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Outline

1. Computation-driven approaches

• Differential privacy

• Centralized approach: trusted third party

• Distributed approach: secure multiparty computation
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Privacy for computations > Introduction

Introduction

• The researcher computes a function without accessing the data

?
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Privacy for computations > Introduction

Data is sensitive: computation leads to disclosure

• Motivating example #1 (Case #2. Sharing a computation)

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town (Bunyola)?

◦ Mean income is not “personal data”, is this ok ? NO!!:

◦ Example 1000 2000 3000 2000 1000 6000 2000 10000 2000 4000 ⇒

mean = 3300

◦ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit
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Privacy for computations > Introduction

Data is sensitive: computation leads to disclosure

• Motivating example #2 (Case #2. Sharing a computation)
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• Regression of income with respect to age with (right) and without (left)
the record of Dona Obdúlia

◦ income = -4524.2 + 207.5 age (without Ms. Rich = Dona Obdúlia)
◦ income = -54307 + 1652 age (with Ms. Rich = Dona Obdúlia)
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Privacy for computations > Privacy models

Privacy models (review)
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Privacy for computations > Privacy models

Privacy for computations: privacy models I

Privacy models. Computing a function (centralized)

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.

• Homomorphic encryption. We want to avoid access to raw data

and partial computations.

?

f(X) g(X)

X
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Privacy for computations > Privacy models

Privacy for computations: privacy models II

Privacy models. Computing a function (distributed)

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

?
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Privacy for computations > Privacy models

Introduction: Summary

• Important assumptions

◦ We know the function to compute

◦ Data is not shared, only the output of the function

◦ Partial computations are not shared, only the output of the function

◦ We do not want that the output of the function leads to disclosure
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Privacy for computations > Privacy models

Introduction: Summary

5 Privacy for Computations, Functions, and Queries

5.1 Differential Privacy Mechanisms

5.1.1 Differential Privacy Mechanisms for Numerical Data

5.1.2 Composition Theorems

5.1.3 Differential Privacy Mechanisms for Categorical Data

5.1.4 Properties of Differential Privacy

5.1.5 Machine Learning

5.1.6 Concluding Remarks

5.2 Secure Multiparty Computation Protocols

5.2.1 Assumptions on Data and on Adversaries

5.2.2 Computing a Distributed Sum

5.2.3 Secure Multiparty Computation and Inferences

5.2.4 Computing the Exclusive OR Function

5.2.5 Secure Multiparty Computation for Other Functions

5.3 Bibliographical Notes
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Differential privacy
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Differential privacy > Definition

Privacy model: definition
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Differential privacy > Definition

Differential privacy

• Computation-driven/single database

◦ Privacy model: differential privacy1

◦ We know the function/query to apply to the database: f

• Example:

compute the mean of the attribute salary of the database for all those living in Town.

1There are other models as e.g. query auditing (determining if answering a query can lead to a privacy

breach), and integral privacy
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Differential privacy > Definition

Differential privacy

• Differential privacy (Dwork, 2006).

◦ Motivation:

⊲ the result of a query should not depend on the presence (or absence)

of a particular individual

⊲ the impact of any individual in the output of the query is limited

differential privacy ensures that the removal or addition of a single database item

does not (substantially) affect the outcome of any analysis (Dwork, 2006)
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Differential privacy > Definition

Differential privacy

• Mathematical definition of differential privacy

(in terms of a probability distribution on the range of the

function/query)

◦ A function Kq for a query q gives ǫ-differential privacy if for all

data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),
Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

(with 0/0=1) or, equivalently,

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S].

• ǫ is the level of privacy required (privacy budget). The smaller the ǫ,

the greater the privacy we have.
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Differential privacy > Definition

Differential privacy

• Differential privacy: A KEY ELEMENT

◦ for all data sets D1 and D2
differing in at most one element
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Differential privacy > Definition

Understanding the definition:

Differential privacy for numerical data
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Differential privacy > Definition

Differential privacy

• Differential privacy

◦ A function Kq for a query q gives ǫ-differential privacy if . . .

⊲ Kq(D) is a constant. E.g.,

Kq(D) = 0

⊲ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise
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Differential privacy > Definition

Differential privacy

• Differential privacy

◦ Kq(D) for a query q is a randomized version of q(D)

⊲ Given two neighbouring databases D and D′

Kq(D) and Kq(D
′) should be similar enough . . .

◦ Example with q(D) = 5 and q(D′) = 6 and adding a Laplacian noise

L(0, 1)
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◦ Let us compare different ǫ for noise following L(0, 1) . . .
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Differential privacy > Definition

Differential privacy

Vicenç Torra; Privacy for computations 21 / 145



Differential privacy > Definition

Differential privacy

Is 0 + 1 acceptable? I.e., are distributions L(0,1) L(1,1) similar enough?
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Differential privacy > Definition

Differential privacy

• These examples use the Laplace distribution L(µ, b).

◦ I.e., probability density function:

f(x|µ, b) =
1

2b
exp

(

−
|x− µ|

b

)

where

⊲ µ: location parameter

⊲ b: scale parameter (with b > 0)

• Properties

◦ When b = 1, the function for x > 0 corresponds to the exponential

distribution scaled by 1/2.

◦ Laplace has fatter tails than the normal distribution

◦ When µ = 0, for all translations z ∈ R, h(x+ z)/h(x) ≤ exp(|z|).
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Differential privacy > Implementing DP

Differential privacy for numerical data:

appropriate noise
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Differential privacy > Implementing DP

Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise

◦ What is and some appropriate noise?
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Differential privacy > Implementing DP

Differential privacy

• Implementation of differential privacy for a numerical query.

• Sensitivity of a query

◦ Let D denote the space of all databases; let q : D → R
d be a query;

then, the sensitivity of q is defined

∆D(q) = max
D,D′∈D

||q(D)− q(D′)||1.

where || · ||1 is the L1 norm, that is, ||(a1, . . . , ad)||1 =
∑d

i=1 |ai|.
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Differential privacy > Implementing DP

Differential privacy

• Sensitivity of a query

◦ Definition essentially meaningful when data has upper & lower bounds

Vicenç Torra; Privacy for computations 27 / 145



Differential privacy > DP-mean

An example: the case of the mean
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Differential privacy > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Sensitivity of the mean:

∆D(mean) = (max−min)/S

where [min,max] is the range of the attribute, and S is the minimal
cardinality of the set.
⊲ If no assumption is made on the size of S: ∆D(mean) = (max−min)
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Differential privacy > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Sensitivity of the mean:

∆D(mean) = (max−min)/S

where [min,max] is the range of the attribute, and S is the minimal
cardinality of the set.
⊲ If no assumption is made on the size of S: ∆D(mean) = (max−min)

◦ Proof. Assume S − 1 values all in one extreme of the [min,max]
interval (say, max) and then we add one in the other extreme of the
interval (say, min). Then, difference between the means is

(S − 1) · max

S − 1
−

(S − 1) · max + min

S
= max −

(S − 1) · max

S
−

min

S

=
S · min − (S − 1) · max − min

S
=

max − min

S
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Differential privacy > DP-mean

Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Differential privacy via noise addition to the true response

◦ Noise following a Laplace distribution L(0, b) with

mean equal to zero and scale parameter b = ∆(q)/ǫ.

