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Overview Outline

Overview

• What is data privacy?

• Why is it necessary and why it is challenging/difficult?

• Some definitions

• Privacy models

• Privacy methods
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Outline

Outline

◦ I. Introduction

• Motivation and difficulties

• Terminology (e.g., disclosure) and transparency

• Privacy by design

◦ II. Privacy models

◦ III. Data privacy mechanisms

• Masking methods (data-driven for databases)

• Mechanisms for differential privacy (computation-driven, centralized)

• Secure multiparty computation (computation-driven, distributed)

• Result-driven privacy for association rules mining (result-privacy)

• Tabular data protection (data-driven for tabular data)

◦ IV. Summary
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Motivation
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Introduction Outline

Introduction

• Data privacy: core

◦ Someone needs to access to data to perform authorized analysis,

but access to the data and the result of the analysis should avoid

disclosure.

?

E.g., you are authorized to compute the average stay in a hospital, but

you are not authorized to see the length of stay of your neighbor.
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Introduction Outline

Introduction

• Data privacy: core

◦ (Someone ⇒ A third party) accesses data for an authorized analysis,

but access and the results should avoid disclosure.

⇒ The third party can be external to the company or internal with

restricted access. E.g., admissions in hospital with no access to

diagnosis, technician in a bank with no access to credit card records.

?

E.g., you are authorized to compute the average stay in a hospital, but

you are not authorized to see the length of stay of your neighbor.
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Vicenç Torra; Data privacy: an overview 6 / 130



Introduction Outline

Introduction

• Problems/difficulties?

◦ Sensitive information

◦ the data

access to the original data

◦ the outcome/aggregate

the solution is leakage of information
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Introduction Outline

Introduction

• Problems/difficulties? Example 1

◦ Q: sickness influenced by studies & commuting distance?

◦ Records: (where students live, what they study, if they got sick)
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Introduction Outline

Introduction

• Problems/difficulties? Example 1

◦ Q: sickness influenced by studies & commuting distance?

◦ Records: (where students live, what they study, if they got sick)

◦ No “personal data”,

DB = { (Dublin, CS, No), ( Dublin, CS, No),

( Dublin, CS, Yes), ( Maynooth, CS, No), . . . ,

( Dublin, BA MEDIA STUDIES, No)

( Dublin, BA MEDIA STUDIES, Yes), . . . }

is this ok ?
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Introduction

• Problems/difficulties? Example 1

◦ Q: sickness influenced by studies & commuting distance?

◦ Records: (where students live, what they study, if they got sick)

◦ No “personal data”,

DB = { (Dublin, CS, No), ( Dublin, CS, No),

( Dublin, CS, Yes), ( Maynooth, CS, No), . . . ,

( Dublin, BA MEDIA STUDIES, No)

( Dublin, BA MEDIA STUDIES, Yes), . . . }

is this ok ?

NO!!:

◦ E.g., there is only one student of anthropology living in Enfield.
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⇒ 1. We learn that our friend is in the database
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Introduction Outline

Introduction

• Problems/difficulties? Example 1

◦ Q: sickness influenced by studies & commuting distance?

◦ Records: (where students live, what they study, if they got sick)

◦ No “personal data”,

DB = { (Dublin, CS, No), ( Dublin, CS, No),

( Dublin, CS, Yes), ( Maynooth, CS, No), . . . ,

( Dublin, BA MEDIA STUDIES, No)

( Dublin, BA MEDIA STUDIES, Yes), . . . }

is this ok ?

NO!!:

◦ E.g., there is only one student of anthropology living in Enfield.

(Enfield, Anthropology, Yes)

⇒ 1. We learn that our friend is in the database

⇒ 2. We learn that our friend is sick !!
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Introduction

• Problems/difficulties? Example 2

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town?
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Introduction

• Problems/difficulties? Example 2

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town?

◦ Example1: 1000 2000 3000 2000 1000 6000 2000 10000 2000 4000

⇒ mean = 3300

1Average wage in Ireland (2018): 38878 ⇒ monthly 3239 Eur

https://www.frsrecruitment.com/blog/market-insights/average-wage-in-ireland/
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Introduction

• Problems/difficulties? Example 2

◦ Q: Mean income of admitted to hospital unit (e.g., psychiatric unit)

for a given Town?

