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1. Computation-driven approaches

• Differential privacy

• Centralized approach: trusted third party

• Distributed approach: secure multiparty computation
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Computation-driven > privacy models Outline

Computation-driven: Privacy model perspective

Privacy models. Computational definition. Computing a function

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.

• Homomorphic encryption. We want to avoid access to raw data

and partial computations.

?

f(X) g(X)

X
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Computation-driven > privacy models Outline

Computation-driven: Privacy model perspective

Privacy models. Computational definition. Computing a function

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

?

Vicenç Torra; Data Privacy: Dimensions 4 / 39
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Computation-driven: “Whose privacy” perspective

Respondent and owner privacy

• Data-driven or general-purpose

• Computation-driven or specific-purpose (Ch. 5)

◦ Single database: differential privacy (Ch. 5.1)
◦ Multiple databases:
⊲ Centralized approach: trusted third party
⊲ Distributed approach: secure multiparty computation (Ch. 5.2)

• Result-driven

Vicenç Torra; Data Privacy: Dimensions 5 / 39
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Computation-driven > Differential privacy Outline

Differential privacy

• Computation-driven/single database

◦ Privacy model: differential privacy1

◦ We know the function/query to apply to the database: f

• Example:

compute the mean of the attribute salary of the database for all those living in Town.

1There are other models as e.g. query auditing (determining if answering a query can lead to a privacy

breach), and integral privacy
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Differential privacy

• Differential privacy (Dwork, 2006).

◦ Motivation:

⊲ the result of a query should not depend on the presence (or absence)

of a particular individual

⊲ the impact of any individual in the output of the query is limited

differential privacy ensures that the removal or addition of a single database item

does not (substantially) affect the outcome of any analysis (Dwork, 2006)
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Differential privacy

• Mathematical definition of differential privacy

(in terms of a probability distribution on the range of the

function/query)

◦ A function Kq for a query q gives ǫ-differential privacy if for all

data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),
Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

(with 0/0=1) or, equivalently,

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S].

• ǫ is the level of privacy required (privacy budget). The smaller the ǫ,

the greater the privacy we have.

9 / 39



DP > Computation-driven Outline

Differential privacy

• Differential privacy

◦ A function Kq for a query q gives ǫ-differential privacy if . . .

⊲ Kq(D) is a constant. E.g.,

Kq(D) = 0

⊲ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise
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Differential privacy

• Differential privacy

◦ Kq(D) for a query q is a randomized version of q(D)

⊲ Given two neighbouring databases D and D′

Kq(D) and Kq(D
′) should be similar enough . . .

◦ Example with q(D) = 5 and q(D′) = 6 and adding a Laplacian noise

L(0, 1)
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◦ Let us compare different ǫ for noise following L(0, 1) . . .
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Differential privacy: comparing ǫ for L(0, 1)
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Differential privacy: Accepting 0+2? (using ǫ,L(0, 1))

Can 0 + 2 be acceptable ? I.e., with a distribution similar enough?
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Differential privacy

• These examples use the Laplace distribution L(µ, b).

◦ I.e., probability density function:

f(x|µ, b) =
1

2b
exp

(

−
|x− µ|

b

)

where

⊲ µ: location parameter

⊲ b: scale parameter (with b > 0)

• Properties

◦ When b = 1, the function for x > 0 corresponds to the exponential

distribution scaled by 1/2.

◦ Laplace has fatter tails than the normal distribution

◦ When µ = 0, for all translations z ∈ R, h(x+ z)/h(x) ≤ exp(|z|).
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Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise

◦ What is and some appropriate noise

• Sensitivity of a query

◦ Let D denote the space of all databases; let q : D → R
d be a query;

then, the sensitivity of q is defined

∆D(q) = max
D,D′∈D

||q(D)− q(D′)||1.

where || · ||1 is the L1 norm, that is, ||(a1, . . . , ad)||1 =
∑d

i=1 |ai|.

• Definition essentially meaningful when data has upper & lower bounds
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Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Sensitivity of the mean:

∆D(mean) = (max−min)/S

where [min,max] is the range of the attribute, and S is the minimal
cardinality of the set.
⊲ If no assumption is made on the size of S: ∆D(mean) = (max−min)

◦ Parameter ǫ:

(Lee, Clifton, 2011) recommend ǫ = 0.3829 for the mean
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Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Differential privacy via noise addition to the true response

◦ Noise following a Laplace distribution L(0, b) with

mean equal to zero and scale parameter b = ∆(q)/ǫ.

