Data-driven: Tabular data protection

Vicenç Torra

November, 2022

Department of Computing Sciences, Umeå University

Outline

- 1. Protection for tabular data
- 2. Summary

Protection for tabular data

- Aggregates of data with respect to a few variables.
 - \circ Aggregates of data can lead to disclosure

- **Example.** File A with records about profession, town and salaries.
 - $\circ P_1, M_1, 160$
 - $\circ P_1, M_1, 200$
 - $\circ P_2, M_1, 40$
 - $\circ P_2, M_1, 60$
 - $\circ P_2, M_1, 75$

- **Example.** File A with records about profession, town and salaries.
 - $\circ P_1, M_1, 160$
 - $\circ P_1, M_1, 200$
 - $\circ P_2, M_1, 40$
 - $\circ P_2, M_1, 60$
 - $\circ P_2, M_1, 75$
- \bullet From A, we build a two-dimensional aggregated table with frequencies, another with salaries.
 - $\circ \ T_f: P \times M \to \mathbb{N}$
 - $\circ \ T_s: P \times M \to \mathbb{N}$
 - $\circ\,$ Tables have subtotals, and totals.

Data protection methods for aggregates / tabular data

• **Example.** Aggregate table of frequencies. Ex. (Castro, 2012)

	P_1	P_2	P_3	P_4	P_5	Total
M_1	2	15	30	20	10	77
M_2	72	20	1	30	10	133
M_3	38	38	15	40	5	136
TOTAL	112	73	46	90	25	346

Data protection methods for aggregates / tabular data

• **Example.** Aggregate table of magnitudes

-		00	0	0			
		P_1			P_4		
•	M_1	360	450	720	400	360	2290
	M_2	1440	540	22	570	320	2892
_	M_3	722	1178	375	400 570 800	363	3438
-	TOTAL	2522	2168	1117	1770	1043	8620

- Disclosure risk ?
 - \circ Aggregated data does not avoid disclosure

- Disclosure problems
 - **External attack.** Combining the informations of the two tables the adversary is able to infer some sensitive information. The single person working as P_3 in town M_2 has a salary of 22.

- Disclosure problems
 - Internal attack. A person whose data is in the database is able to use the information of the tables to infer some sensitive information about other individuals. A person with work P_1 and living in M_1 attacks the data using his own salary. For example, if there are only two doctors in a town, each one will be able to find the salary of the other.

- Disclosure problems
 - Internal attack with dominance. Internal attack of a large contributor. E.g., we have 5 people (P_5, M_3) . If one of them has a salary of 350, then it is clear that the salary of the other four is at most 13.

- On the disclosure and the public information
 - The frequency of a cell may be obtained from public information.
 No need of being it published. E.g., there is a single doctor in a town, only a few teachers, or companies in a sector (for finacial data).

- Privacy model / disclosure risk measure
- Data protection mechanism
- Information loss

• Rule (n, k)-dominance. A cell is sensitive when n contributions represent more than the k fraction of the total. That is, the cell is sentitive when

$$\frac{\sum_{i=1}^{n} c_{\sigma(i)}}{\sum_{i=1}^{t} c_i} > k$$

where $\{\sigma(1), ..., \sigma(t)\}$ is a permutation of $\{1, ..., t\}$ such that $c_{\sigma(i-1)} \ge c_{\sigma(i)}$ for all $i = \{2, ..., t\}$ (i.e., $c_{\sigma(i)}$ is the *i*th largest element in the collection $c_1, ..., c_t$).

This rule is used with n = 1 or n = 2 and k > 0.6.

• Example. (1, 50) means that there is one individual that contributes to more than 50% of the content. In cell (P_5, M_3) , 5 people and one of them has a salary of 350, over 363. As 350/363 > 0.5: Cell is sensitive

					P_5	
M_1	360	450	720	400	360	2290
M_2	1440	540	22	570	320	2892
					360 320 363	
TOTAL	2522	2168	1117	1770	1043	8620

- Rule pq. This rule is also known as the prior/posterior rule. It is based on two positive parameters p and q with p < q. Prior to the publication of the table, any intruder can estimate the contribution of contributors within the q percent. Then, a cell is considered sensitive if an intruder on the light of the released table can estimate the contribution of a contributor within p percent.
- Rule p%. This rule can be seen as a special case of the previous rule when no prior knowledge is assumed on any cell. Because of that, it can be seen as equivalent to the previous rule with q = 100.

- **Rule** pq. This rule is also known as the prior/posterior rule. It is based on two positive parameters p and q with p < q. Prior to the publication of the table, any intruder can estimate the contribution of contributors within the q percent. Then, a cell is considered sensitive if an intruder on the light of the released table can estimate the contribution of a contributor within p percent.
- Rule p%. This rule can be seen as a special case of the previous rule when no prior knowledge is assumed on any cell. Because of that, it can be seen as equivalent to the previous rule with q = 100.
- **Example.** if contributions to (P_5, M_3) are 350, 4, 3, 3, 3, this as $363 350 4 < 0.5 \cdot 363$, the rule implies: it is sensitive.

- Protection of a tabular data
 - Perturbative. values are modified
 - * Post-tabular. Noise added after table preparation
 - Rounding
 - Controlled tabular adjustment (CTA). Replacing a table by another that is *similar*
 - * Pre-tabular. Noise added before table preparation
 - Non-perturbative. cell suppression

- Protection of a tabular data: cell suppression
- Primary suppression not enough:

	P_1	P_2	P_3	P_4	P_5	Total
M_1	360	450	720	400	360	2290
M_2	1440	540	22	570	320	2892
M_3	722	1178	375	800	363	3438
TOTAL	2522	2168	1117	1770	1043	8620

• Secondary suppressions required: (Primary suppr. (PS), Secondary suppr. (SS)

	P_1	P_2	P_3	P_4	P_5	Total
M_1	360	450	SS	400	SS	2290
M_2	1440	540	PS	570	SS	2892
M_3	722	1178	375	800	363	3438
TOTAL	2522	2168	1117	1770	1043	8620

• Solutions built using optimization

- Protection of a tabular data: cell suppression
 - Decide which cells to suppress
 - Given a set of sensitive cells
 - Estimated values for suppressed cells should be outside a given interval
 - (upper and lower protection levels;
 - estimation based on non suppressed values + linear relationships)
 - \Rightarrow Problem formulated as an optimization problem

• Protection of a tabular data: cell suppression

 $\min \qquad \sum_{i=1}^n w_i y_i$

subject to

$$Ad^{l} = 0$$

$$(klo_{i} - a_{i})y_{i} \leq d^{l,i} \leq (kup_{i} - a_{i})y_{i} \text{ for all } i = 1, \dots, n$$

$$d^{l,p} \leq -lo_{p} \text{ for all } p \in \mathcal{P}$$

$$Ad^{u} = 0$$

$$(klo_{i} - a_{i})y_{i} \leq d^{u,i} \leq (kup_{i} - a_{i})y_{i} \text{ for all } i = 1, \dots, n$$

$$d^{u,p} \geq up_{p} \text{ for all } p \in \mathcal{P}$$

$$y_i \in \{0, 1\}$$
 for $i = 1, \dots, n$

Tabular data: information loss

- Minimal number of suppressions
- Weights associated to cells: *minimal weight* of suppressed cells

Summary

How to protect tabular data?

- Privacy models for tabular data
- Data protection mechanisms for tabular data: cell suppression controlled tabular adjustment