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Introduction

Data-driven protection procedures
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Data-driven protection methods

Data protection methods

• Data files / Microdata

• Aggregate data / Tabular data

• Other types of data

◦ graphs for online social networks

◦ search and access logs

◦ documents or index of documents

?
X X’
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Data-driven protection methods
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Protection for microdata (files)
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Data-driven protection methods

Data protection methods for datafiles / microdata

• Perturbative methods

• Non-perturbative methods

• Synthetic data generators
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Data-driven protection methods

Data protection methods for datafiles / microdata

• Perturbative. The original data set is distorted in some way, and

the new data set might contain some erroneous information.
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Data-driven protection methods

Data protection methods for datafiles / microdata

• Perturbative. The original data set is distorted in some way, and

the new data set might contain some erroneous information.

For example, noise is added to an attribute following a N(0, a) for a

given a.

Some combinations of values disappear, and, new combinations

appear in the protected data set.

At the same time, combinations in the protected data set no longer

correspond to the ones in the original data set. This obfuscation

makes disclosure difficult for intruders.
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Data-driven protection methods

Data protection methods for datafiles / microdata

• Non-perturbative. Protection is achieved through replacing an

original value by another one that is not incorrect but less specific.
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Data-driven protection methods

Data protection methods for datafiles / microdata

• Non-perturbative. Protection is achieved through replacing an

original value by another one that is not incorrect but less specific.

For example, we replace a real number by an interval.

In general, non-perturbative methods reduce the level of detail of

the data set. This detail reduction causes different records to have

the same combinations of values, which makes disclosure difficult to

intruders.
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Data-driven protection methods

Data protection methods for datafiles / microdata

• Synthetic Data Generators. In this case, instead of distorting the

original data, new artificial data is generated and used to substitute

the original values.

Formally, synthetic data generators build a data model from the

original data set and, subsequently, a new (protected) data set is

randomly generated constrained by the model computed.
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Data-driven protection methods

Data types

• Numerical data

• Categorical data: ordinal and nominal scale

◦ Ordinal: < (elements can be ordered)

◦ No order predefined

• Longitudinal data and time series

• Location data

• Graphs and social networks

• Logs

◦ search and access logs
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Data-driven protection methods

Data protection methods for datafiles / microdata

• Perturbative methods

◦ Noise addition, Microaggregation, Rank Swapping, . . .

• Non-perturbative methods

◦ Suppression, top and bottom coding, . . .

• Synthetic data generators

◦ IPSO, . . .
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Perturbative Methods
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Rank swapping
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Masking Methods for Microdata: Perturbative

methods

Rank swapping:

• Description with parameter p

◦ Values are ordered in increasing order

We assume them ordered xij ≤ xlj for all 1 ≤ i < l ≤ n

◦ Each ranked value xij is swapped with another ranked value xlj

randomly chosen within a restricted range i < l ≤ i+ p

• In applications, each variable is masked independently

• The larger the p, the larger the information loss, and the lower the

risk
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Example I: Protection

• Four variables with values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• rank swapping with p = 2.
Original file Protected file

a1 a2 a3 a4 a′1 a′2 a′3 a′4
8 9 1 3 10 10 3 5
6 7 10 2 5 5 8 1
10 3 4 1 8 4 2 2
7 1 2 6 9 2 4 4
9 4 6 4 7 3 5 6
2 2 8 8 4 1 10 10
1 10 3 9 3 9 1 7
4 8 7 10 2 6 9 8
5 5 5 5 6 7 6 3
3 6 9 7 1 8 7 9
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Example II: Information Loss and Disclosure Risk

• Information Loss: IL = 39.22
• Disclosure Risk:

◦ DLD = 17.5
◦ PLD = 0.0
◦ ID = 44.81
◦ DR = 0.25DLD + 0.25PLD + 0.5 ID = 26.78

• Score = (IL+DR)/2 = 33

• DR as an average of four scenarios:
DBRL PRL

{V1} 0 0
{V1, V2} 2 0
{V1, V2, V3} 4 0
{V1, V2, V3, V4} 1 0
Average 17.5 0
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Specific record linkage for rank swapping

• Rank swapping record linkage (RS-RL).

◦ If we know p, a given intruder’s (original) record

can only generate at most 2p records
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Specific record linkage for rank swapping

• Rank swapping record linkage (RS-RL).

