRAM

◦ While PRAM assumes that we have the database available,

Randomized response often considers local data being transmitted
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Categorical data

• Randomized response = PRAM

◦ The approach discussed here corresponds to PRAM

◦ While PRAM assumes that we have the database available,

Randomized response often considers local data being transmitted

◦ i.e., local differential privacy
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Appropriate noise: categorical data
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Categorical data

• Local differential privacy, reminder, and rewriting

◦ D1 and D2 are single records or categories

Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.
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Categorical data

• Local differential privacy, reminder, and rewriting

◦ D1 and D2 are single records or categories

Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

◦ with categories
Pr[Kq(ci) = cc]

Pr[Kq(cj) = cc]
≤ eǫ.
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Categorical data

• Local differential privacy, reminder, and rewriting

◦ D1 and D2 are single records or categories

Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

◦ with categories
Pr[Kq(ci) = cc]

Pr[Kq(cj) = cc]
≤ eǫ.

◦ and, in PRAM-like / randomized-response like

P (X ′ = cc|ci)
P (X ′ = cc|cj)

≤ eǫ.
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Categorical data

• What is the appropriate noise ? (given ǫ)

• Assumptions on the matrix:

◦ All categories same probability of being modified

for all ci, cj we have P (X ′ = ci|ci) = P (X ′ = cj|cj).
◦ Non-diagonal values are all equal

P (X ′ = ci|cj) = P (X ′ = ck|cl) for all i 6= j, k 6= l

◦ We assume P (X ′ = ci|ci) > P (X ′ = cj|ci) for all i 6= j

• Summary, matrix of this form








qd q . . . q
q qd . . . q
. . . . . .
q q . . . qd









(2)

with qd = P (X ′ = ci|ci) for all i, and q = P (X ′ = cj|ci) for j 6= i.
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Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).
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Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).

◦ We require local ǫ-differential privacy, so we need
P (X ′ = c1|ci)/P (X ′ = c1|cj) ≤ eǫ, . . . , P (X ′ = cc|ci)/P (X ′ = cc|cj)) ≤ eǫ,

This means
maxck=1P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ
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Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).

◦ We require local ǫ-differential privacy, so we need
P (X ′ = c1|ci)/P (X ′ = c1|cj) ≤ eǫ, . . . , P (X ′ = cc|ci)/P (X ′ = cc|cj)) ≤ eǫ,

This means
maxck=1P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ

◦ We assumed P (X ′ = ci|ci) the largest value in a row,
and all non-diagonal values are the same,
so, maximum is obtained for k = i.
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Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).

◦ We require local ǫ-differential privacy, so we need
P (X ′ = c1|ci)/P (X ′ = c1|cj) ≤ eǫ, . . . , P (X ′ = cc|ci)/P (X ′ = cc|cj)) ≤ eǫ,

This means
maxck=1P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ

◦ We assumed P (X ′ = ci|ci) the largest value in a row,
and all non-diagonal values are the same,
so, maximum is obtained for k = i.
In order to get precisely ǫ privacy (and not ǫ0 < ǫ privacy) we require the equality
to hold.

P (X ′ = ci|ci)/P (X ′ = ci|cj) = eǫ. (3)
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Functions: Implementing DP > Categorical data

Categorical data

• What is the appropriate noise ? (given ǫ)

◦ From these quotients, we compute the values, how?

P (X ′ = ci|ci)/P (X ′ = ci|cj) = eǫ.

◦ each row needs to add to one, so

P (X ′ = ci|ci) + (c− 1)P (X ′ = ci|cj) = 1,

or, equivalently, P (X ′ = ci|cj) = (1− P (X ′ = ci|ci))/(c− 1).

◦ Using this expression, we have that Equation 3 becomes

P (X ′ = ci|ci)/((1− P (X ′ = ci|ci))/(c− 1)) = eǫ.

◦ This equality implies that P (X ′ = ci|ci) is of the following form:

P (X ′ = ci|ci) = eǫ/(c− 1 + eǫ),

◦ and, therefore, P (X ′ = ci|cj) for i 6= j is

P (X ′ = ci|cj) = 1/(c− 1 + eǫ).
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Functions: Implementing DP > Categorical data

Categorical data

• Example: What is the appropriate noise? (given ǫ, and c = 2)

◦ Our matrix will have this form

(

eǫ

1+eǫ
1

1+eǫ

1
1+eǫ

eǫ

1+eǫ

)

(4)
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Functions: Implementing DP > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ)

• Example. Maximum privacy c = 2 and ǫ = 0,

◦ the transition matrix contains only 1/2.





1
2

1
2

1
2

1
2




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Functions: Implementing DP > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ, and c = 2)

◦ Example. c = 2 and ǫ = 1
Answers: {I like this app, I do not like this app}

(

eǫ

1+eǫ
= 0.73 1

1+eǫ
= 0.27

1
1+eǫ

= 0.27 eǫ

1+eǫ
= 0.73

)
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Functions: Implementing DP > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ, and c = 2)

◦ Example. c = 2 and ǫ = 10
Answers: {I like this app, I do not like this app}

(

eǫ

1+eǫ
= 0.9999546 1

1+eǫ
= 0.000123

1
1+eǫ

= 0.000123 eǫ

1+eǫ
= 0.9999546

)
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Functions: Implementing DP > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ, and c = 2)

◦ Example. c = 7 and ǫ = 10
◦ Answers (Do you like this app): {Not-at-all, don’t, ..., fantastic}















eǫ

c−1+eǫ
= 0.9997277 . . . 1

c−1+eǫ
= 0.0001233 1

c−1+eǫ
= 0.000123

... ... ...