(∆(q) is the sensitivity of the query)

◦ Algorithm Differential privacy:
⊲ Input: D: Database; q: query; ǫ: parameter of differential privacy;
⊲ Output: Answer to the query q satisfying ǫ-differential privacy
⊲ a := q(D) with the original data
⊲ ∆D(q):= the sensitivity of the query for a space of databases D
⊲ Generate a random noise r from a L(0, b) where b = ∆(q)/ǫ
⊲ Return a+ r
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Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Example2:

⊲ D = {1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}

⇒ mean = 3300

⊲ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit

⇒ Differential privacy to solve this problem

2Average wage in Ireland (2018): 38878 ⇒ monthly 3239 Eur

https://www.frsrecruitment.com/blog/market-insights/average-wage-in-ireland/
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Differential privacy

• Implementation of differential privacy: The case of the mean

◦ Consider the mean salary

◦ Range of salaries [1000, 100000]

• Compute for ǫ = 1, assume that at least S = 5 records

◦ sensitivity ∆D(q) = (max−min)/S = 19800
◦ scale parameter b = 19800/1 = 19800
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 19800)

• Compute for ǫ = 1, assume that at least S = 106 records

◦ sensitivity ∆D(q) = (max−min)/S = 0.099
◦ scale parameter b = 0.099/1 = 0.099
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 0.099)
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Differential privacy: The two distributions

• Comparing

◦ (i) (S = 5, ǫ = 1) Kmean(D) = 3300 + L(0, 19800) and

◦ (ii) (S = 106, ǫ = 1) Kmean(D) = 3300 + L(0, 0.099)
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Differential privacy

• Laplace mechanism for differential privacy (numerical query)

Kq(D) = q(D) + L(0,∆(q)/ǫ)

◦ Proposition. For any function q, the Laplace mechanism satisfies

ǫ-differential privacy.
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Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ “Clamping down” on the output: (McSherry, 2009; Li, Lyu, Su, Yang, 2016

Sections 2.5.3 and 2.5.4)

⊲ The output of a query is within a range [mn,mx] even if data is

not. E.g., compute q(D) = q′mn,mx(mean(D)) with q′ as follows

q′mn,mx(x) =











mn if x < mn

x if mn ≤ x ≤ mx

mx if mx < x

⇒ we can define ǫ-differential privacy for this query q(D)
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Differential privacy

• Implementation of clamping-down mean

◦ Differential privacy via noise addition to the true response

◦ Arbitrary size S of the database D (i.e, S = |D)

◦ Output in the interval [mn,mx]

◦ Solution and proof in (Li, Lyu, Su, Yang, 2016 Section 2.5.4)

◦ Algorithm Differentially private clamping-down mean
⊲ Input: D: (one-dimensional) Database; S : size; ǫ: parameter of differential
privacy; mn,mx: real

⊲ Output: A ǫ-differentially private mean
⊲ if S = 0 then
r := uniform random in [0, 1]
if r < 1/2exp(−ǫ/2) return mn
else if r < 2/2exp(−ǫ/2) return mx
else return mn+ (mx−mn)(r − exp(−ǫ/2))/(1− exp(−ǫ/2))

⊲ else if return q′
(

sum(D)+L(0,(mx−mn)/ǫ)
S

)

⊲ end if
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Differential privacy

• Implementation of clamping-down mean. Applying it to

◦ the interval: [2000, 4000]

◦ so, sensitivity ∆D(q) = (max−min) = 2000

◦ and the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}

◦ Applying the procedure 10000 times, and ploting the histogram
Clamped down mean (e=0.4)
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Differential privacy

• Properties of differential privacy

◦ On the ǫ:
⊲ Small ǫ, more privacy, more noise into the solution
⊲ Large ǫ, less privacy, less noise into the solution

◦ On the sensitivity:
⊲ Small sensitivity, less noise for achieving the same privacy
⊲ Large sensitivity, more noise for achieving the same privacy

◦ Discussion here is for a single query (with privacy budget ǫ). Multiple

queries (even multiple applications of the same query) need special

treatment. E.g., additional privacy budget.

◦ Randomness via e.g. Laplace means that any number can be selected.