◦ If we know p, a given intruder’s (original) record

can only generate at most 2p records

◦ For each xij of the intruder,

◦ there exists a computable set B(xij) of 2p masked records, that

can be generated from the original record xi
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Example III: Specific record linkage for rank swapping

• Record (intruder) x2 = (6, 7, 10, 2), p = 2 and first variable x21 = 6
◦ B(x21 = 6) = {(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)}

Original file Protected file B(x2j)
a1 a2 a3 a4 a′1 a′2 a′3 a′4 B(x21)
8 9 1 3 10 10 3 5
6 7 10 2 5 5 8 1 X
10 3 4 1 8 4 2 2 X
7 1 2 6 9 2 4 4
9 4 6 4 7 3 5 6 X
2 2 8 8 4 1 10 10 X
1 10 3 9 3 9 1 7
4 8 7 10 2 6 9 8
5 5 5 5 6 7 6 3 X
3 6 9 7 1 8 7 9
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Specific record linkage for rank swapping

• Rank swapping record linkage (RS-RL).

◦ If we know p, a given intruder’s (original) record

can only generate at most 2p records
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Specific record linkage for rank swapping

• Rank swapping record linkage (RS-RL).

◦ If we know p, a given intruder’s (original) record

can only generate at most 2p records

◦ For each xij of the intruder,

◦ there exists a computable set B(xij) of 2p masked records, that

can be generated from the original record xi

• It should happen that the masked record is in all B(xij)

x′
ℓ ∈ ∩1≤j≤cB(xij).
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Example IV: Specific record linkage for rank swapping

• Record (intruder) x2 = (6, 7, 10, 2), p = 2 and 2nd var. x22 = 7
◦ B(x22 = 7) = {(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)}

Original file Protected file B(x2j)
a1 a2 a3 a4 a′1 a′2 a′3 a′4 B(x21) B(x22)
8 9 1 3 10 10 3 5
6 7 10 2 5 5 8 1 X X
10 3 4 1 8 4 2 2 X
7 1 2 6 9 2 4 4
9 4 6 4 7 3 5 6 X
2 2 8 8 4 1 10 10 X
1 10 3 9 3 9 1 7 X
4 8 7 10 2 6 9 8 X
5 5 5 5 6 7 6 3 X X
3 6 9 7 1 8 7 9 X
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Example V: Specific record linkage for rank swapping

• Similarly:

◦ B(x21 = 6) = {(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)}

◦ B(x22 = 7) = {(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)}

◦ B(x23 = 10) = {(5, 5, 8, 1), (2, 6, 9, 8), (4, 1, 10, 10)}

◦ B(x24 = 2) = {(5, 5, 8, 1), (8, 4, 2, 2), (6, 7, 6, 3), (9, 2, 4, 4)}

• The intersection of these sets ...

◦ is the single record (5, 5, 8, 1).

→ this is the correct link

When several records are present, we apply standard record linkage.
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Example VI: Specific record linkage for rank swapping

• Scores:

◦ With previous record linkage algorithm:

⋆ DR = 0.25DLD + 0.25PLD + 0.5 ID = 26.78

⋆ Score = (IL+DR)/2 = 33

◦ Using only RS-RL:

⋆ DR = 0.5RS-RL + 0.5 ID = 43.655

⋆ Score = (IL+DR)/2 = 41.44
DBRL PRL RS-RL

{V1} 0 0 0
{V1, V2} 2 0 2
{V1, V2, V3} 4 0 7
{V1, V2, V3, V4} 1 0 8
Average 17.5 0 42.5
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Masking Methods for Microdata: Perturbative

methods

Rank swapping: Average of 1-7 variables

• Application to Census and EIA files

• DR = 0.1666 RSLD + 0.1666 DLD + 0.166 PLD + 0.5 ID

• DR = 0.25 DLD + 0.25 PLD + 0.5 ID

Census EIA
IL RSLD DLD PLD ID Score IL RSLD DLD PLD ID Score

rs 2 3.89 77.73 73.52 71.28 93.98 42.63 4.24 43.27 21.71 16.85 93.10 28.06

rs 4 6.54 66.65 58.40 42.92 83.09 36.67 9.67 12.54 10.61 4.79 82.09 21.89
rs 6 10.57 54.65 43.76 22.49 72.12 31.93 14.63 7.69 7.40 2.03 72.21 21.42
rs 8 16.54 41.28 32.13 11.74 62.11 29.16 18.71 6.12 5.98 1.12 63.90 21.61

rs 10 20.18 29.21 23.64 6.03 53.28 26.31 22.87 5.60 5.19 0.69 57.09 22.37
rs 12 23.46 19.87 18.96 3.46 47.17 24.77 26.60 5.39 4.87 0.51 51.64 23.25

rs 14 28.93 16.14 15.63 2.06 43.39 25.86 29.42 5.28 4.55 0.32 47.49 23.91
rs 16 35.16 13.81 13.59 1.29 40.78 27.97 32.38 5.19 4.54 0.23 44.19 24.82

rs 18 32.52 12.21 11.50 0.83 38.90 25.81 34.22 5.20 4.54 0.22 41.42 25.28
rs 20 35.12 10.88 10.87 0.59 37.33 26.55 36.27 5.15 4.36 0.18 38.97 25.87

