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Vicenç Torra

February 2024

Ume̊a University, Sweden

V. Torra (2022) A guide to data privacy, Springer (Chapter 5)



Outline

1. Computation-driven approaches

• Differential privacy

• Centralized approach: trusted third party

• Distributed approach: secure multiparty computation
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Privacy for computations > Introduction

Introduction

• The researcher computes a function without accessing the data

?
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Privacy for computations > Introduction

Data is sensitive: computation leads to disclosure

• Motivating example #1 (Case #2. Sharing a computation)

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town (Bunyola)?

◦ Mean income is not “personal data”, is this ok ? NO!!:

◦ Example 1000 2000 3000 2000 1000 6000 2000 10000 2000 4000 ⇒

mean = 3300

◦ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit
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Privacy for computations > Introduction

Data is sensitive: computation leads to disclosure

• Motivating example #2 (Case #2. Sharing a computation)
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• Regression of income with respect to age with (right) and without (left)
the record of Dona Obdúlia

◦ income = -4524.2 + 207.5 age (without Ms. Rich = Dona Obdúlia)
◦ income = -54307 + 1652 age (with Ms. Rich = Dona Obdúlia)
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Privacy for computations > Privacy models

Privacy models (review)
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Privacy for computations > Privacy models

Privacy for computations: privacy models I

Privacy models. Computing a function (centralized)

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.

• Homomorphic encryption. We want to avoid access to raw data

and partial computations.

?

f(X) g(X)

X
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Privacy for computations > Privacy models

Privacy for computations: privacy models II

Privacy models. Computing a function (distributed)

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

?
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Privacy for computations > Privacy models

Introduction: Summary

• Important assumptions

◦ We know the function to compute

◦ Data is not shared, only the output of the function

◦ Partial computations are not shared, only the output of the function

◦ We do not want that the output of the function leads to disclosure
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Privacy for computations > Privacy models

Introduction: Summary

5 Privacy for Computations, Functions, and Queries

5.1 Differential Privacy Mechanisms

5.1.1 Differential Privacy Mechanisms for Numerical Data

5.1.2 Composition Theorems

5.1.3 Differential Privacy Mechanisms for Categorical Data

5.1.4 Properties of Differential Privacy

5.1.5 Machine Learning

5.1.6 Concluding Remarks

5.2 Secure Multiparty Computation Protocols

5.2.1 Assumptions on Data and on Adversaries

5.2.2 Computing a Distributed Sum

5.2.3 Secure Multiparty Computation and Inferences

5.2.4 Computing the Exclusive OR Function

5.2.5 Secure Multiparty Computation for Other Functions

5.3 Bibliographical Notes
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SMC

Secure Multiparty computation
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SMC > TTP

Centralized approach: Trusted third party
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SMC > TTP

Trusted third party

Computation-driven approaches/multiple databases: centralized

• Example. Parties P1, . . . , Pn own databases DB1, . . . ,DBn. The

parties want to compute a function, say f , of these databases (i.e.,

f(DB1, . . . ,DBn)) without revealing unnecessary information. In

other words, after computing f(DB1, . . . ,DBn) and delivering this

result to all Pi, what Pi knows is nothing more than what can be

deduced from his DBi and the function f .

• So, the computation of f has not given Pi any extra knowledge.
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SMC > distributed

Distributed approach: secure multiparty
computation
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

• The centralized approach as a reference

?
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Compute the sum of salaries of 4 people: Aine, Brianna, Cathleen,

and Deirdre.

We denote these salaries by s1, s2, s3, and s4, respectively.

• Each person’s salary is confidential and they do not want to share.

• Define a protocol to compute involving only the 4 people (no trusted

third party).

• Assume that the sum lies in the range [0, n].

� Example with 4 people. Similar method applies with other number of people.