◦ Example1: 1000 2000 3000 2000 1000 6000 2000 10000 2000 4000

⇒ mean = 3300

◦ Mean income is not “personal data”, is this ok ?

NO!!:

◦ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit

1Average wage in Ireland (2018): 38878 ⇒ monthly 3239 Eur

https://www.frsrecruitment.com/blog/market-insights/average-wage-in-ireland/
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Introduction
• A personal view of core and boundaries of data privacy: core

◦ data uses / rellevant techniques

⋆ Data to be used for data analysis

⇒ statistics, machine learning, data mining

⇒ compute indices, find patterns, build models

⋆ Data is transmitted

⇒ communications

⇒ protecting sender identity

Machine learning

Data mining

Communications

Statistics
access
   control

security

Privacy

• Someone needs to access to data to perform authorized analysis, but

access to the data and the result of the analysis should avoid disclosure.
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Introduction Outline

Introduction
• A personal view of core and boundaries of data privacy: boundaries

◦ Database in a computer or in a removable device

⇒ access control to avoid unauthorized access

=⇒ Access to address (admissions), Access to blood test (admissions?)

◦ Data is transmitted

⇒ security technology to avoid unauthorized access

=⇒ Data from blood glucose meter sent to hospital. Network sniffers

Transmission is sensitive: Near miss/hit report to car manufacturers

access
   control

Privacy

security
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Introduction Outline

Motivation

Motivation I

• Legislation

◦ Privacy a fundamental right. (Ch. 1.1)

⋆ Universal Declaration of Human Rights (UN). European

Convention on Human Rights (Council of Europe). General

Data Protection Regulation - GDPR (EU). National regulations.

◦ Enforcement (GDPR)

⋆ Obligations with respect to data processing

⋆ Requirement to report personal data breaches

⋆ Grant individual rights (to be informed, to access, to rectification,

to erasure, ...)
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Introduction Outline

Motivation

Motivation II

• Companies own interest.

◦ Competitors can take advantage of information.

◦ Privacy-friendly

(e.g. https://secuso.aifb.kit.edu/english/105.php)

⇒ Socially responsible company

• Avoiding privacy breaches.

◦ Several well known cases.

⇒ Corporate image
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Motivation

• Privacy and society

◦ Not only a computer science/technical problem

⋆ Social roots of privacy

⋆ Multidisciplinary problem

◦ Social, legal, philosophical questions
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Vicenç Torra; Data privacy: an overview 13 / 130



Introduction Outline

Motivation

• Privacy and society

◦ Not only a computer science/technical problem

⋆ Social roots of privacy

⋆ Multidisciplinary problem

◦ Social, legal, philosophical questions

◦ Culturally relative?

I.e., the importance of privacy is the same among all people ?

◦ Are there aspects of life which are inherently private or just

conventionally so?

• This has implications: e.g. tension between privacy and security.

Different perspectives lead

◦ to different solutions and privacy levels

◦ and to different variables to protect.
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Motivation

• Privacy and society. Is this a new problem? Yes and not
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Motivation

• Privacy and society. Is this a new problem? Yes and not

◦ No side. See the following:
Instantaneous photographs and newspaper enterprise have invaded the sacred
precincts of private and domestic life; and numerous mechanical devices
threaten to make good the prediction that ”what is whispered in the closet
shall be proclaimed from the house-tops.” (...)
Gossip is no longer the resource of the idle and of the vicious, but has become
a trade, which is pursued with industry as well as effrontery (...) To occupy
the indolent, column upon column is filled with idle gossip, which can only be
procured by intrusion upon the domestic circle.
(S. D. Warren and L. D. Brandeis, 1890)
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Motivation

• Privacy and society. Is this a new problem? Yes and not

◦ No side. See the following:
Instantaneous photographs and newspaper enterprise have invaded the sacred
precincts of private and domestic life; and numerous mechanical devices
threaten to make good the prediction that ”what is whispered in the closet
shall be proclaimed from the house-tops.” (...)
Gossip is no longer the resource of the idle and of the vicious, but has become
a trade, which is pursued with industry as well as effrontery (...) To occupy
the indolent, column upon column is filled with idle gossip, which can only be
procured by intrusion upon the domestic circle.
(S. D. Warren and L. D. Brandeis, 1890)

◦ Yes side. Big data, storage, mobile, surveillance/CCTV, RFID, IoT

⇒ pervasive tracking
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Motivation