23 / 90



Outline

Masking Methods for Microdata: Perturbative

methods

Rank swapping: Rank swapping record linkage (RS-RL)

• Discussion

◦ Specific record linkage improve the results of generic record linkage

◦ The implementation detects cases where reidentification is achieved

and detected (i.e., the intruder knows that reidentification has taken

place)

◦ Development of masking methods resilient to specific record linkage

methods:

⋆ rank swapping p-distribution

⋆ rank swapping p-buckets

◦ Microaggregation with individual ranking (univariate) can also be

attacked effectively
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Microaggregation
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Data-driven protection methods

Microaggregation:

• Informal definition. Small clusters are built for the data, and then

each record is replaced by a representative.
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Data-driven protection methods

Microaggregation:

• Informal definition. Small clusters are built for the data, and then

each record is replaced by a representative.

• Disclosure risk and information loss

◦ Low disclosure is ensured requiring k records in each cluster

◦ Low information loss is ensured as clusters are small
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Data-driven protection methods

Microaggregation:

• Operational definition. It is defined in terms of

◦ Partition. Records are partitioned into several clusters, each of

them consisting of at least k records.

◦ Aggregation. For each of the clusters a representative (the

centroid) is computed

◦ Replacement. The original records are replaced by the

representative of the cluster to which they belong to.
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Data-driven protection methods

Microaggregation:

• Graphical representation of the process.
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Data-driven protection methods

Microaggregation:

• Formalization. uij to describe the partition of the records in X.

That is, uij = 1 if record j is assigned to the ith cluster. Let vi be

the representative of the ith cluster, then a general formulation of

microaggregation with g clusters and a given k is as follows:

Minimize SSE =
∑g

i=1

∑n
j=1 uij(d(xj, vi))

2

Subject to
∑g

i=1 uij = 1 for all j = 1, . . . , n

2k ≥
∑n

j=1 uij ≥ k for all i = 1, . . . , g

uij ∈ {0, 1}
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Data-driven protection methods

Microaggregation: Optimality

• Polynomial solution when only one variable

• Optimal solution is NP-hard for more than 2 variables

• Heuristic methods have been developed: MDAV, Projected

microaggregation
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Data-driven protection methods

Microaggregation: Heuristic approaches

• usually follow the operational approach

◦ Build a partition.

◦ Define an aggregation. Mean of the records in the cluster

◦ Replacement.
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Data-driven protection methods

Microaggregation: Multivariate

• When a file has several variables

◦ Microaggregate all the variables at once

◦ Microaggregate sets of variables

◦ Microaggregate one variable at a time: individual ranking
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Data-driven protection methods

Optimal Univariate Microaggregation one variable/individual ranking begin
Let X = (a1 . . . an) be a vector of size n containing all the values for the attribute
being protected. Sort the values of X in ascending order so that if i < j then
ai ≤ aj.
Given A and k, a graph Gk,n is defined as follows.
begin

Define the nodes of G as the elements ai in A plus one additional node g0 (this
node is later needed to apply the Dijkstra algorithm).
For each node gi, add to the graph the directed edges (gi, gj) for all j such
that i+ k ≤ j < i+2k. The edge (gi, gj) means that the values (ai+1, . . . , aj)
might define one of the possible clusters.
The cost of the edge (gi, gj) is defined as the within-group sum of squared

error for such cluster. That is, SSE = Σj
l=i+1(al − ā)2, where ā is the average

record of the cluster.
The optimal univariate microaggregation is defined by the shortest path
algorithm between the nodes g0 and gn. This shortest path can be computed
using the Dijkstra algorithm.
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Data-driven protection methods

• Algorithm General Multivariate Microaggregation

◦ Input: X: original data set, k: integer

◦ Output: X’: protected data set

◦ Π = {π1, . . . , πp} a partition of the variables’ set V = {V1, . . . , Vs}

◦ foreach π ∈ Π

◦ Microaggregate X considering only the variables in π

◦ end foreach
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Data-driven protection methods

Projected Microaggregation
begin
Split the data set X into r sub-data sets {Xi}1≤i≤r, each one with ai attributes of

the n records, such that
r
∑

i=1

ai = A

foreach (Xi ∈ X) do
Apply a projection algorithm to the attributes in Xi, which results in an
univariate vector zi with n components (one for each record)
Sort the components of zi in increasing order
Apply to the sorted vector zi the following variant of the univariate optimal
microaggregation method: use the algorithm defining the cost of the edges
〈zi,s, zi,t〉, with s < t, as the within-group sum of square error for the ai-
dimensional cluster in Xi which contains the original attributes of the records
whose projected values are in the set {zi,s, zi,s+1, . . . , zi,t}
For each cluster resulting from the previous step, compute the vi-dimensional
centroid and replace all the records in the cluster by the centroid
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Data-driven protection methods