Including e.g. negative ones for salaries. Special treatment may be

necessary.
◦ Implementations for other type of functions

⊲ The exponential mechanism for non-numerical queries
⊲ Differential privacy for machine learning and statistical models

25 / 39



Outline

Centralized approach: trusted third party
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Trusted third party

Computation-driven approaches/multiple databases: centralized

• Example. Parties P1, . . . , Pn own databases DB1, . . . ,DBn. The

parties want to compute a function, say f , of these databases (i.e.,

f(DB1, . . . ,DBn)) without revealing unnecessary information. In

other words, after computing f(DB1, . . . ,DBn) and delivering this

result to all Pi, what Pi knows is nothing more than what can be

deduced from his DBi and the function f .

• So, the computation of f has not given Pi any extra knowledge.

27 / 39



Outline

Distributed approach: secure multiparty
computation
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

• The centralized approach as a reference

?
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Compute the sum of salaries of 4 people: Aine, Brianna, Cathleen,

and Deirdre.

We denote these salaries by s1, s2, s3, and s4, respectively.

• Each person’s salary is confidential and they do not want to share.

• Define a protocol to compute involving only the 4 people (no trusted

third party).

• Assume that the sum lies in the range [0, n].

� Example with 4 people. Similar method applies with other number of people.

� We use public-key cryptography. I.e., each party requires two separate keys: a

private and a public one. This is also known as asymmetric cryptography.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

31 / 39



DP > Computation-driven Outline

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

31 / 39



DP > Computation-driven Outline

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
encrypted with Aine’s public key.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
encrypted with Aine’s public key.

• Aine decrypts Deirdre’s message with Aine’s private key. She substracts (modulo n)
the random number r added in the first step, obtaining in this way s1+s2+s3+s4
(this will be in [0, n]).
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
encrypted with Aine’s public key.

• Aine decrypts Deirdre’s message with Aine’s private key. She substracts (modulo n)
the random number r added in the first step, obtaining in this way s1+s2+s3+s4
(this will be in [0, n]).

• Aine announces the result to the participants.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• This protocol assumes that all of the participants are honest

• A participant can lie about her salary.

• Aine can announce a wrong addition.
• Participants can collude. E.g.,

◦ Brianna and Deirdree can share their figures to find the salary of Cathleen
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Solving collusion.

◦ Each salary is divided into shares.

◦ The sum of each share is computed individually.

◦ Different paths are used for different shares in a way that neighbors

are different.

To compute any si all neighbors of all paths are required.

◦ Different number of shares imply different minimum coalition sizes

for violating security
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

Important observation

• This method is compliant with the privacy model selected:

Secure multiparty computation

• This method is not compliant with other privacy models:

differential privacy

We can define appropriate methods that satisfy multiple privacy models

• E.g., method that computes differentially private secure sum
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• We can also apply Shamir’s secret sharing approach to this problem
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed.

• Yao’s millionaire problem. Alice and Bob want to know who is richer,

but they do not want to tell the other how much money they have.

This is the secure computation of a > b.

• Secure set union.

• Scalar product. Alice with vector x and Bob with vector y want to

compute xy.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed.

• Dining Cryptographers Problem.

◦ (Chaum, 1985) Three cryptographers are sitting down to dinner at

their favorite three-star restaurant. Their waiter informs them that

arrangements have been made with the mâıtre d’hôtel for the bill to

be paid anonymously. One of the cryptographers might be paying

the dinner, or it might have been NSA (U.S. National Security

Agency). The three cryptographers respect each other’s right to

make an anonymous payment, but they wonder if NSA is paying.

• This problem (and previous ones) can be seen from a user’s privacy

perspective (more particularly, about protecting the data of the user).

I.e., the cryptographers does not want to share whether they paid or

not.
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed.

• Machine learning and data mining methods.

• Parties can be seen as sharing the schema of a database.

• Two types of problems usually considered.

◦ Vertically partitioned data. Parties (data holders) have information

on the same individuals but different attributes.

◦ Horizontally partitioned data. Parties (data holders) have

information on different individuals but on the same attributes

(i.e., the share the database schema).
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.

39 / 39



DP > Computation-driven Outline

Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.

• Semi-honest adversaries. Data owners follow the cryptographic

protocol but they analyse all the information they get during its

execution to discover as much information as they can.

• Malicious adversaries. Data owners try to fool the protocol (e.g.

aborting it or sending incorrect messages on purpose) so that they

can infer confidential information.
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