• Technical solutions for data privacy (details later)

◦ Statistical disclosure control (SDC)

◦ Privacy enhancing technologies (PET)

◦ Privacy preserving data mining (PPDM)

• Socio-technical aspects

◦ Technical solutions are not enough

◦ Implementation/management of solutions for achieving data privacy

need to have a holistic perspective of information systems

◦ E.g., employees and customers: how technology is applied
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Motivation

• Technical solutions for data privacy (details later)

◦ Statistical disclosure control (SDC)

◦ Privacy enhancing technologies (PET)

◦ Privacy preserving data mining (PPDM)

• Socio-technical aspects

◦ Technical solutions are not enough

◦ Implementation/management of solutions for achieving data privacy

need to have a holistic perspective of information systems

◦ E.g., employees and customers: how technology is applied

⇒ we can implement access control and data privacy, but if a

printed copy of a confidential transaction is left in the printer . . . ,

or captured with a camera . . .
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Motivation

• Technical solutions for data privacy from

◦ Statistical disclosure control (SDC)

⋆ Protection for statistical surveys and census

⋆ National statistical offices

⋆ (Dalenius, 1977)
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Motivation

• Technical solutions for data privacy from

◦ Statistical disclosure control (SDC)

⋆ Protection for statistical surveys and census

⋆ National statistical offices

⋆ (Dalenius, 1977)

◦ Privacy enhancing technologies (PET)

⋆ Protection for communications / data transmission

⋆ E.g., anonymous communications (Chaum 1981)

◦ Privacy preserving data mining (PPDM)

⋆ Data mining for databases

⋆ Data from banks, hospitals, and economic transactions (late 1990s)

Vicenç Torra; Data privacy: an overview 16 / 130



Difficulties Outline

Difficulties
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Difficulties Outline

Difficulties

• Difficulties: Naive anonymization does not work

Passenger manifest for the Missouri, arriving February 15, 1882; Port of Boston2

Names, Age, Sex, Occupation, Place of birth, Last place of residence, Yes/No,

condition (healthy?)

2https://www.sec.state.ma.us/arc/arcgen/genidx.htm
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Difficulties

• Difficulties: highly identifiable data

◦ (Sweeney, 1997) on USA population

⋆ 87.1% (216 million/248 million) were likely made them unique

based on

5-digit ZIP, gender, date of birth,
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◦ (Sweeney, 1997) on USA population

⋆ 87.1% (216 million/248 million) were likely made them unique

based on

5-digit ZIP, gender, date of birth,

⋆ 3.7% (9.1 million) had characteristics that were likely made them

unique based on

5-digit ZIP, gender, Month and year of birth.
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Difficulties

• Difficulties: highly identifiable data

◦ (Sweeney, 1997) on USA population

⋆ 87.1% (216 million/248 million) were likely made them unique

based on

5-digit ZIP, gender, date of birth,

⋆ 3.7% (9.1 million) had characteristics that were likely made them

unique based on

5-digit ZIP, gender, Month and year of birth.

• A few variables suffice for identifying someone. They are not “personal”

Vicenç Torra; Data privacy: an overview 19 / 130



Difficulties Outline

Difficulties

• Difficulties: highly identifiable data

◦ An only record (25 years old, town)

all other records with (age > 35, town)

• A few variables suffice for identifying someone. They are not “personal”
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Difficulties Outline

Difficulties

• Difficulties: highly identifiable data

◦ Data from mobile devices:

⇒ two positions can make you unique (home and working place)
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Difficulties Outline

Difficulties

• Difficulties: highly identifiable data

◦ Data from mobile devices:

⇒ two positions can make you unique (home and working place)

• A few variables suffice for identifying someone. They may be “personal”

but one alone is not unique, the combination is
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Difficulties Outline

Difficulties

• Difficulties: high dimensional data

◦ AOL3 case

⇒ User No. 4417749, hundreds of searches over a three-month

period including queries ’landscapers in Lilburn, Ga’

−→ Thelma Arnold identified!

3http://www.nytimes.com/2006/08/09/technology/09aol.html
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• Difficulties: high dimensional data

◦ AOL3 case

⇒ User No. 4417749, hundreds of searches over a three-month

period including queries ’landscapers in Lilburn, Ga’

−→ Thelma Arnold identified!