MDAV microaggregation
begin
C = ∅
while |X| ≥ 3k do

x̄ = the average record of all records in X

xr = the most distant record from x̄

xs = the most distant record from xr

Cr = cluster around xr (with xr and the k − 1 closest records to xr)
Cs = cluster around xs (with xs and the k − 1 closest records to xs)

Remove records in Cr and Cs from data set X
C = C ∪ {Cr, Cs}

if |X| ≥ 2k then
x̄ = the average record of all records in X

xr = the most distant record from x̄

Cr = cluster around xr (with xr and the k − 1 closest records to xr)
Cs = X \ Cr (form another cluster with the rest of records)

C = C ∪ {Cr, Cs}

else
C = C ∪ {X}
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Data-driven protection methods

Microaggregation Discussion and summary (I)

• The larger the k, the lower the risk, the larger the information loss

• Microaggregation is related to k-anonymity:

all variables microaggregated together imply k-anonymity

• It is easy to define microaggregation for other types of data

distance, and aggregation method (plurality rule - most frequent

value)
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Data-driven protection methods

Microaggregation Discussion and summary (II)

• Correlated variables together or not?

Most usually correlated variables are microaggregated together to

keep correlations in the protected data set.

Microaggregation of two unrealistic datasets give worse results

grouping correlated attributes than not grouping them.

Not clear conclusion with real data.
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Additive Noise
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Data-driven protection methods

Additive Noise:

• Description:

◦ This method protects data adding noise into the original file. That

is,

X ′ = X + ǫ,

where ǫ is the noise.

◦ The simplest approach is to require ǫ to be such that E(ǫ) = 0 and

V ar(ǫ) = kV ar(X) for a given constant k.
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Data-driven protection methods

Additive Noise:

• Description:

◦ This method protects data adding noise into the original file. That

is,

X ′ = X + ǫ,

where ǫ is the noise.

◦ The simplest approach is to require ǫ to be such that E(ǫ) = 0 and

V ar(ǫ) = kV ar(X) for a given constant k.
• Properties:

◦ It makes no assumptions about the range of possible values for Vi (which may
be infinite).

◦ The noise added is typically continuous and with mean zero, which suits
continuous original data well.

◦ No exact matching is possible with external files.
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Data-driven protection methods

Additive Noise: Uncorrelated noise

• For variables Vi and Vj, noise is such that Cov(ǫi, ǫj) = 0 for i 6= j.

◦ Uncorrelated additive noise preserves means and covariances.

E(X ′) = E(X) + E(ǫ) = E(X)

Cov(X ′
i,X

′
j) = Cov(Xi,Xj) for i 6= j

V ar(X ′) = V ar(X) + kV ar(X) = (1 + k)V ar(X)

ρX′
i
,X′

j
=

Cov(X ′
i,X

′
j)

√

V ar(X ′
i)V ar(X ′

j)
=

Cov(Xi,Xj)

(1 + k)
√

V ar(Xi)V ar(Xj)

=
1

1 + k
ρXi,Xj
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Data-driven protection methods

Additive Noise: Correlated noise

• ǫ follows a normal distribution N(0, kΣ) where Σ is the covariance
matrix of X.
◦ It preserves correlation coefficients and means.

E(X ′) = E(X) + E(ǫ) = E(X)

Cov(X ′
i, X

′
j) = (1 + k)Cov(Xi,Xj) for i 6= j

V ar(X ′) = V ar(X) + kV ar(X) = (1 + k)V ar(X)

ρX′
i
,X′

j
=

Cov(X ′
i,X

′
j)

√

V ar(X ′
i)V ar(X ′

j)
=

(1 + k)Cov(Xi, Xj)

(1 + k)
√

V ar(Xi)V ar(Xj)

= ρXi,Xj
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Masking Methods for Microdata: Perturbative

methods

Data Distortion by Probability Distribution: (synthetic)

• Description:

1. Identification of the underlying density function and estimation of

the parameters.

◦ Goodness of fit: Kolmogorov-Smirnov test.

◦ Example set of predetermined density functions: Poisson, exponential,

normal, gamma, Weibull, log-normal, uniform, triangular, chi-square.

2. Generation of distorted series for each confidential variable.

3. Mapping and replacement of the distorted series in place of the

confidential series.

◦ Only needed if the distorted variables are to be used jointly with

other non-distorted variables.
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Masking Methods for Microdata: Perturbative

methods

Resampling:

• Description:

1. Take with replacement t independent samples X1, · · · ,Xt of size

n of the values of V .

2. Independently rank each sample (using the same ranking criterion

for all samples).