(∆(q) is the sensitivity of the query)

• Theorem. The Laplace mechanism satisfies ǫ-differential privacy

(proof Section 5.1.1, also later here)

Vicenç Torra; Privacy for computations 30 / 145



Differential privacy > DP-mean

Differential privacy

• Implementation of the Laplace mechanism

Algorithm Differential privacy for a numerical response LM(D, q, ǫ)
Data: D: Database; q: query; ǫ: parameter of differential privacy

Result: Answer to the query q satisfying ǫ-differential privacy

begin
a := q(D) with the original data
Compute ∆D(q), the sensitivity of the query for a space of databases D
Generate a random noise r from a L(0, b) where b = ∆(q)/ǫ
return a+ r

end
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Differential privacy > DP-mean

Differential privacy

• Def. 3.17. A function Kq for a query q gives (ǫ, δ)-differential privacy

if for all data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S] + δ.

◦ Interpretation. It relaxes ǫ-DP as events with a probability smaller

than δ for D1 are still permited even if they do not occur in D2.

• Prop. 5.1. Algorithm 14 replacing the expression for b above by

b =
∆(q)

ǫ− log(1− δ)

satisfies (ǫ, δ)-differential privacy, for ∆(q) being the sensitivity of

function q.
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Differential privacy > DP-mean

Differential privacy

• Example. ∆ = 1, ǫ = 0.5

◦ δ = 0.1

⊲ b = 1/(0.5− log(0.9)) = 1.651908

⊲ But, with ǫ−DP , we only need b = 1/0.5 = 2
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Differential privacy > DP-mean

An example: the case of the mean

now with numbers
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Differential privacy > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Example2:

⊲ D = {1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}

⇒ mean = 3300

⊲ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit

⇒ Differential privacy to solve this problem

2Average wage in Ireland (2018): 38878 ⇒ monthly 3239 Eur

https://www.frsrecruitment.com/blog/market-insights/average-wage-in-ireland/
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Differential privacy > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean

◦ Consider the mean salary
◦ Range of salaries [1000, 100000]
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Differential privacy > DP-mean

Differential privacy

• Implementation of differential privacy: The case of the mean

◦ Consider the mean salary
◦ Range of salaries [1000, 100000]

• Compute for ǫ = 1, assume that at least S = 5 records

◦ sensitivity ∆D(q) = (max−min)/S = 19800
◦ scale parameter b = 19800/1 = 19800
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 19800)

• Compute for ǫ = 1, assume that at least S = 106 records

◦ sensitivity ∆D(q) = (max−min)/S = 0.099
◦ scale parameter b = 0.099/1 = 0.099
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 0.099)
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Differential privacy > DP-mean

Differential privacy

• Comparing

◦ (i) (S = 5, ǫ = 1) Kmean(D) = 3300 + L(0, 19800) and

◦ (ii) (S = 106, ǫ = 1) Kmean(D) = 3300 + L(0, 0.099)
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Differential privacy > DP-mean

Differential privacy

• Laplace mechanism for differential privacy (numerical query)

Kq(D) = q(D) + L(0,∆(q)/ǫ)

◦ Proposition. For any function q, the Laplace mechanism satisfies
ǫ-differential privacy.
⊲ Proof. Let X ∼ L(0,∆(q)/ǫ), then the probability that the output is r for D is

Pr(Kq(D) = r) = Pr(q(D) +X = r) = Pr(X = r − q(D))

= L(0, b)(r − q(D)) =
1

2b
exp

(

−
|r − q(D)|

b

)

⊲ Similarly for D′:

Pr(Kq(D
′) = r) = · · · =

1

2b
exp

(

−
|r − q(D′)|

b

)
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Differential privacy > DP-mean

⊲ Now,

Pr(Kq(D) = r)

Pr(Kq(D′) = r)
=

exp
(

−|r−q(D)|
b

)

exp
(

−|r−q(D′)|
b

) = exp

(

|r − q(D′)| − |r − q(D)|

b

)

as |a| − |b| ≤ |a− b| (triangle inequality)

exp

(

|r − q(D′)| − |r − q(D)|

b

)

≤ exp(
|q(D)− q(D′)|

b
).

⊲ As ∆D(q) = maxD,D′∈D ||q(D)− q(D′)||1, then, ∆D(q) ≥ ||q(D)− q(D′)||1 for
a pair of neighbouring D, D′. Therefore

exp

(

|q(D)− q(D′)|

b

)

≤ exp

(

∆D(q)

b

)

= exp

(

∆D(q)

∆D(q)/ǫ

)

= exp(ǫ)

�
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Differential privacy > DP-mean

Means: Bounded and truncated
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Differential privacy > DP-mean

Differential privacy

• If the range of values is large, and sensitivity is large

◦ Can we reduce the amount of noise?
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Differential privacy > DP-mean

Differential privacy: truncated mean

• Let us assume that the outcome is in the range [mn,mx]

(with mn 6= mx)

• Sensitivity is reduced: it is at most [mx,mn]

• Revisit the function mean, forcing output to be in [mx,mn]

◦ We use

q′mn,mx(x) =











mn if x < mn

x if mn ≤ x ≤ mx

mx if mx < x

◦ Then, define q(D) = mean(D), and

◦ q̃(D) = q′mn,mx(mean(D))
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Differential privacy > DP-mean

Differential privacy

Algorithm truncated mean

Data: D: Database; S: minimum size ofD; ǫ: parameter of differential

privacy; mn,mx: real; max,min: real

Result: truncated-mean satisfying ǫ-differential privacy and within the

interval [mn,mx]

begin
∆(mean) = min((max−min)/S,mx−mn)

b = ∆(mean)/ǫ

m0 = q′mn,mx(mean(D)) // A truncated mean

m1 = m0 + L(0, b) // We add noise to the mean

m2 = q′(m1) // Our output should also be in [mn,mx]

return (m2)

end
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Differential privacy > DP-mean

Differential privacy

• Sensitivity of the truncated mean

◦ If the range of the attribute is [min,max],

◦ S corresponds to the size of the database,

◦ Sensitivity of the mean is:

∆D(mean) = (max−min)/S.
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Differential privacy > DP-mean

Differential privacy

• Sensitivity of the truncated mean

◦ If the range of the attribute is [min,max],

◦ S corresponds to the size of the database,

◦ Sensitivity of the mean is:

∆D(mean) = (max−min)/S.

◦ But as truncated, and output in [mn,mx]

∆D(q̃) = min((max−min)/S, (mx−mn)).
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Differential privacy > DP-mean

Differential privacy

• Sensitivity of the truncated mean. Example:

◦ [mn,mx] = [2000, 4000] and with S = 5

◦ Sensitivity

∆D(q̃) = min((max−min)/5, (mx−mn))

= min((1000000− 1000)/5, (4000 − 2000)) = 2000.

When we apply q̃ to

1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000

we have that the real mean is mean = 3300.

◦ So, L(0, b)

⊲ For ǫ = 1, we have b = ∆D/ǫ = 2000/1 = 2000

⊲ For ǫ′ = 0.4, we have b′ = ∆D/ǫ
′ = 2000/0.4 = 5000,

⊲ For ǫ′′ = 2, we have b′′ = ∆D/ǫ
′′ = 2000/2 = 1000.
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Differential privacy > DP-mean

Differential privacy

• Truncated mean, ǫ = 1 and ǫ′′ = 2

◦ D and D′ = D ∪ {Dona Obdúlia’s} with income 1000000,

◦ Figures: applying q̃ 10000 times.