◦ Netflix (search logs and movie ratings) case

⇒ individual users matched with film ratings on the Internet Movie

Database.

3http://www.nytimes.com/2006/08/09/technology/09aol.html
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Difficulties Outline

Difficulties

• Difficulties: high dimensional data

◦ AOL3 case

⇒ User No. 4417749, hundreds of searches over a three-month

period including queries ’landscapers in Lilburn, Ga’

−→ Thelma Arnold identified!

◦ Netflix (search logs and movie ratings) case

⇒ individual users matched with film ratings on the Internet Movie

Database.

◦ Similar with credit card payments, shopping carts, ...

• A large number of variables are needed for identifying someone.

The combination of them is identifying

3http://www.nytimes.com/2006/08/09/technology/09aol.html
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Difficulties Outline

Difficulties

• Data breaches.

◦ See e.g. https://en.wikipedia.org/wiki/Data_breach
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Difficulties Outline

Difficulties

• Summary of difficulties:

highly identifiable data and high dimensional data

◦ Ex1: Sickness influenced by studies and commuting distance ?

Problem: original data + reidentification + inference

(few highly identifiable variables)

(similar with high dimensional variable)
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Difficulties Outline

Difficulties

• Summary of difficulties:

highly identifiable data and high dimensional data

◦ Ex1: Sickness influenced by studies and commuting distance ?

Problem: original data + reidentification + inference

(few highly identifiable variables)

(similar with high dimensional variable)

◦ Ex2: Mean income of admitted to hospital unit (e.g., psychiatric

unit) for a given Town?

Problem: inference from outcome

(outcome can allow inference on a sensitive variable)
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Difficulties Outline

Difficulties

• Summary of difficulties:

highly identifiable data and high dimensional data

◦ Ex3: Driving behavior in the morning

⋆ Automobile manufacturer uses (data from vehicles)

⋆ Data: First drive after 6:00am

(GPS origin + destination, time) × 30 days

⋆ No “personal data”, is this ok?: NO!!!:

⋆ How many cars from your home to your work?

Are you exceeding the speed limit? Are you visiting a psychiatric

clinic every tuesday?
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Difficulties Outline

Difficulties

• Summary of difficulties:

highly identifiable data and high dimensional data

◦ Ex3: Driving behavior in the morning

⋆ Automobile manufacturer uses (data from vehicles)

⋆ Data: First drive after 6:00am

(GPS origin + destination, time) × 30 days

⋆ No “personal data”, is this ok?: NO!!!:

⋆ How many cars from your home to your work?

Are you exceeding the speed limit? Are you visiting a psychiatric

clinic every tuesday?

Problem: original data + reidentification + inference

+ legal implications of acquired knowledge (?)
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Difficulties Outline

Difficulties

• Data privacy is “impossible”, or not? challenging

◦ Privacy vs. utility

◦ Privacy vs. security

◦ Computationally feasible
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Terminology

Vicenç Torra; Data privacy: an overview 27 / 130



Terminology Outline

Terminology

• Attacker, adversary, intruder

◦ the set of entities working against some protection goal

◦ increase their knowledge (e.g., facts, probabilities, . . . )

on the items of interest (IoI) (senders, receivers, messages, actions)

In a communication network with senders (actors) and receivers (actees)

messages

communication 
network

recipients

senders
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Terminology Outline

Terminology

• Anonymity set. Anonymity of a subject means that the subject is not

identifiable within a set of subjects, the anonymity set. That is, not

distinguishable!
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Terminology Outline

Terminology

• Anonymity set. Anonymity of a subject means that the subject is not

identifiable within a set of subjects, the anonymity set. That is, not

distinguishable!

• Unlinkability. Unlinkability of two or more IoI, the attacker cannot

sufficiently distinguish whether these IoIs are related or not.

⇒ Unlinkability with the sender implies anonymity of the sender.

◦ Linkability but anonymity. E.g., an attacker links all messages of a

transaction, due to timing, but all are encrypted and no information

can be obtained about the subjects in the transactions: anonymity

not compromised.

(region of the anonymity box outside unlinkability box)
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Terminology Outline

Terminology

• Concepts:

◦ Unlinkability implies anonymity

Unlinkability

Anonymity

Identity Disclosure Attribute Disclosure

Vicenç Torra; Data privacy: an overview 30 / 130



Terminology Outline

Terminology

• Disclosure. Attackers take advantage of observations to improve their

knowledge on some confidential information about an IoI.