3. For j = 1 to n, compute the j-th value v′j of the masked variable

V ′ as the average of the j-th ranked values in X1, · · · ,Xt.
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Masking Methods for Microdata: Perturbative

methods

Lossy Compression:

• Description:

1. The idea is to regard a numerical microdata file as an image

◦ records being rows

◦ variables being columns

◦ values being pixels

2. Lossy compression (e.g. JPEG) is used on the image

◦ Depending on the lossy compression algorithm used,

appropriate mappings between variable ranges and color scales

will be needed

3. The compressed image is interpreted as a masked microdata file.

• Example: Description of Lossy Compression using JPEG 80% for a

file with 8 records and 8 variables.
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Masking Methods for Microdata: Perturbative

methods

Multiple imputation: (synthetic)

• Description:

◦ Relies on releasing simulated continuous microdata created by

multiple imputation techniques.

⋆ A way to perform multiple imputation is on a variable-by-variable

basis (using a randomized regression – with normal errors) to

impute missing values of each continuous variable
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Masking Methods for Microdata: Perturbative

methods

Camouflage:

• Description:

◦ To give unlimited, correct numerical responses to ad-hoc queries to

a database while not compromising confidential numerical data.

⋆ Camouflages the sensitive record (exact answer) providing an

interval answer.

• Properties:

◦ No probabilistic assumptions are made

◦ Optimization techniques are used to camouflage.

◦ The information loss is the transformation of a point answer into

an interval answer.
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Masking Methods for Microdata: Perturbative

methods

PRAM: The Post-Randomization Method

• Description:

◦ The scores on some categorical variables for certain records in the

original file are changed to a different score.

⋆ according to a Markov matrix

• Properties:

◦ The Markov approach makes PRAM very general: it encompasses

noise addition, data suppression and data recoding.

◦ PRAM information loss and disclosure risk largely depend on the

choice of the Markov matrix.
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Masking Methods for Microdata: Perturbative

methods

Rounding:

• Description:

◦ Determination of a set of rounding points p1, · · · , pr
◦ Rounded values are chosen among the set of rounding points.

• Properties:

◦ Univariate rounding and multivariate rounding

◦ Appropriate only for continuous data
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Masking Methods for Microdata: Perturbative

methods

Rounding:

• Example (for a continuous variable V )

◦ Take rounding points as multiples of a base value b:

⋆ pi = b · i for i = 1, · · · , r

◦ Define the set of attraction for each rounding point:

⋆ for pi for i = 2, · · · , r − 1, as the interval [pi − b/2, pi + b/2),

⋆ for p1 and pr, respectively, the sets of attraction are [0, p1 + b/2)

and [pr − b/2, Vmax], where Vmax is the largest possible value for

variable V.

◦ An original value v of V is replaced with the rounding point

corresponding to the set of attraction where v lies.
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Masking Methods for Microdata: Nonperturbative

methods

Sampling:

• Description

◦ Instead of publishing V : O → D(V1)×D(V2)× · · · ×D(Vm)

◦ Publish: V′ : S → D(V1)×D(V2)× · · · ×D(Vm)

◦ where:

⋆ S ⊂ O is a sample of the original set of records

⋆ V
′ stands for the original function V restricted to S.

• Properties:

◦ Suitable for categorical microdata

◦ Its adequacy for continuous microdata is less clear

• Example: Description of a real-world application of sampling.
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Masking Methods for Microdata: Nonperturbative

methods

Global recoding:

• Procedure for categorical variables

◦ Take a categorical variable Vi

◦ Several categories are combined to form new categories

◦ A new V ′
i with |D(V ′

i )| < |D(Vi)| where | · | is the cardinality

operator.

• Procedure for continuous variables

◦ Take a continuous variable Vi

◦ Discretize the D(V ′
i )

◦ V ′
i which is a discretized version of Vi
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Masking Methods for Microdata: Nonperturbative

methods

Global recoding:

• Properties:

◦ More appropriate for categorical microdata

◦ High information loss for numerical variables

• Example:

◦ consider a record with “Marital status = Widow/er” and “Age =

17”

◦ global recoding applied to “Marital status” to create a broader

category: “Widow/er or divorced”

◦ then, the probability of the above record being unique would

diminish
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Masking Methods for Microdata: Nonperturbative

methods

Top and bottom coding:

• Description

◦ A special case of global recoding which can be used on variables

that can be ranked

◦ Top coding: Top values (above a certain threshold) are lumped

together to form a new category

◦ Bottom coding: Bottom values (below a certain threshold) are

lumped together to form a new category

• Properties:

◦ As for global recoding
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Masking Methods for Microdata: Nonperturbative

methods

Local suppression:

• Description

◦ Certain values of individual variables are suppressed

⋆ to increase the set of records agreeing on a combination of values

• Properties:

◦ Oriented to categorical variables.

