Lines of Research on Data Privacy

Vicenç Torra

December, 2019

Hamilton Institute, Maynooth Universtiy, Maynooth, Ireland

Lines of research

Privacy models

- Formalization of what privacy means
 - * Always in search of a good definition (meaningful, usable, programmable, and permit some data uses)
- Competing privacy models and combination of them
 - * Privacy for databases: reidentification, k-anonymity, l-diversity, etc
 - * Privacy with respect to results: differential privacy, local differential privacy, integral privacy
 - * Privacy about some particular inferences: result privacy,
 - * Privacy in multiparty computation: multiparty computation,
 - \star Combination of models: multiparty computation + differential privacy,
 - * Translation of models to new types of data
 - What is k-anonymity in graphs/social media?

- Implementing privacy models (I)
 - \circ for each privacy model \times each type of data \times each data use
 - \circ E.g., for k-anonymity
 - \star Methods to achieve k-anonymity for numerical databases (standard file that can be stored in memory)
 - \star Methods to achieve k-anonymity for streaming data (real-time)
 - \star Methods to achieve k-anonymity for big databases (efficiency in computation)
 - New algorithms to improve previous ones
 - E.g., improve with respect to data utility, speed, or disclosure risk.
 - ★ best (high) utility for the same risk
 - * best (low) risk for the same utility
 - * faster for the same risk and utility

- Implementing privacy models (II)
 - Centralized vs. distributed databases.
 - * Centralized
 - ⇒ One company, one database, one *technician*
 - * Distributed low scale
 - $\Rightarrow n$ companies, n databases, on agreement
 - \Rightarrow they decide to compute $f(X_1,...,X_n)$ (multiparty computation model)
 - * Highly distributed applications
 - \Rightarrow One company, milions of users (mobiles, cars)
 - * how data is transferred in a safe/private way to the company
 - * federated learning: data is not transferred, models are

- Implementing privacy models (IIIa).
 - Data driven methods ⇒ Different types of data
 - Standard databases
 - Streaming data (real time)
 - Large static databases (just big)
 - Dynamic data (databases change, and need of multiple releases)
 - ⇒ multiple releases is problematic as inference can take advantage of the same record published several times with slightly different information
 - Social networks and graphs
 - ⇒ *individuals* are not *independent*, links relate *individuals*. Masking a person is not enough.
 - Search logs
 - ⇒ records are not independent

- Implementing privacy models (IIIb).
 Data driven methods ⇒ Different types of data
 - NoSQL databases
 - * Textual documents
 - Sanitization of documents. Detection of sensitive words.
 However, other elements of the text (combinations of them) may lead to disclosure. E.g., in health care.
 - * Scanned textual documents (handwritten documents)
 - * Sound / voice
 - * Images (people, places, etc.)
 - * Video

- Attacks, analysis of disclosure, and uniqueness
 - Attacking a database
 - ⇒ with side information, or internal attacks (individuals in the database use their information to infer about others)
 - Transparency attacks
 - ⇒ use information on how data has been protected
 - Attacks to the models
 - ⇒ Membership attacks
 - Fingerprinting of browsers and computers
 - Inferences from data
 - ⇒ hidden inferences as gender or political affiliation from other variables (or connections in a social network)

Lines of research

Venues for Data Privacy: (Security, Cryptography, Databases, Statistics, Official Statistics)

Journals

- Transactions on Data Privacy (Open Access)
- Journal of Privacy and Confidentiality (CMU, Open Access, from 2009)
- IEEE Security and Privacy (IEEE, from 2003)
- ACM Transactions on Privacy and Security (ACM)

Conferences

- S&P IEEE Symposium on Security and Privacy. Also Euro S&P.
- PETS Privacy Enhancing Technologies
- WPES Workshop On Privacy In The Electronic Society
- PST Conference on Privacy, Security and Trust
- PSD Privacy in Statistical Databases

Lines of research

Our research on data privacy (I)

- Disclosure risk.
 - Transparency attacks and worst-case analysis (using machine learning)
- Metrics for comparing data protection methods: information loss and data utility

Lines of research

Our research on data privacy (II)

- Data protection (masking methods) for centralized databases
 - Classical databases. Microagregation, rank swapping, PRAM
 - No-SQL databases.
 - * Documents (document sanitization, indexes for documents)
 - * Graphs and online social networks (masking methods for k-anonymity and reidentification)
 - Privacy models: integral privacy

Thank you

http://www.ppdm.cat/dp/