Truncated mean (D, e=1)

mean values

P
ro

b
a

b
ili

ty

2000 2500 3000 3500 4000

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Truncated mean (D, e=2.0)

mean values

P
ro

b
a

b
ili

ty

2000 2500 3000 3500 4000

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Truncated mean (D’, e=1)

mean values

P
ro

b
a

b
ili

ty

2000 2500 3000 3500 4000

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Truncated mean (D’, e=2)

mean values

P
ro

b
a

b
ili

ty

2000 2500 3000 3500 4000

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0
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Differential privacy > DP-mean

Differential privacy

• Alternatives

◦ If output is in D = [mn,mx], use a bounded Laplace distribution

L′(x;µ, b) =

{

0 if x /∈ D
1
Cq

1
2bexp

(

−|x−µ|
b

)

if x ∈ D

⊲ ǫ-DP guaranteed for sensitivity (mx−mn) and b = ∆(q)/ǫ.

Not otherwise.

◦ Use the Laplace mechanism and re-draw the mechanism until a value

in D is obtained.
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Differential privacy > Composition theorems

Composition theorems
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Differential privacy > Composition theorems

Differential privacy: Composition theorems

• Sequential composition. q1, . . . , qn with ǫ1, . . . , ǫn all applied to X

provide ǫ =
∑n

i=1 ǫi differential privacy

◦ Example #1. Apply mean and variance to X

◦ Example #2. Apply mean 5 times: ǫ = 5 · ǫ′

• Parallel composition. q1, . . . , qn with ǫ1, . . . , ǫn each applied to a

disjoint Xi provide ǫ = maxni=1 ǫi differential privacy

◦ Max ǫi means smallest protection

◦ Example: mean income of different towns

• Post-processing. q with ǫ applied to X, and q′ applied to the result

of q, then q′(q(X)) provides ǫ differential privacy

◦ Example. Compute mean, then change currency
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Differential privacy > Composition theorems

Differential privacy

• Properties of differential privacy

◦ On the ǫ:
⊲ Small ǫ, more privacy, more noise into the solution
⊲ Large ǫ, less privacy, less noise into the solution

◦ On the sensitivity:
⊲ Small sensitivity, less noise for achieving the same privacy
⊲ Large sensitivity, more noise for achieving the same privacy

◦ Discussion here is for a single query (with privacy budget ǫ). Multiple

queries (even multiple applications of the same query) need special

treatment. E.g., additional privacy budget.

◦ Randomness via e.g. Laplace means that any number can be selected.

Including e.g. negative ones for salaries. Special treatment may be

necessary.
◦ Implementations for other type of functions

⊲ The exponential mechanism for non-numerical queries
⊲ Differential privacy for machine learning and statistical models
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Differential privacy > Histograms

Computing histograms
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Differential privacy > Histograms

Histograms

• Histogram: frequency of a set of items for a set of buckets (or bins).

• Differential privacy: Key aspects

◦ Absolutely relevant whether the set of buckets is predefined or not.

⊲ Buckets are defined independently of the computation of the

histogram, or they are built somehow from the data.

◦ B = {b1, . . . , bb} be a set of b buckets,

◦ D database

◦ cD(bi) counts for each bucket i = 1, . . . , b

• Given D1 and D2 that differ in a single record,

sensitivity of the two corresponding histograms is one
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Differential privacy > Histograms

Histograms

• ǫ-DP histogram

◦ c′D(bi) = cD(bi) + ri with ri following L(0, b)

◦ b = ∆(q)/ǫ = 1/ǫ
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Differential privacy > Histograms

Histograms

• Example: ǫ-DP histogram

◦ Buckets: b1 = [1000, 1999], b2 = [2000, 2999], b3 = [3000, 3999]

◦ Data:

D = {1234, 1300, 1233, 1250, 1284, 2000, 2300, 2044, 2573,

2745, 2853, 2483, 3633, 3182, 3274, 3935}

◦ Histogram(D) = (5, 7, 4)

◦ Draw r1, r2, r3 (independently) from L(0, b) with ǫ = 1, so, b = 1

◦ Say, r = (0.7534844,−0.6143575,−1.5725160)

◦ ǫ-DP histogram:

histogram(B,D) = (c′D(b1), c
′
D(b2), c

′
D(b3)) = (5, 7, 4) + r

(5.753484, 6.385643, 2.427484)
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Differential privacy > Histograms

Histograms and composition

• Use composition to compute the mean from an histogram

◦ D a database,

◦ B = {b1, . . . , bb} buckets with range bi = [bin, bix)

◦ c(bi) counts

◦ m(bi) the mean value of the interval.

• Approximate average as follows:

◦ mean(B, histogram(B,D)) =
∑b

i=1 c(bi)m(bi)
∑b

i=1 c(bi)
.

• Approximate average:

the larger the buckets, the less acurate the mean
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Differential privacy > Histograms

Histograms and composition

• Use composition to compute the mean from an histogram

◦ D, b1 = [1000, 2000), b2 = [2000, 3000), b3 = [3000, 4000)

◦ histogram (5, 7, 4)

◦ mean:

mean(B, histogram(B,D)) =
∑b

i=1 c(bi)m(bi)
∑b

i=1 c(bi)
= 5·1500+7·2500+4·3500

5+7+4

◦ output: 2437.5

• Compare this result with the mean of D which is 2332.688

(i.e., non-DP)

• Other discretizations, another result!

• NOTE: We are here working with the histogram,

but all computations are with non-private histograms

this is not ǫ-differentially private

Vicenç Torra; Privacy for computations 56 / 145



Differential privacy > Histograms

Histograms and composition

• Now, differentially private, using composition

◦ Step 1. Compute c = histogram(B,D)

◦ Step 2. Produce a differentially private histogram c′

◦ Step 3. mean(B, c′) =
∑b

i=1 c
′(bi)m(bi)

∑b
i=1 c

′(bi)

• If c′ is ǫ-DP, mean(c′) is also ǫ-DP (composition theorems)

• Example.

◦ Using DP-histogram (5.753484, 6.385643, 2.427484)

mean(B, c′) =

∑b

i=1 c
′(bi)m(bi)

∑b

i=1 c
′(bi)

=
5.753484 · 1500 + 6.385643 · 2500 + 2.427484 · 3500

5.753484 + 6.385643 + 2.427484

= 2271.67
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Differential privacy > Histograms

Histograms and composition

• Histograms and domain

◦ We can apply this approach to compute the mean for any database.

◦ We need buckets to span over the whole range of incomes.

⊲ So, if we consider the incomes in the range [1000, 100000] as when

Dona Obdúlia was in the database, we need either a large bucket

(with e.g., all incomes larger than 10000) or a large number of

buckets.

◦ This will have effects on the output.
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Differential privacy > Categorical data

Differential privacy: Categorical data
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Differential privacy > Categorical data

Categorical data

• Categorical output: C = {c1, . . . , cc}

• Differential privacy, same definition applies

◦ A function Kq for a query q gives ǫ-differential privacy if for all

data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),
Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

(with 0/0=1) or, equivalently,

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S].

• Differential privacy using randomized response
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Differential privacy > Categorical data

Categorical data

• Randomized response:

introduced for sensitive questions (Warner, 1965)

◦ Categorical output, 2 outcomes: C = {Y es,No}

◦ Example:

⊲ Have you consumed drugs this week? / Is your car now exceeding

the speed limit?