◦ Methods to combine local suppression and global recoding

implemented in µ-Argus SDC package (Hundepool et al. 1998,

De Waal and Willenborg 1995)

57 / 90



Outline

Masking Methods for Microdata: Nonperturbative

methods

Generalization for k-anonymity: Mondrian:
begin
if not(partitionable(X)) then

return {γ(x) = {x → summary(X)}|x ∈ X}

else
Vi = select variable from X
i0 = select a value from domain of Vi in X
lhs = {x ∈ X |Vi(x) < i0}
rhs = {x ∈ X |Vi(x) > i0}
Distribute records in {x ∈ X |Vi(x) = i0} between lhs and rhs
return Mondrian(lhs, k) ∪ Mondrian(rhs, k)
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Outline

Synthetic Data Generators

Synthetic Data Generators:

→ seldom pay attention to disclosure risk.

“Since released microdata are synthetic, no real re-identification

is possible”.

However, unrealistic assumption, if synthetic data generation is performed

on the quasi-identifier attributes. Re-identification can indeed happen if a

snooper is able to link an external identified data source with some record in the

released dataset using the quasi-identifier attributes: coming up with a correct pair

(identifier, confidential attributes) is indeed a re-identification.
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Synthetic Data Generators: The IPSO family

IPSO-A:

• X and Y two sets of attributes

• X: confidential outcome attributes

• Y : quasi-identifier attributes.

• Then, X are taken as independent and Y as dependent attributes.

• A multiple regression of Y on X is computed and fitted Y ′
A attributes

are computed. Finally, attributes X and Y ′
A are released by IPSO-A

in place of X and Y .

In the above setting, conditional on the specific confidential attributes

xi, the quasi-identifier attributes Yi are assumed to follow a multivariate

normal distribution with covariance matrix Σ = {σjk} and a mean

vector xiB, where B is the matrix of regression coefficients.
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Synthetic Data Generators: The IPSO family

IPSO B and C:

Let B̂ and Σ̂ be the maximum likelihood estimates of B and Σ derived

from the complete dataset (y, x). If a user fits a multiple regression

model to (y′A, x), she will get estimates B̂A and Σ̂A which, in general,

are different from the estimates B̂ and Σ̂ obtained when fitting the

model to the original data (y, x).

IPSO-B: Modifies y′A into y′B in such a way that the estimate B̂B

obtained by multiple linear regression from (y′B, x) satisfies B̂B = B̂.

IPSO-C: A more ambitious goal is to come up with a data matrix y′C
such that, when a multivariate multiple regression model is fitted to

(y′C, x), both sufficient statistics B̂ and Σ̂ obtained on the original

data (y, x) are preserved.
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Synthetic Data Generators: The IPSO family

Experiments for IPSO-A,B,C:

• EIA dataset (4092 records, 15 attributes); Variables used:
Quasi-identifier in external A Quasi-identifier in released B

v1 v1A
v1, v7, v8 v1A, v7A, v8A

v1, v2, v7, v8, v9 v1A, v2A, v7A, v8A, v9A
• Results:

DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL

14 9 9 9 14 8
16 15 18 9 16 16
65 121 3206 143 63 159

14 9 9 9 14 8
17 15 18 8 17 16
65 120 3194 135 62 159

11 11 11 11 11 10
6 6 14 8 6 5
53 53 773 46 54 93
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Information Loss Measures
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Information Loss Measures

Information Loss: information loss depends on the data uses to be

supported by the masked data.

• Let X be the original data set on the domain D, and let X ′ be a

protected version of the same data set. Then, for a given data analysis

that returns results in a certain domain D′ (i.e., f : D → D′), the

information loss of f for data sets X and X ′ is defined by

ILf(X,X ′) = divergence(f(X), f(X ′)),

where divergence is a way to compare two elements of D′.

65 / 90



Outline

Information Loss Measures

Information Loss:

• X,X ′,D as above, f : D → D′), the information loss of f for data

sets X and X ′ is defined by

ILf(X,X ′) = divergence(f(X), f(X ′)),

where divergence is a way to compare two elements of D′.

Reasonable to require:

• divergence(X,X) = 0 for all X ∈ D

• divergence(X,Y ) ≥ 0 for all X,Y ∈ D′

• divergence(X,Y ) = divergence(Y,X)
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Information Loss Measures

Information Loss:

• X,X ′,D as above, f : D → D′), the information loss of f for data

sets X and X ′ is defined by

ILf(X,X ′) = divergence(f(X), f(X ′)),

where divergence is a way to compare two elements of D′.