� We use public-key cryptography. I.e., each party requires two separate keys: a

private and a public one. This is also known as asymmetric cryptography.
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.
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Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
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Computation-driven approaches/multiple databases/distributed. Sum
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the random number r added in the first step, obtaining in this way s1+s2+s3+s4
(this will be in [0, n]).
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with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
encrypted with Aine’s public key.

• Aine decrypts Deirdre’s message with Aine’s private key. She substracts (modulo n)
the random number r added in the first step, obtaining in this way s1+s2+s3+s4
(this will be in [0, n]).

• Aine announces the result to the participants.
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• This protocol assumes that all of the participants are honest

• A participant can lie about her salary.

• Aine can announce a wrong addition.
• Participants can collude. E.g.,

◦ Brianna and Deirdree can share their figures to find the salary of Cathleen
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Solving collusion.

◦ Each salary is divided into shares.

◦ The sum of each share is computed individually.

◦ Different paths are used for different shares in a way that neighbors

are different.

To compute any si all neighbors of all paths are required.

◦ Different number of shares imply different minimum coalition sizes

for violating security
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

Important observation

• This method is compliant with the privacy model selected:

Secure multiparty computation

• This method is not compliant with other privacy models:

differential privacy

We can define appropriate methods that satisfy multiple privacy models

• E.g., method that computes differentially private secure sum
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed.

• Yao’s millionaire problem. Alice and Bob want to know who is richer,

but they do not want to tell the other how much money they have.

This is the secure computation of a > b.

• Secure set union.

• Scalar product. Alice with vector x and Bob with vector y want to

compute xy.
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SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases: distributed.

• Machine learning and data mining methods.

• Parties can be seen as sharing the schema of a database.

• Two types of problems usually considered.

◦ Vertically partitioned data. Parties (data holders) have information

on the same individuals but different attributes.

◦ Horizontally partitioned data. Parties (data holders) have

information on different individuals but on the same attributes

(i.e., the share the database schema).

Vicenç Torra; Privacy for computations 23 / 46



SMC > distributed

Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.

• Semi-honest adversaries. Data owners follow the cryptographic

protocol but they analyse all the information they get during its

execution to discover as much information as they can.

• Malicious adversaries. Data owners try to fool the protocol (e.g.

aborting it or sending incorrect messages on purpose) so that they

can infer confidential information.
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XOR

Computing the Exclusive OR Function
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XOR >

Exclusive OR

Dining Cryptographer network. DC-net (Chaum, 1985)
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Dining Cryptographer network. DC-net (Chaum, 1985)

• Sender anonymity, or a secure multi-party computation of the function

OR.
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XOR >

Exclusive OR

Dining Cryptographer network. DC-net (Chaum, 1985)

• Sender anonymity, or a secure multi-party computation of the function

OR.

• Problem. Three cryptographers are sitting down to dinner at

their favorite three-star restaurant. Their waiter informs them that

arrangements have been made with the mâıtre d’hôtel for the bill to

be paid anonymously. One of the cryptographers might be paying

the dinner, or it might have been NSA (U.S. National Security

Agency). The three cryptographers repect each other’s right to make

an anonymous payment, but they wonder if NSA is paying.
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XOR >

Exclusive OR

Dining Cryptographer network.

• Graphical representation of the solution

(None of the cryptographers paid (left) and one of them paid (right))

no paid

head=0 head=0
tail=1

tail=1 tail=1

tail=1

xor(1,0)=1xor(1,1)=0xor(1,0)=1
xor(1,1)=0

xor(0,1)=1xor(0,1)=1

no paid no paid no paid

no paid 
paid

xor(1,0,1)=0 xor(1,0,1−1)=xor(1,0,0)=1
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XOR >

Exclusive OR

Dining Cryptographer network. Steps of the process (I)

Step 1. Each cryptographer flips a coin and shares its outcome with

the crytographer on the right. Let us represent tails and heads by 1

and 0, respectively. Let coini be the outcome of the coin of the ith

cryptographer.
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Dining Cryptographer network. Steps of the process (I)

Step 1. Each cryptographer flips a coin and shares its outcome with

the crytographer on the right. Let us represent tails and heads by 1

and 0, respectively. Let coini be the outcome of the coin of the ith

cryptographer.