◦ Implementation:

⊲ toss a coin

⊲ if heads, return Yes

⊲ if tails, return the true answer
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Differential privacy > Categorical data

Categorical data

• Given all answers, we can estimate the true proportion

◦ True proportion of Yes: pN , True proportion of No: pN .

⊲ Naturally, pY = 1− pN
⊲ r: proportion of answered No

⊲ Then, pN = 2 ∗ r, so, pY = 1− 2 ∗ r

◦ Graphically

50%
heads

Y

Y

N

Y

N
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Differential privacy > Categorical data

Categorical data: Example

• Given all answers, we can estimate the true proportion

• Example

◦ We ask 100 people about their drug consumption

◦ We get 45 Nos, and 55 Yes

• Answer
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Differential privacy > Categorical data

Categorical data: Example

• Given all answers, we can estimate the true proportion

• Example

◦ We ask 100 people about their drug consumption

◦ We get 45 Nos, and 55 Yes

• Answer

◦ 50 answered Yes by default

◦ so, 55− 50 = 5 answered a true yes

◦ So, real yes was 2 ∗ 5 = 10

◦ And true No was r = 45, So, total No is r = 2 ∗ 45 = 90.
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Differential privacy > Categorical data

Categorical data

• In general,

◦ probability p of returning right answer

◦ probability p′ of returning Y when false answer, 1− p′ of N
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Differential privacy > Categorical data

Categorical data

• Algorithm randomized response: rr(f(X), p, p′)
Data: f(X): the true outcome of the query; p, p′: probability in [0,1]

Result: Randomized response for f(X) with probabilities p, p′

begin
r := random number in [0,1] according to a uniform distribution
if r < p then

return f(X)

else
r′ := random number in [0,1] according to a uniform distribution
if r′ < p′ then

return Y

else
return N

end

end

end
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Differential privacy > Categorical data

Categorical data

• In general,

◦ probability p of returning right answer

◦ probability p′ of returning Y when false answer, 1− p′ of N

• π true proportion of Yes, o observed proportion of Yes

o = p ∗ π + (1− p) ∗ p′.

• So, given observed proportion o of Yes, we estimate π:

π̂ = (o− (1− p) ∗ p′)/p.
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Differential privacy > Categorical data

Categorical data

• In general, but with an example

◦ probability p = 0.5 of returning right answer
◦ probability p′ = 0.75 of returning Y when false answer, 1− p′ of N

• We compute (assuming π = 0.1 Yes, as in the previous example)

◦ π true proportion of Yes, o observed proportion of Yes

o = p ∗ π + (1− p) ∗ p′ = 1/2 ∗ 0.1 + 1/2 ∗ 3/4 = 0.425

◦ So, given observed proportion o of Yes, we estimate π:

π̂ = (o− (1− p) ∗ p′)/p = (0.425− (1− 0.5) ∗ 3/4)/0.5 = 0.1
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Differential privacy > Categorical data

Categorical data

• In general, but with an example

◦ probability p = 0.5 of returning right answer
◦ probability p′ = 0.75 of returning Y when false answer, 1− p′ of N

• We compute (assuming π = 0.1 Yes, as in the previous example)

◦ π true proportion of Yes, o observed proportion of Yes

o = p ∗ π + (1− p) ∗ p′ = 1/2 ∗ 0.1 + 1/2 ∗ 3/4 = 0.425

◦ So, given observed proportion o of Yes, we estimate π:

π̂ = (o− (1− p) ∗ p′)/p = (0.425− (1− 0.5) ∗ 3/4)/0.5 = 0.1

• However, in general, the larger the noise (i.e., p is very small),

the more difficult to recover π: observe, p = 0. (Warner, 1965)
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Differential privacy > Categorical data

Differential privacy: general case with
multiple categories
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Differential privacy > Categorical data

Categorical data

• General case: C = {c1, . . . , cc}.

◦ Randomized response, with a probability distribution for each ci
◦ from ci to cj

P (ci, cj) = P (X ′ = cj|X = ci).
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Differential privacy > Categorical data

Categorical data

• General case: C = {c1, . . . , cc}.

◦ Randomized response, with a probability distribution for each ci
◦ from ci to cj

P (ci, cj) = P (X ′ = cj|X = ci).

◦ Naturally, for each ci we have

P (X ′ = c1|X = ci), . . . , P (X ′ = cc|X = ci)

for all ci it holds
∑

j P (ci, cj) =
∑

j P (X ′ = cj|X = ci) = 1.

Vicenç Torra; Privacy for computations 69 / 145



Differential privacy > Categorical data

Categorical data

• General case: C = {c1, . . . , cc}.

◦ Randomized response, with a probability distribution for each ci
◦ from ci to cj

P (ci, cj) = P (X ′ = cj|X = ci).

◦ Naturally, for each ci we have

P (X ′ = c1|X = ci), . . . , P (X ′ = cc|X = ci)

for all ci it holds
∑

j P (ci, cj) =
∑

j P (X ′ = cj|X = ci) = 1.

◦ P (ci, cj) a transition matrix P where the rows add to one

◦ This is (like) PRAM
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Differential privacy > Categorical data

Categorical data

• General case: C = {c1, . . . , cc}.

• Algorithm randomized response via PRAM: rrPRAM(c, P )

Data: c: the true outcome of the query; P : transition matrix

Result: Randomized response for c according to transition matrix P

begin
r := random number in [0,1] according to a uniform distribution

Select k0 in {1, . . . , c} such that
∑k0−1

k=1 P (c′ = ci, |C = c) < r ≤
∑k0

k=1P (c′ = ci, |C = c)

return ck0

end
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Differential privacy > Categorical data

Categorical data

• General case: C = {c1, . . . , cc}, true proportions?

◦ After protection we observe: o = (o1, . . . , oc)

◦ but, the true response was π = (π1, . . . , πc)

here πk is the proportion of respondents of class ck
◦ How to compute π from o?
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Differential privacy > Categorical data

Categorical data

• General case: C = {c1, . . . , cc}, true proportions?

◦ After protection we observe: o = (o1, . . . , oc)

◦ but, the true response was π = (π1, . . . , πc)

here πk is the proportion of respondents of class ck
◦ How to compute π from o?

◦ We know o from π:

oj =
c
∑

i=1

πiP (X ′ = cj|X = ci)

in matrix form:

o = Pπ

◦ So, we can estimate

π̂ = P−1o
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Differential privacy > Categorical data

Categorical data

• Randomized response = PRAM

◦ The approach discussed here corresponds to PRAM

◦ While PRAM assumes that we have the database available,

Randomized response often considers local data being transmitted
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Differential privacy > Categorical data

Categorical data

• Randomized response = PRAM

◦ The approach discussed here corresponds to PRAM

◦ While PRAM assumes that we have the database available,

Randomized response often considers local data being transmitted

◦ i.e., local differential privacy

Vicenç Torra; Privacy for computations 72 / 145



Differential privacy > Categorical data

Appropriate noise: categorical data
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Differential privacy > Categorical data

Categorical data

• Local differential privacy, reminder, and rewriting

◦ D1 and D2 are single records or categories

Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.
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Differential privacy > Categorical data

Categorical data

• Local differential privacy, reminder, and rewriting

◦ D1 and D2 are single records or categories

Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

◦ with categories
Pr[Kq(ci) = cc]

Pr[Kq(cj) = cc]
≤ eǫ.