Reasonable to require:

• divergence(X,X) = 0 for all X ∈ D

• divergence(X,Y ) ≥ 0 for all X,Y ∈ D′

• divergence(X,Y ) = divergence(Y,X)

→ asymetric divergence when e.g. to avoid false positives

malfunctioning sensor causes huge damage, undetection no.
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Information Loss Measures

Information Loss:

• Generic information loss measures

• Specific information loss measures
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Information Loss Measures

Information Loss: Generic information loss measures

• A microdata set is analytically valid (Winkler, 1998):

1. Means and covariances on a small set of subdomains

2. Marginal values for a few tabulations of the data

3. At least one distributional characteristic

• A microdata file is analytically interesting if six variables on important

subdomains are provided that can be validly analyzed.
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Information Loss Measures

• Complementary ways to assess the preservation of the structure of the

original data set:

1. Compare the data in the original and the masked data sets

◦ The more similar the SDC method to the identity function, the less

impact

2. Compare some statistics computed on the original and the masked

data sets

◦ Little information loss should translate to little differences between

the statistics

3. Analyze the behavior of the particular SDC method used
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Information Loss Measures

Generic Information loss measures:

• Continuous Data

• Categorical Data
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Information Loss Measures: Continuous Data

Characterization of the information in the dataset

• Assume a microdata set X (X ′ be the masked microdata set) where:
◦ n individuals (records) I1, I2, · · · , In
◦ p continuous variables Z1, Z2, · · · , Zp

• The following tools are useful to characterize the information

contained in the data set:

◦ Covariance matrices V (on X) and V ′ (on X ′)

◦ Correlation matrices R, R′

◦ Correlation matrices RF , RF ′ between variables and PCA factors

PC1, · · · , PCp

◦ Commonality vectors C, C ′ between variables and the first principal

component (Commonality: the percent of each variable that is explained by

PC1 (or PCi))

◦ Factor score coefficient matrices F and F ′

(factors that should multiply each variable in X to obtain its projection on each

principal component)
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Information Loss Measures: Continuous Data

Matrix divergence

1. Mean square error:

Sum of squared componentwise differences between pairs of matrices, divided by

the number of cells

2. Mean absolute error:

Sum of absolute componentwise differences between pairs of matrices, divided by

the number of cells

3. Mean variation:

Sum of absolute percent variation of components in the matrix computed on

masked data with respect to components in the matrix computed on original data,

divided by the number of cells.

72 / 90



Outline

Information Loss Measures: Continuous Data

Mean square error Mean abs. error Mean variation
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Information Loss Measures: Categorical Data

Alternative definitions of information loss measures:

• Direct comparison of categorical values

• Comparison of contingency tables

• Entropy-based measures
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Information Loss Measures: Categorical Data

Direct comparison of categorical values:

Comparison of matrices X and X’ requires the definition of a distance.

For nominal variables:

dV (c, c
′) =

{

0 when c = c′

1 when c 6= c′

For ordinal variables (≤V be the total order):

dV (c, c
′) =

|{c′′ : min(c, c′) ≤V c′′ ≤V max(c, c′)}|

|D(V )|
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Information Loss Measures: Categorical Data

Comparison of contingency tables:

F original data set, G masked data set

t-dimensional contingency tables (t ≤ K)

xfile
subscripts: entry of the contingency table of file at position subscripts

CTBIL(F,G;W,K) =
∑

{Vj1 · · ·Vjt} ⊆ W

|{Vj1 · · ·Vjt}| ≤ K

∑

i1···it

|xF
i1···it

−xG
i1···it

|
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Information Loss Measures: Categorical Data

Entropy-based measures:

• Entropy is an information-theoretic measure, but can be used in SDC if the masking
process is modeled as the noise that would be added to the original data set in the
event of it being transmitted over a noisy channel.

• For PRAM: Assume PV,V ′ = {p(V ′ = j|V = i)} the PRAM matrix

Procedure:

• The conditional uncertainty of V given that V ′ = j is:

H(V |V ′ = j) = −
n
∑

i=1

p(V = i|V ′ = j)log p(V = i|V ′ = j)

• Entropy-based information loss measure (EBIL):

EBIL(PV,V ′, G) =
∑

r∈G

H(V |V ′ = jr)

where jr is the value taken by V ′ in record r. Note H(V |V ′ = jr) do not depend
on the value in V
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Information Loss Measures: Categorical Data

An alternative Information Loss Measure:

• EBIL a function of the masked data set but does not depend on the original data
set.