Step 2. All cryptographers find whether the two coins they know about

(the one they flipped and the one their left-hand neighbor flipped)

fell on the same side or not. Let us use the xor on the results of

the two coins to represent the computation of the cryptographer:

ci = xor(coini, coin(i−1) mod 3).
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XOR >

Exclusive OR

Dining Cryptographer network. Steps of the process (II)

Step 3. If a cryptographer is the payer, then the answer is the opposite

of what is observed. Otherwise, says what is observed. Formally, let

us represent the statement of the ith cryptographer by c′i, then

c′i =

{

ci if the ith cryptographer did not pay the meal

1− ci if the ith cryptographer paid the meal.
(1)
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Dining Cryptographer network. Steps of the process (II)

Step 3. If a cryptographer is the payer, then the answer is the opposite

of what is observed. Otherwise, says what is observed. Formally, let

us represent the statement of the ith cryptographer by c′i, then

c′i =

{

ci if the ith cryptographer did not pay the meal

1− ci if the ith cryptographer paid the meal.
(1)

Step 4. Then, let s be the sum of the values c′i. If the sum is even,

no one paid. If odd, one crytographer paid. The xor function can be

used for this purpose.

xor(c′1, c
′

2, c
′

3)
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XOR >

Exclusive OR

Dining Cryptographer network.

• Graphical representation of the solution

(None of the cryptographers paid (left) and one of them paid (right))

no paid

head=0 head=0
tail=1

tail=1 tail=1

tail=1
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xor(1,1)=0

xor(0,1)=1xor(0,1)=1

no paid no paid no paid

no paid 
paid
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XOR >

Exclusive OR

Dining Cryptographer network. Properties (I)

• This protocol can be generalized to an arbitrary number of

crytographers.
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XOR >

Exclusive OR

Dining Cryptographer network. Properties (I)

• This protocol can be generalized to an arbitrary number of

crytographers.

◦ Protocol. Each crytographer needs a secret bit with each other

participant. Each cryptographer computes the sum modulo two (or

the xor function of all the bits). Then, the ith cryptographer applies

the function above to determine c′i from ci (as above). Then, as in

Step 4 above, let s be the sum of the values c′i. If the sum is even,

no one paid. If odd, one crytographer paid.

Vicenç Torra; Privacy for computations 31 / 46



XOR >

Exclusive OR

Dining Cryptographer network. Properties (II)

• Main problems:

◦ (i) malicious participants make the output useless;

◦ (ii) for n participants we need n2 communications (one for each

pair of participants).

• Only one participant can transmit a bit at a time. Two bits from

different participants would cancel each other and would not be

detected.
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XOR >

Exclusive OR: Unobservability

Unobservability. Undetectability and anonymity against other subjects

• Dining cryptographer networks
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XOR >

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• We can also apply Shamir’s secret sharing approach to this problem
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Homomorphic encryption

Homomorphic encryption
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Homomorphic encryption >

Homomorphic encryption

• Procedure

◦ Encrypt the data

◦ Operate/compute over the encrypted data

(no access to the secret key)

◦ Result is encrypted
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Homomorphic encryption >

Homomorphic encryption

• Homomorphism: map that preserves the operations of the structures

◦ A, B: two algebraic structures of the same type

◦ f : A → B a map between A and B

◦ operations ∗, ◦ on A and B

(A, ∗), (B, ◦)

◦ f(a ∗ b) = f(a) ◦ f(b)

• Example:

◦ (R,+)

◦ (R, ·)

◦ f(a) = ea

◦ Because, ea+b = ea · eb
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Homomorphic encryption >

Homomorphic encryption

• Types of homomorphic encryption

◦ Partially homomorphic encryption: one type of gate (i.e., one

operation), e.g., addition or multiplication.