Vicenç Torra; Privacy for computations 74 / 145



Differential privacy > Categorical data

Categorical data

• Local differential privacy, reminder, and rewriting

◦ D1 and D2 are single records or categories

Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

◦ with categories
Pr[Kq(ci) = cc]

Pr[Kq(cj) = cc]
≤ eǫ.

◦ and, in PRAM-like / randomized-response like

P (X ′ = cc|ci)

P (X ′ = cc|cj)
≤ eǫ.
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise ? (given ǫ)

• Assumptions on the matrix:

◦ All categories same probability of being modified

for all ci, cj we have P (X ′ = ci|ci) = P (X ′ = cj|cj).

◦ Non-diagonal values are all equal

P (X ′ = ci|cj) = P (X ′ = ck|cl) for all i 6= j, k 6= l

◦ We assume P (X ′ = ci|ci) > P (X ′ = cj|ci) for all i 6= j

• Summary, matrix of this form








qd q . . . q
q qd . . . q
. . . . . .
q q . . . qd









(1)

with qd = P (X ′ = ci|ci) for all i, and q = P (X ′ = cj|ci) for j 6= i.
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).

◦ We require local ǫ-differential privacy, so we need
P (X ′ = c1|ci)/P (X ′ = c1|cj) ≤ eǫ, . . . , P (X ′ = cc|ci)/P (X ′ = cc|cj)) ≤ eǫ,

This means
maxck=1P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ

Vicenç Torra; Privacy for computations 76 / 145



Differential privacy > Categorical data

Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).

◦ We require local ǫ-differential privacy, so we need
P (X ′ = c1|ci)/P (X ′ = c1|cj) ≤ eǫ, . . . , P (X ′ = cc|ci)/P (X ′ = cc|cj)) ≤ eǫ,

This means
maxck=1P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ

◦ We assumed P (X ′ = ci|ci) the largest value in a row,
and all non-diagonal values are the same,
so, maximum is obtained for k = i.
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise ? (given ǫ)

◦ Probabilities after masking, we had ci ?
(P (X ′ = c1|ci), ..., P (X ′ = cc|ci)).

◦ Probabilities after masking, we had cj ?
(P (X ′ = c1|cj), ..., P (X ′ = cc|cj)).

◦ We require local ǫ-differential privacy, so we need
P (X ′ = c1|ci)/P (X ′ = c1|cj) ≤ eǫ, . . . , P (X ′ = cc|ci)/P (X ′ = cc|cj)) ≤ eǫ,

This means
maxck=1P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ

◦ We assumed P (X ′ = ci|ci) the largest value in a row,
and all non-diagonal values are the same,
so, maximum is obtained for k = i.
In order to get precisely ǫ privacy (and not ǫ0 < ǫ privacy) we require the equality
to hold.

P (X ′ = ci|ci)/P (X ′ = ci|cj) = eǫ. (2)
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise ? (given ǫ)

◦ From these quotients, we compute the values, how?

P (X ′ = ci|ci)/P (X ′ = ci|cj) = eǫ.

◦ each row needs to add to one, so

P (X ′ = ci|ci) + (c− 1)P (X ′ = ci|cj) = 1,

or, equivalently, P (X ′ = ci|cj) = (1− P (X ′ = ci|ci))/(c− 1).

◦ Using this expression, we have that Equation 2 becomes

P (X ′ = ci|ci)/((1− P (X ′ = ci|ci))/(c− 1)) = eǫ.

◦ This equality implies that P (X ′ = ci|ci) is of the following form:

P (X ′ = ci|ci) = eǫ/(c− 1 + eǫ),

◦ and, therefore, P (X ′ = ci|cj) for i 6= j is

P (X ′ = ci|cj) = 1/(c− 1 + eǫ).
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Differential privacy > Categorical data

Categorical data

• Example: What is the appropriate noise? (given ǫ, and c = 2)

◦ Our matrix will have this form

(

eǫ

1+eǫ
1

1+eǫ

1
1+eǫ

eǫ

1+eǫ

)

(3)
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ)

• Example. Maximum privacy c = 2 and ǫ = 0,

◦ the transition matrix contains only 1/2.





1
2

1
2

1
2

1
2




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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ, and c = 2)

◦ Example. c = 2 and ǫ = 1
Answers: {I like this app, I do not like this app}

(

eǫ

1+eǫ
= 0.73 1

1+eǫ
= 0.27

1
1+eǫ

= 0.27 eǫ

1+eǫ
= 0.73

)
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ, and c = 2)

◦ Example. c = 2 and ǫ = 10
Answers: {I like this app, I do not like this app}

(

eǫ

1+eǫ
= 0.9999546 1

1+eǫ
= 0.000123

1
1+eǫ

= 0.000123 eǫ

1+eǫ
= 0.9999546

)
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Differential privacy > Categorical data

Categorical data

• What is the appropriate noise? (given ǫ, and c = 2)

◦ Example. c = 7 and ǫ = 10
◦ Answers (Do you like this app): {Not-at-all, don’t, ..., fantastic}















eǫ

c−1+eǫ
= 0.9997277 . . . 1

c−1+eǫ
= 0.0001233 1

c−1+eǫ
= 0.000123

... ... ...

... ... ...

... ... ...
1

c−1+eǫ
= 0.0001233 . . . 1

c−1+eǫ
= 0.0001233 eǫ

c−1+eǫ
= 0.9997277














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Differential privacy > Categorical data

Categorical data

• Discussion based on Assumptions on the matrix (i, j, k as above)

◦ qd = P (X ′ = ci|ci) = P (X ′ = cj|cj) (diagonal)

◦ q = P (X ′ = ci|cj) = P (X ′ = ck|cl)

◦ and qd = P (X ′ = ci|ci) > P (X ′ = cj|ci) = q

• Nevertheless, we may have other assumptions
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Differential privacy > Categorical data

Categorical data

• Discussion based on Assumptions on the matrix (i, j, k as above)

◦ qd = P (X ′ = ci|ci) = P (X ′ = cj|cj) (diagonal)

◦ q = P (X ′ = ci|cj) = P (X ′ = ck|cl)

◦ and qd = P (X ′ = ci|ci) > P (X ′ = cj|ci) = q

• Nevertheless, we may have other assumptions

◦ When c = 2, most general case (assume outputs 0 and 1)

(

p00 p01 = 1− p00
p10 = 1− p11 p11

)

(4)
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Differential privacy > Categorical data

Categorical data

• Most general case c = 2

◦ Matrix
(

p00 p01 = 1− p00
p10 = 1− p11 p11

)

(5)

◦ Region of feasibility (i.e., possible p00 and p11)
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Differential privacy > Categorical data

Categorical data

• Most general case c = 2

◦ Matrix
(

p00 p01 = 1− p00
p10 = 1− p11 p11

)

(5)

◦ Region of feasibility (i.e., possible p00 and p11)

⊲ p00 ≤ (1− p11)e
ǫ

⊲ p11 ≤ (1− p00)e
ǫ

⊲ (1− p00) ≤ p11e
ǫ

⊲ (1− p11) ≤ p00e
ǫ

Vicenç Torra; Privacy for computations 84 / 145



Differential privacy > Categorical data

Categorical data

• Local differential privacy
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Differential privacy > Categorical data

Categorical data

• Local differential privacy

◦ Multiple release, non-independent, series of ith sensor at time t

x1
i , . . . , x

T
i

◦ protected using ρ (e.g., ǫ-DP)

ρ(x1
i ), . . . , ρ(x

T
i )
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Differential privacy > Categorical data

Categorical data

• Local differential privacy

◦ Multiple release, non-independent, series of ith sensor at time t

x1
i , . . . , x

T
i

◦ protected using ρ (e.g., ǫ-DP)

ρ(x1
i ), . . . , ρ(x

T
i )

◦ if ǫ the whole budget, we need ǫ/T -DP for ρ
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Differential privacy > Categorical data

In the other way round: ǫ-DP for PRAM
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Differential privacy > Categorical data

Privacy guarantees

• Given a matrix P , what ǫ0-DP are we providing ?

