Result-driven approaches

Vicenç Torra

November, 2022

Umeå University, Sweden

Respondent and owner privacy

- Data-driven or general-purpose
- Computation-driven or specific-purpose
- Result-driven (Ch. 3.5)

Data Privacy

Result-driven

- Prevent data mining procedures infer some knowledge that is valuable for the database owner
- Other uses: avoid discriminatory knowledge inferred from databases

Data Privacy

Result-driven

- Formalization. Database \mathcal{D} , A data mining algorithm, with parameters Θ is said to have ability to derive knowledge K from \mathcal{D} if and only if K is obtained from the output of the algorithm. Notation: $(A, \mathcal{D}, \Theta) \vdash K$.
- Any knowledge K such that $(A, \mathcal{D}, \Theta) \vdash K$ is in $KSet_{\mathcal{D}}$.

Result-driven

- Formalization. Database \mathcal{D} , A data mining algorithm, with parameters Θ is said to have ability to derive knowledge K from \mathcal{D} if and only if K is obtained from the output of the algorithm. Notation: $(A, \mathcal{D}, \Theta) \vdash K$.
- Any knowledge K such that $(A, \mathcal{D}, \Theta) \vdash K$ is in $KSet_{\mathcal{D}}$.

Definition. \mathcal{D} a database, $\mathcal{K} = \{K_1, \ldots, K_n\}$ sensitive knowledge to be hidden. The problem of hiding knowledge \mathcal{K} from \mathcal{D} consists on transforming \mathcal{D} into a database \mathcal{D}' such that

1. $\mathcal{K} \cap KSet_{\mathcal{D}'} = \emptyset$

2. the information loss from $\mathcal D$ to $\mathcal D'$ is minimal

Result-driven for association rules mining: Association rule hiding

• Recall that rules are mined when

 $Support(R) \geq thr - s$

and

 $Confidence(R) \ge thr - c$

for certain thresholds thr - s and thr - c.

Result-driven for association rules mining: Association rule hiding

• Recall that rules are mined when

 $Support(R) \geq thr - s$

and

 $Confidence(R) \ge thr - c$

for certain thresholds thr - s and thr - c.

Two approaches:

- To reduce the support of the rule.
- To reduce the confidence of the rule.

Result-driven for association rules mining: example

• A formalization. \mathcal{D} a database; thr - s threshold. Let $\mathcal{K} = \{K_1, \ldots, K_n\}$ sensitive itemsets, \mathcal{A} non-sensitive itemsets.

Result-driven for association rules mining: example

- A formalization. \mathcal{D} a database; thr s threshold. Let $\mathcal{K} = \{K_1, \ldots, K_n\}$ sensitive itemsets, \mathcal{A} non-sensitive itemsets.
- \bullet Transform $\mathcal{D} \to \mathcal{D}'$ such that
 - 1. $Support_{\mathcal{D}'}(K) < thr s$ for all $K_i \in \mathcal{K}$
 - 2. The number of itemsets K in \mathcal{A} such that $Support_{\mathcal{D}'}(K) < thr s$ is minimized.

This problem is NP-hard (Atallah et al., 1999)

Because of this: heuristic approaches

• Algorithm.

While HI is not hidden do HI' = HI; While |HI'| > 2 do P = subsets of HI with cardinality |HI'| - 1; HI'= $\arg \max_{hi \in P} Support(hi)$; Ts = transaction in T supporting HI that affects the mininum number of itemsets of cardinality 2; Set HI' = 0 in Ts; D

Propagate results forward;

• Algorithm.

While HI is not hidden do

- HI' = HI;
- While |HI'| > 2 do
 - P = subsets of HI with cardinality |HI'| 1;

 $HI' = \arg \max_{hi \in P} Support(hi);$

Ts = transaction in T supporting HI that affects the mininum number of itemsets of cardinality 2; Set HI' = 0 in Ts;

Propagate results forward;

- The algorithm does not cause false positives,
- only false negatives (rules no longer inferred)

• **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.

• **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.

Transaction	ltems
number	
T1	a, b, c, d
T2	a, b, c
Т3	a, c, d

• **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.

Transaction	ltems
number	
T1	a, b, c, d
Τ2	a, b, c
Т3	a, c, d

• Subsets of HI with cardinality |HI| - 1: $\{a, b\}$, $\{b, c\}$, $\{a, c\}$.

• **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.

Transaction	ltems
number	
T1	a, b, c, d
T2	a, b, c
Т3	a, c, d

• Subsets of HI with cardinality |HI| - 1: $\{a, b\}$, $\{b, c\}$, $\{a, c\}$.

 $\circ \ Support(\{a,b\}) = Support(\{b,c\}) = 2, \text{ and } Support(\{a,c\}) = 3$

• **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.

Transaction	ltems
number	
T1	a, b, c, d
T2	a, b, c
Т3	a, c, d

• Subsets of HI with cardinality |HI| - 1: $\{a, b\}$, $\{b, c\}$, $\{a, c\}$.

 $\circ \ Support(\{a,b\}) = Support(\{b,c\}) = 2, \text{ and } Support(\{a,c\}) = 3 \\ \rightarrow \text{We select } HI' = \{a,c\}.$

• **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.

Transaction	ltems
number	
Τ1	a, b, c, d
T2	a, b, c
Т3	a, c, d

• Subsets of HI with cardinality |HI| - 1: $\{a, b\}$, $\{b, c\}$, $\{a, c\}$.

 $\circ \ Support(\{a, b\}) = Support(\{b, c\}) = 2, \text{ and } Support(\{a, c\}) = 3$ $\rightarrow \text{We select } HI' = \{a, c\}.$

• Set of transactions in T that support HI (and HI'): $\{T1, T2\}$.

• **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.

Transaction	ltems
number	
T1	a, b, c, d
T2	a, b, c
Т3	a, c, d

• Subsets of HI with cardinality |HI| - 1: $\{a, b\}$, $\{b, c\}$, $\{a, c\}$.

- $\circ \ Support(\{a,b\}) = Support(\{b,c\}) = 2, \text{ and } Support(\{a,c\}) = 3$ $\rightarrow \text{We select } HI' = \{a,c\}.$
- Set of transactions in T that support HI (and HI'): $\{T1, T2\}$.
- $\circ Ts$ transaction in $\{T1, T2\}$ that affects the minimum number of itemsets of cardinality 2: T2 affects less itemsets than T1.

- **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.
- Remove one of the items in $HI' = \{a, c\}$ that are in T2:

- **Example.** Computation of the algorithm to hide $HI = \{a, b, c\}$.
- Remove one of the items in HI' = {a, c} that are in T2:
 Both have the same support, we select one of them at random.
- Propagate the results forward: recompute supports

Outline