• Assume that, in a household survey file, variable V contains the town where the
household is located. Now consider that V is masked into a new variable V’
where the town has been replaced by the state. Locations like “New York City”
and “Albany” will be recoded into “NY”. Living in Albany is more specific and
identifying (in the sense of being less anonymous) than living in New York City. The
information loss measure should somehow reflect that there is more information loss
when a household in “Albany” becomes a household in “New York State” than
when a household in “New York City” becomes a household in “New York State”

• Note that: P (V = “Albany′′|V ′ = NY ) < P (V = “NewY orkCity′′|V ′ = NY )
• According to the USBC American FactFinder, the population of New York State
in 2000 was 17, 990, 455, the population of New York City was 7, 322, 564
and the population of Albany was 101, 082. Thus, the above probabilities
are P (V = “Albany′′|V ′ = NY ) = 101, 082/17, 990, 455 = 0.05 and P (V =
“NewY orkCity′′|V ′ = NY ) = 7, 322, 564/17, 990, 455 = 0.407.
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Information Loss Measures: Categorical Data

An alternative Information Loss Measure:

• The smaller the conditional probability P (V = i|V ′ = j), the larger

the inf. loss.
• Information loss as a function of three elements:

(i) conditional probability; (ii) original category i; (iii) masked category j

• Per-record information loss when V = i is masked as V ′ = j can be

defined as:

PRIL(PV, V ′, i, j) = −logP (V = i|V ′ = j)

• The information loss for the entire data sets F,G is

IL(PV, V ′, F,G) =
∑

r∈G

PRIL(PV,V ′, ir, jr)

where ir is the value taken by V in record r of F (similarly, jr in G)
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Information Loss Measures

Specific Information Loss Measure:

• Types of measures

• Do generic measures approximate specific ones?
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Information Loss Measures

Specific Information Loss Measure: An example

• data use: clustering cl with parameter c

• divergence: Rand, Jaccard, Adjsted Rand Index, Wallace, Mantaras,

. . .

ILRand,cl(X,X ′) = 1−Rand(clc(X), clc(X
′))

ILMantaras,cl(X,X ′) = Mantaras(clc(X), clc(X
′))
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Information Loss Measures

Specific Information Loss Measure: Some results:

• Census data set microaggregated (3 vars at a time, different k),
k-means with c=15. Cols 2-6: Indices/distance; col 7: averaged
probabilistic information loss measure (aPIL); (c) last row is the
correlation of the measures and distance with respect to the aPIL.

Rand Jaccard Adjusted Rand Wallace Mantaras aPIL
Mic3vars.k3 0.943 0.454 0.594 0.625 0.416 15.189
Mic3vars.k4 0.943 0.464 0.602 0.633 0.425 19.325
Mic3vars.k5 0.936 0.406 0.542 0.577 0.472 22.724
Mic3vars.k6 0.936 0.408 0.545 0.580 0.473 25.760
Mic3vars.k7 0.929 0.367 0.499 0.537 0.500 28.750
Mic3vars.k8 0.933 0.402 0.538 0.574 0.479 31.185
Mic3vars.k9 0.925 0.359 0.488 0.528 0.513 33.883
Correlation -0.930 -0.882 -0.887 -0.882 0.931 1.000
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Information Loss Measures

Specific Information Loss Measure: Some results:

• Census data set. Correlations same file.

Index / Distance Correlation Correlation

(a) all (b) Microaggregation

(215 files) (162 files)

Rand Index -0.79281 -0.86099

Jaccard Index -0.89094 -0.94859

Adjusted Rand Index -0.91609 -0.96114

Wallace Index -0.92559 -0.97593

Mantaras Distance 0.91617 0.97216
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Information Loss Measures

Specific Information Loss Measure: Some results:

• Census data set. Convergence problems
• Census dataset with additive noise. Fuzzy clustering with c = 10.
OF for the original file 2851 in the first execution (left), 2829 in the
second. d1 distance between cluster centers, d2 distance between
membership values.

Noise d1 d2 O.F. d1 d2 O.F.
0.0 3.21 40.73 2826.0 3.93 91.3 2826
0.1 3.21 40.67 2827.0 3.97 91.45 2827
0.2 3.17 40.86 2829.0 3.94 90.89 2829
0.4 0.32 0.92 2859.0 4.07 93.05 2835
0.6 3.28 42.09 2844.0 6.92 113.76 2867
0.8 3.48 43.48 2862.0 4.19 91.53 2862
1.0 3.55 48.87 2886.0 4.37 99.33 2886
1.2 2.24 55.56 2908.0 2.75 68.04 2903
1.4 1.44 18.35 2935.0 4.53 99.53 2918
1.6 2.27 36.83 2978.0 6.98 103.84 2978
1.8 2.71 45.59 3006.0 4.68 99.20 2989
2.0 4.24 96.87 3028.0 2.70 31.17 3013
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Visualization
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Visualization

Trade-off:

• Information loss and disclosure risk are usually in conflict

• R-U maps

◦ Graphical representation

• Score

◦ R-U maps
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Visualization

Trade-off: Score

Score(X,X ′) =
IL(X,X ′) +DR(X,X ′)

2
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Summary
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Visualization

Data privacy

• Masking methods

• Information loss

• Disclosure risk

• Visualization
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