◦ We already have seen that for all i and j,

c
max
k=1

P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ.

◦ So, equivalently

c
max
i=1

c
max
j=1

c
max
k=1

P (X ′ = ck|ci)/P (X ′ = ck|cj) ≤ eǫ.

◦ Most fitted ǫ is with the equality, so, then

ǫ0 = log

(

c
max
i=1

c
max
j=1

c
max
k=1

P (X ′ = ck|ci)/P (X ′ = ck|cj)

)

.

• NOTE: No-zero probabilities in the matrix, otherwise ǫ0 is infinite, no

privacy guarantee from a DP point of view.

• Connection with intersection attack! (also discussed)
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Differential privacy > Deep Learning

Neither categorical nor numerical:

Deep learning
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Differential privacy > Deep Learning

• Deep learning is usually implemented with Stochastic Gradient Descent

◦ Iterative process with (i is a sample)

wt+1 = wt − αt∇gi(wt, xi)

◦ ∇gi(wt, xi) is a vector of numbers, so we can just add noise

∇′gi(wt, xi) = ∇gi(wt, xi) + Lap(∆(∇g)/ǫ)

• Problems

◦ The amount of noise is too high, and

◦ We need to do multiple iterations with lots of samples xi
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Differential privacy > Deep Learning

• So, we need some variations

◦ norm clipping: if the norm of the vector is too large, clip it

||g(x)||2 =

{

||g(x)||2 ||g(x)||2 ≤ C

C ||g(x)||2 > C

◦ Grouping batches: compute average gradients of a batch xi ∈ I
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Some examples with more complex
data
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>

• Privacy for complex data3

◦ Privacy for graphs

◦ Smart grid data

◦ Streaming data, multiple releases, etc. (temporal component)

• Privacy-preserving solutions in different environments

◦ Federated learning

◦ Privacy models for voting and decision making

3This relates to our own research:

https://www.umu.se/forskning/grupper/nausica-privacy-aware-transparent-decisions-group
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Privacy for graphs

Privacy for graphs
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Privacy for graphs > Definitions

Problem
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Privacy for graphs > Definitions

Graphs

Graph: Representation of a large number of problems

Representation:

• G(V,E)

with V vertices / nodes

with E edges E ⊆ V × V

E represented by the adjacency matrix
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
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


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




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Privacy for graphs > Definitions

Graphs

Graph: Representation of a large number of problems

Examples:

• Social networks: nodes people, edges friendships

• Real networks: topology of a communication network

• But also,

Preferences/likes: travellers vs. countries; customers vs. products

1 11 1

1 1

1
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Privacy for graphs > Definitions

Problem

Data protection for graphs:

• Given a graph G, produce a protected graph G′

• G′ ressembles G

• and avoids disclosure (e.g., do not find you)
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Privacy for graphs > Privacy-preserving

Privacy-preserving graphs
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Privacy for graphs > Privacy-preserving

Graphs

• Same questions as usual

◦ Which is the appropriate privacy model (masking)

◦ Is the data = graph useful after protection (IL)

◦ Is the data = graph safe after protection (DR)
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Privacy for graphs > Privacy-preserving

Disclosure risk

Data protection for graphs: Avoids disclosure (definition)

• An intruder with some information I on node v of the graph

• is not able to identify the node.

Example of information I

• The degree of a node (i.e., |N(v)|)

• The subgraph of neighbours (i.e., G̃ from v and N(v))

(subgraph isomorphism problem // subgraph matching)
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Privacy for graphs > Privacy-preserving

Disclosure risk and privacy models

Data protection for graphs: Avoids disclosure (definition)

• An intruder with some information I on node v of the graph

• is not able to identify the node.

Privacy models for graphs

• k-anonymity for graphs
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Privacy for graphs > Privacy-preserving

Disclosure risk and privacy models

Data protection for graphs: Avoids disclosure (definition)

• An intruder with some information I on node v of the graph

• is not able to identify the node.

Privacy models for graphs

• k-anonymity for graphs

◦ k-degree anonymity
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Privacy for graphs > Privacy-preserving

Disclosure risk and privacy models

Data protection for graphs: Avoids disclosure (definition)

• An intruder with some information I on node v of the graph

• is not able to identify the node.

Privacy models for graphs

• k-anonymity for graphs

◦ k-degree anonymity

◦ 1-neihborhood anonymity, for each node n there are k − 1 other

nodes n1, . . . , nk−1 such that the graphs N (ni) are isomorphic

Vicenç Torra; Privacy for computations 101 / 145



Privacy for graphs > Privacy-preserving

Disclosure risk and privacy models

Data protection for graphs: Avoids disclosure (definition)

• An intruder with some information I on node v of the graph

• is not able to identify the node.

Privacy models for graphs

• k-anonymity for graphs

◦ k-degree anonymity

◦ 1-neihborhood anonymity, for each node n there are k − 1 other

nodes n1, . . . , nk−1 such that the graphs N (ni) are isomorphic

• Differential privacy

◦ Node and degree-differential privacy

Vicenç Torra; Privacy for computations 101 / 145



Privacy for graphs > k-anonymity

k-anonymity
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Privacy for graphs > k-anonymity

Data protection: k-degree anonymity

• Given G produce G′ (k-degree anonymity)

◦ Find degree sequence of G

◦ Microaggregate degree sequence (integer! degree sequence)

◦ Degree sequence needs to be graphical!!