◦ Somewhat homomorphic encryption schemes: two types of gates

(e.g., addition and multiplication), but only for a subset of circuits

(not all composition of gates are possible).

◦ Fully homomorphic encryption (FHE) allows the evaluation of

arbitrary circuits composed of multiple types of gates of unbounded

depth and is the strongest notion of homomorphic encryption.
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Homomorphic encryption >

Homomorphic encryption

• Partially homomorphic encryption:

◦ ElGamal cryptosystem: modular multiplications

◦ Paillier cryptosystem: additive homomorphic cryptosystem

• Fully homomorphic encryption:

◦ Craig Gentry, Amit Sahai, and Brent Waters (GSW)
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Federated Learning

The case of federated Learning
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Federated Learning >

Federated learning

• Motivation

◦ Symbolic models (decision trees) vs. numerical models (deep learning)
◦ Comparison of different privacy models: local and global
◦ Who we trust? (privacy as a matter of trust)
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Federated Learning >

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification
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Federated Learning >

Federated learning

• Privacy in federated learning and trust

◦ Local privacy: The agent does not trust the system
Local-DP / k-anonymity / privacy for re-identification

◦ Global privacy: Only globally we can really protect individuals
(global) DP

◦ Infrastructure: No one trusts any one
Secure multiparty computation

◦ Data in the cloud
Homomorphic encryption
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Federated Learning >

Federated learning

• Framework based on Particle Swarm Optimization (PSO)

◦ Function to minimize

◦ A set of particles (moving, position, direction) to find optimal

◦ Privacy as a matter of trust

• Privacy at different levels

◦ Symbolic vs. numerical PSO (less precision/voting/masking)

⊲ PSO is numerical, public (no-privacy): directions and positions

⊲ PSO à la FL (i.e., privacy):

discrete directions (set of possible angles) – voting

◦ Local vs. global privacy (individuals/clients vs. server)

⊲ Local: Masking vote before casting it (PRAM)

⊲ Global: Differentially private voting using DP-Random dictatorship1

1V. Torra, Random dictatorship for privacy-preserving social choice, Int. J. of Inf Sec, 19:5 (2020)
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Federated Learning >

Federated learning

• PSO + FL = PAASO: Privacy-aware agent swarm optimization

α=vote(mm(vi))

pG (pG=pG+velocity(v))
v=dpv(α1,...,αs)

Global
privacy

Local privacy

(xi,vi,pi) (f(xi),f(pi))
g (best global position)

PSO

DP solution DP+masking (PAASO
α=vote(vi)
v=dpv(a1,...,as)

pG (pG=pG+velocity(v))

PSO À LA FL
vi=pi − pG
pG (pG=pG+mean(vi))

only directions
global position
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Federated Learning >

Federated learning

• General comments PAASO with 2D problems2

◦ In general, privacy mechanisms do not avoid convergence.

It is slower. (this can be of concern, of course, rounds=information)

◦ In terms of convergence, PSO and FL are best.

◦ Local protection (PRAM) does not have strong effect.

• On the parameters

◦ Number of options in voting, low effect

◦ Number of agents, key factor (50, 100, and 200)

◦ Particular parameters depend on the problem + privacy strategy

2V Torra et al., PSO + FL = PAASO: particle swarm optimization + federated learning =

privacy-aware agent swarm optimization. Int. J. Inf. Sec. (2022)
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Federated Learning >

Federated learning

• An example:

◦ Mean objective function for 20 executions for FL, aDRD, and bDRD.

Function f4, number of voting alternatives kα = 8, 50 agents,

φp = φg = 2.00. pc = 1.0.

◦ (left) ω = 4.00, ωG = 0.005; (right) ω = 0.005, ωG = 0.01

◦ Generalized Rosenbrock’s function (x1, x2 ∈ [−2.0, 2.0]):

f4(x1, x2) = 100 ∗ (x2 − x1 ∗ x1)
2 + (x1 − 1)2
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