... ... ...

... ... ...
1

c−1+eǫ
= 0.0001233 . . . 1

c−1+eǫ
= 0.0001233 eǫ

c−1+eǫ
= 0.9997277














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Functions: Implementing DP > Categorical data

Categorical data

• Discussion based on Assumptions on the matrix (i, j, k as above)

◦ qd = P (X ′ = ci|ci) = P (X ′ = cj|cj) (diagonal)
◦ q = P (X ′ = ci|cj) = P (X ′ = ck|cl)
◦ and qd = P (X ′ = ci|ci) > P (X ′ = cj|ci) = q

• Nevertheless, we may have other assumptions
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Functions: Implementing DP > Categorical data

Categorical data

• Discussion based on Assumptions on the matrix (i, j, k as above)

◦ qd = P (X ′ = ci|ci) = P (X ′ = cj|cj) (diagonal)
◦ q = P (X ′ = ci|cj) = P (X ′ = ck|cl)
◦ and qd = P (X ′ = ci|ci) > P (X ′ = cj|ci) = q

• Nevertheless, we may have other assumptions

◦ When c = 2, most general case (assume outputs 0 and 1)

(

p00 p01 = 1− p00
p10 = 1− p11 p11

)

(5)
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Functions: Implementing DP > Categorical data

Categorical data

• Most general case c = 2

◦ Matrix
(

p00 p01 = 1− p00
p10 = 1− p11 p11

)

(6)

◦ Region of feasibility (i.e., possible p00 and p11)
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Functions: Implementing DP > Categorical data

Categorical data

• Most general case c = 2

◦ Matrix
(

p00 p01 = 1− p00
p10 = 1− p11 p11

)

(6)

◦ Region of feasibility (i.e., possible p00 and p11)

⊲ p00 ≤ (1− p11)e
ǫ

⊲ p11 ≤ (1− p00)e
ǫ

⊲ (1− p00) ≤ p11e
ǫ

⊲ (1− p11) ≤ p00e
ǫ
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Functions: Implementing DP > Deep Learning

Neither categorical nor numerical:

Deep learning
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Functions: Implementing DP > Deep Learning

• Deep learning is usually implemented with Stochastic Gradient Descent

◦ Iterative process with (i is a sample)

wt+1 = wt − αt∇gi(wt, xi)

◦ ∇gi(wt, xi) is a vector of numbers, so we can just add noise

∇′gi(wt, xi) = ∇gi(wt, xi) + Lap(∆(∇g)/ǫ)

• Problems

◦ The amount of noise is too high, and

◦ We need to do multiple iterations with lots of samples xi
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Functions: Implementing DP > Deep Learning

• So, we need some variations

◦ norm clipping: if the norm of the vector is too large, clip it

||g(x)||2 =
{

||g(x)||2 ||g(x)||2 ≤ C

C ||g(x)||2 > C

◦ Grouping batches: compute average gradients of a batch xi ∈ I
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Some examples with more complex
data
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>

• Privacy for complex data and models6

◦ Graphs

◦ Smart grid data

◦ Streaming data, multiple releases, etc. (temporal component)

◦ Language models

◦ Unlearning

• Privacy-preserving solutions in different environments

◦ Federated learning

◦ Privacy models for voting and decision making

6This relates to our own research:

https://www.umu.se/forskning/grupper/nausica-privacy-aware-transparent-decisions-group
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Privacy for graphs: An example

Graphs: All are graphs (data, recommendations, etc)

Noise addition for graphs: Similar idea but with graphs

G′ = G⊕ g

• Example:
1

2

6

5

7

4

3

8

9 ⊕

1

2

6

5

7

4

3

8

9 =

1

2

6

5

7

4

3

8

9
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Privacy for smart grid

• Smart grid: electric grid data

◦ Data from households

• Sensitive data:

◦ consumer habits,

◦ Non-intrusive load monitoring (NILM): deduce types of appliances

from aggregated energy consumption.
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>

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification
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Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification

◦ Global privacy: Only globally we can really protect individuals
(global) DP
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Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification

◦ Global privacy: Only globally we can really protect individuals
(global) DP

◦ Infrastructure: No one trusts any one
Secure multiparty computation
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>

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification

◦ Global privacy: Only globally we can really protect individuals
(global) DP

◦ Infrastructure: No one trusts any one
Secure multiparty computation

◦ Data in the cloud
Homomorphic encryption
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Summary

Summary
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Summary >

Summary

• Concepts

◦ What is data privacy?

◦ Difficulties of data privacy: naive annonymization does not work

◦ Concepts: anonymity set, plausible deniability, transparency

◦ Disclosure: Identity and attribute

◦ Privacy models: k-anonymity, differential privacy

◦ Privacy for data: masking methods, microaggregation

◦ Privacy for functions: laplacian noise
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