◦ Swap edges in graph G to achieve G′ with appropriate degree

Vicenç Torra; Privacy for computations 103 / 145



Privacy for graphs > k-anonymity

Data protection: k-anonymity

• Given G = (V,E) produce G′ (k-degree anonymity)

◦ Define G′ = (V ′, E′) with the nodes n ∈ V in G

V ′ = V

Vicenç Torra; Privacy for computations 104 / 145



Privacy for graphs > k-anonymity

Data protection: k-anonymity

• Given G = (V,E) produce G′ (k-degree anonymity)

◦ Define G′ = (V ′, E′) with the nodes n ∈ V in G

V ′ = V

◦ Find clusters of nodes of size at least k

c(n) is the cluster associated to n
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Privacy for graphs > k-anonymity

Data protection: k-anonymity

• Given G = (V,E) produce G′ (k-degree anonymity)

◦ Define G′ = (V ′, E′) with the nodes n ∈ V in G

V ′ = V

◦ Find clusters of nodes of size at least k

c(n) is the cluster associated to n

◦ Decide whether cluster i and cluster j are connected or not

(for all i, j)
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Privacy for graphs > k-anonymity

Data protection: k-anonymity

• Given G = (V,E) produce G′ (k-degree anonymity)

◦ Define G′ = (V ′, E′) with the nodes n ∈ V in G

V ′ = V

◦ Find clusters of nodes of size at least k

c(n) is the cluster associated to n

◦ Decide whether cluster i and cluster j are connected or not

(for all i, j)

◦ For each node n1 and n2, define E′ as follows

edge(n1, n2) = 1 if and only if c(n1) is connected to c(n2)
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Privacy for graphs > Differential privacy

Differential privacy
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Privacy for graphs > Differential privacy

Data protection: edge-differential privacy

• Given G produce G′ (ǫ-edge differential privacy)

◦ An edge randomization algorithm A : G → G, satisfies ǫ-edge local

differential privacy if for every pair of nodes u, v ∈ V and x, x′, y ∈

{0, 1}:

P (1A(uv) = y|1uv = x) ≤ eǫP (1A(uv)) = y|1uv = x′),

we say that A is ǫ-edge locally differentially private
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Privacy for graphs > Differential privacy

Data protection

Data protection for graphs: How to ?

• Adhoc protection: change structure

◦ Random addition and deletion of nodes

◦ Random addition and deletion of edges

◦ Check how much addition / deletion is needed with some attacks
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9 Find this now?
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Privacy for graphs > G ⊕ g

Graph addition
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Privacy for graphs > G ⊕ g

Noise addition (for numerical data)

Our proposal:

• Inspired in noise addition for numerical data

• Add noise to hide e.g. age and salary

Noise addition: Data protection via noise addition

X ′ = X + ǫ

with ǫ ∼ N(0, kV ar)

• This definition permits to deduce properties for X ′

(e.g., mean of X ′ = mean of X, variance of X ′, etc.)

Related definitions with correlated noise in multivariate X
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Privacy for graphs > G ⊕ g

Noise addition for graphs

Noise addition for graphs: Similar idea but with graphs

G′ = G⊕ g

• G⊕ g for G = (V,E) and g = (Vg, Eg) as follows

◦ align nodes of both graphs
◦ edges in terms of exclusive-or of edges, or symmetric difference.

E1∆E2 := (E1 \E2) ∪ (E2 \E1)

{e|e ∈ E1 ∧ e /∈ E2} ∪ {e|e /∈ E1 ∧ e ∈ E2}

→ G′ = (V ′, E′) with E′ = E∆Eg
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Privacy for graphs > G ⊕ g

Noise addition for graphs: Example

Noise addition for graphs: Similar idea but with graphs

G′ = G⊕ g

• Example:
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Privacy for graphs > G ⊕ g

Noise addition: random graphs

Noise addition for graphs: Similar idea but with graphs

G′ = G⊕ g

• g is a random graph4

4VT, JS, Graph Perturbation as Noise Graph Addition: A New Perspective for Graph Anonymization.

Proc. DPM 2019; JS, VT, Differentially Private Graph Publishing and Randomized Response for

Collaborative Filtering. Proc. SECRYPT 2020

Vicenç Torra; Privacy for computations 112 / 145



Privacy for graphs > G ⊕ g

Noise addition: Graphs to add

Graphs. Examples of random graphs

• Gilbert model G(n, p)

◦ n: number of nodes

◦ p: each edge is chosen with probability p

• That is, E = {eij}ij, eij ∈ {0, 1} and eij = 1 with probability p
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Privacy for graphs > G ⊕ g

Noise addition: Graphs to add

Graphs. For bipartite graphs

• Gilbert model G(n,m, p)

◦ n,m: number of nodes each part U , V

◦ p: each edge (U – V ) is chosen with probability p

Preferences/likes: travellers vs. countries; customers vs. products

1 11 1

1 1

1
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Privacy for graphs > G ⊕ g

Differential privacy

Definition. For 0 < p < 1/2, we define the noise-graph protection

mechanism as:

An,p(G) = E(G⊕ g)

with g ∈ G(n, p) (Gilbert model)

Theorem. This mechanism provides ln((1− p)/p)-differential privacy

• This is for edge-differential privacy: Presence/absence of an edge

does not make a difference: hiding individual edges
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Privacy for graphs > G ⊕ g

Differential privacy

Example. Facebook likes data (after trimming, min 50 likes, 150 users/like)

(19,724 users, 8,523 likes, 3,817,840 user-like pairs)

• Analysis:
p ǫ |E(g)| |E(G⊕ g)|
0.005 5.29 840,162 4,619,770
0.05 2.94 8,408,449 11,844,981
0.1 2.19 16,824,538 19,878,770
0.2 1.38 33,657,261 35,949,261
0.4 0.40 67,302,556 68,070,070

• Prediction accuracy for gender, age, political views, ...
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Privacy for graphs > G ⊕ g

Analysis of communities

Analysis of communities5

• Community detection using singular value decomposition + clustering

Approach:

• Use signless Laplacian matrix

|L| = D + A

where D: diagonal matrix with node degrees, A: adjacency matrix

• Matrix factorization of |L| using SVD. Nodes as vectors in terms of

orthogonal bases and singular values.

• Reduced dimensional approximation |L|′

• Similarity between pairs of vertices using dot products of vectors

• Clustering of vertices

(fuzzy clustering to permit multiple memberships to communities)

5VT, Graph addition: properties for its use for graph protection, ILAS 2020 (hold in Galway 2022 :) )
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Privacy for graphs > G ⊕ g

Analysis of communities

Example.

• Two communities. Gilbert model G ∼ G(n,m, pn, pm, pnm)

• Community detection for graph addition

Gp = G⊕ gp

with gp ∼ G(n+m, p) and

p ∈ {0, 0.005, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}

• Membership correlation between G and Gp
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Privacy for graphs > Dynamic graphs

Extension to dynamic graphs
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Privacy for graphs > Dynamic graphs

Analysis of communities

• Graph evolves with time. Snapshots of graphs.

• Edge-local differential privacy for dynamic graphs

◦ A satisfies ε-edge local DP if for all nodes u, v, times stamps t and

edge values i, j, k:

P (1A(uv(t)) = y|1uv(t) = x) ≤ eǫP (1A(uv(t))) = y|1uv(t) = x′),

• Parallel protection mechanism: A
||
p0,p1(G)

◦ G = G0, G1, . . . , GT a dynamic graph, Ap0,p1 a noise-graph

mechanism, produce

G̃ = G̃0, G̃1, . . . , G̃T

with G̃i = Ap0,p1(Gi) for i = 0, . . . , T .
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Smart grid

Smart grid
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Smart grid >

Temporal data: smart grid

• Smart grid: electric grid data

◦ Data from households

• Sensitive data:

◦ consumer habits,

◦ Non-intrusive load monitoring (NILM): deduce types of appliances

from aggregated energy consumption.
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Smart grid >

Temporal data: smart grid

• Our approach:

◦ Data is centralized by the service provider

◦ Data needs to be shared without disclosure

• Protection through microaggregation and DFT
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Smart grid >

Temporal data: smart grid

• Data utility based on data mining tasks6:

◦ clustering: k-means

◦ classification (type of consumer): kNN

◦ forecasting: mean hourly load forecasting using SARIMAX model

(seasonal ARIMA)

• Adversarial model:

◦ Re-identification (based on record linkage)

◦ Interval disclosure (is the masked value too similar?)

◦ Non-intrusive load monitoring (NILM) detection.

6K. Adewole, V. Torra, DGTMicroagg: a dual-level anonymization algorithm for smart grid data, Int.

J. of Inf. Systems 2022; K. Adewole, V. Torra, On the application of microaggregation and discrete

Fourier transform for energy disaggregation risk reduction, submitted.
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Federated Learning

The case of federated Learning
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Federated Learning >

Federated learning

• Motivation

◦ Symbolic models (decision trees) vs. numerical models (deep learning)
◦ Comparison of different privacy models: local and global
◦ Who we trust? (privacy as a matter of trust)
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Federated Learning >

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification
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Federated Learning >

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification

◦ Global privacy: Only globally we can really protect individuals
(global) DP
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Federated Learning >

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification

◦ Global privacy: Only globally we can really protect individuals
(global) DP

◦ Infrastructure: No one trusts any one
Secure multiparty computation
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Federated Learning >

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification

◦ Global privacy: Only globally we can really protect individuals
(global) DP

◦ Infrastructure: No one trusts any one
Secure multiparty computation

◦ Data in the cloud
Homomorphic encryption
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Federated Learning >

Federated learning

• Framework based on Particle Swarm Optimization (PSO)

◦ Function to minimize

◦ A set of particles (moving, position, direction) to find optimal

◦ Privacy as a matter of trust

• Privacy at different levels

◦ Symbolic vs. numerical PSO (less precision/voting/masking)

⊲ PSO is numerical, public (no-privacy): directions and positions

⊲ PSO à la FL (i.e., privacy):

discrete directions (set of possible angles) – voting

◦ Local vs. global privacy (individuals/clients vs. server)

⊲ Local: Masking vote before casting it (PRAM)

⊲ Global: Differentially private voting using DP-Random dictatorship7

7V. Torra, Random dictatorship for privacy-preserving social choice, Int. J. of Inf Sec, 19:5 (2020)
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Federated Learning >

Federated learning

• PSO + FL = PAASO: Privacy-aware agent swarm optimization

α=vote(mm(vi))

pG (pG=pG+velocity(v))
v=dpv(α1,...,αs)

Global
privacy

Local privacy

(xi,vi,pi) (f(xi),f(pi))
g (best global position)

PSO

DP solution DP+masking (PAASO
α=vote(vi)
v=dpv(a1,...,as)

pG (pG=pG+velocity(v))

PSO À LA FL
vi=pi − pG
pG (pG=pG+mean(vi))

only directions
global position
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Federated Learning >

Federated learning

• General comments PAASO with 2D problems8

◦ In general, privacy mechanisms do not avoid convergence.

It is slower. (this can be of concern, of course, rounds=information)

◦ In terms of convergence, PSO and FL are best.

◦ Local protection (PRAM) does not have strong effect.

• On the parameters

◦ Number of options in voting, low effect

◦ Number of agents, key factor (50, 100, and 200)

◦ Particular parameters depend on the problem + privacy strategy

8V Torra et al., PSO + FL = PAASO: particle swarm optimization + federated learning =

privacy-aware agent swarm optimization. Int. J. Inf. Sec. (2022)
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Federated Learning >

Federated learning

• An example:

◦ Mean objective function for 20 executions for FL, aDRD, and bDRD.

Function f4, number of voting alternatives kα = 8, 50 agents,

φp = φg = 2.00. pc = 1.0.

◦ (left) ω = 4.00, ωG = 0.005; (right) ω = 0.005, ωG = 0.01

◦ Generalized Rosenbrock’s function (x1, x2 ∈ [−2.0, 2.0]):

f4(x1, x2) = 100 ∗ (x2 − x1 ∗ x1)
2 + (x1 − 1)2
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TTP

Centralized approach: Trusted third
party
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TTP >

Trusted third party

Computation-driven approaches/multiple databases: centralized

• Example. Parties P1, . . . , Pn own databases DB1, . . . ,DBn. The

parties want to compute a function, say f , of these databases (i.e.,

f(DB1, . . . ,DBn)) without revealing unnecessary information. In

other words, after computing f(DB1, . . . ,DBn) and delivering this

result to all Pi, what Pi knows is nothing more than what can be

deduced from his DBi and the function f .

• So, the computation of f has not given Pi any extra knowledge.
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Distributed approach: secure multiparty
computation
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TTP >

Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

• The centralized approach as a reference

?
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TTP >

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Compute the sum of salaries of 4 people: Aine, Brianna, Cathleen,

and Deirdre.

We denote these salaries by s1, s2, s3, and s4, respectively.

• Each person’s salary is confidential and they do not want to share.

• Define a protocol to compute involving only the 4 people (no trusted

third party).

• Assume that the sum lies in the range [0, n].

� Example with 4 people. Similar method applies with other number of people.

� We use public-key cryptography. I.e., each party requires two separate keys: a

private and a public one. This is also known as asymmetric cryptography.
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TTP >

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.
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TTP >

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.
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TTP >

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
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• This protocol assumes that all of the participants are honest

• A participant can lie about her salary.

• Aine can announce a wrong addition.
• Participants can collude. E.g.,

◦ Brianna and Deirdree can share their figures to find the salary of Cathleen
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• Solving collusion.

◦ Each salary is divided into shares.

◦ The sum of each share is computed individually.

◦ Different paths are used for different shares in a way that neighbors

are different.

To compute any si all neighbors of all paths are required.

◦ Different number of shares imply different minimum coalition sizes

for violating security
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Important observation

• This method is compliant with the privacy model selected:

Secure multiparty computation

• This method is not compliant with other privacy models:

differential privacy

We can define appropriate methods that satisfy multiple privacy models

• E.g., method that computes differentially private secure sum
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• We can also apply Shamir’s secret sharing approach to this problem
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• Yao’s millionaire problem. Alice and Bob want to know who is richer,

but they do not want to tell the other how much money they have.

This is the secure computation of a > b.

• Secure set union.

• Scalar product. Alice with vector x and Bob with vector y want to

compute xy.
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• Dining Cryptographers Problem.

◦ (Chaum, 1985) Three cryptographers are sitting down to dinner at

their favorite three-star restaurant. Their waiter informs them that

arrangements have been made with the mâıtre d’hôtel for the bill to

be paid anonymously. One of the cryptographers might be paying

the dinner, or it might have been NSA (U.S. National Security

Agency). The three cryptographers respect each other’s right to

make an anonymous payment, but they wonder if NSA is paying.

• This problem (and previous ones) can be seen from a user’s privacy

perspective (more particularly, about protecting the data of the user).

I.e., the cryptographers does not want to share whether they paid or

not.
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• Machine learning and data mining methods.

• Parties can be seen as sharing the schema of a database.

• Two types of problems usually considered.

◦ Vertically partitioned data. Parties (data holders) have information

on the same individuals but different attributes.

◦ Horizontally partitioned data. Parties (data holders) have

information on different individuals but on the same attributes

(i.e., the share the database schema).
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Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.
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Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.

• Semi-honest adversaries. Data owners follow the cryptographic

protocol but they analyse all the information they get during its

execution to discover as much information as they can.

• Malicious adversaries. Data owners try to fool the protocol (e.g.

aborting it or sending incorrect messages on purpose) so that they

can infer confidential information.
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