⇒ SDC/PPDM: Observe DB, ∆ knowledge of a particular subject

(the respondent in a database)
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Terminology Outline

Terminology

• Disclosure. Attackers take advantage of observations to improve their

knowledge on some confidential information about an IoI.

⇒ SDC/PPDM: Observe DB, ∆ knowledge of a particular subject

(the respondent in a database)

◦ Identity disclosure (entity disclosure). Linkability. Finding Mary in

the database.

◦ Attribute disclosure. Increase knowledge on Mary’s salary.

also: learning that someone is in the database, although not found.
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Terminology Outline

Terminology

• Disclosure. Discussion.

◦ Identity disclosure. Avoid.
◦ Attribute disclosure. A more complex case. Some attribute disclosure
is expected in data mining.
At the other extreme, any improvement in our knowledge about an individual
could be considered an intrusion. The latter is particularly likely to cause a
problem for data mining, as the goal is to improve our knowledge. (J. Vaidya
et al., 2006, p. 7.
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Terminology Outline

Terminology

• Identity disclosure vs. attribute disclosure

◦ identity disclosure implies attribute disclosure (usual case)

Find record (HY U, Tarragona, 58), learn variable (Heart Attack)
Respondent City Age Illness

ABD Barcelona 30 Cancer
COL Barcelona 30 Cancer
GHE Tarragona 60 AIDS
CIO Tarragona 60 AIDS
HYU Tarragona 58 Heart attack

◦ Identity disclosure without attribute disclosure. Use all attributes

◦ Attribute disclosure without identity disclosure. k-anonymity

(ABD,Barcelona, 30) not reidentified but learn Cancer
Respondent City Age Illness

ABD Barcelona 30 Cancer
COL Barcelona 30 Cancer
GHE Tarragona 60 AIDS
CIO Tarragona 60 AIDS
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Terminology Outline

Terminology

• Identity disclosure and anonymity are exclusive.

◦ Identity disclosure implies non-anonymity

◦ Anonymity implies no identity disclosure.

Unlinkability

Anonymity

Identity Disclosure Attribute Disclosure
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Terminology Outline

Terminology

• Undetectability and unobservability

◦ Undetectability of an IoI. The attacker cannot sufficiently distinguish

whether IoI exists or not.

E.g. Intruders cannot distinguish messages from random noise

⇒ Steganography (embed undetectable messages)
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Terminology Outline

Terminology

• Undetectability and unobservability

◦ Undetectability of an IoI. The attacker cannot sufficiently distinguish

whether IoI exists or not.

E.g. Intruders cannot distinguish messages from random noise

⇒ Steganography (embed undetectable messages)

◦ Unobservability of an IoI means

⋆ undetectability of the IoI against all subjects uninvolved in it and

⋆ anonymity of the subject(s) involved in the IoI even against the

other subject(s) involved in that IoI.

Unobservability pressumes undetectability but at the same time it also pressumes

anonymity in case the items are detected by the subjects involved in the system. From

this definition, it is clear that unobservability implies anonymity and undetectability.
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Transparency Outline

Transparency
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Terminology > Transparency Outline

Transparency

• Transparency

◦ DB is published: give details on how data has been produced.

Description of any data protection process and parameters

◦ Positive effect on data utility. Use information in data analysis.

◦ Negative effect on risk. Intruders use the information to attack.

Example. DB masking using additive noise: X ′ = X + ǫ

with ǫ s.t. E(ǫ) = 0 and V ar(ǫ) = kV ar(X) for a given constant k

then, V ar(X ′) = V ar(X) + kV ar(X) = (1 + k)V ar(X)
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Terminology > Transparency Outline

Transparency

• The transparency principle in data privacy4

Given a privacy model, a masking method should be compliant with this privacy

model even if everything about the method is public knowledge. (Torra, 2017, p17)

4Similar to the Kerckhoffs’s principle (Kerckhoffs, 1883) in cryptography: a cryptosystem should be

secure even if everything about the system is public knowledge, except the key
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Terminology > Transparency Outline

Transparency

• The transparency principle in data privacy4

Given a privacy model, a masking method should be compliant with this privacy

model even if everything about the method is public knowledge. (Torra, 2017, p17)

• Transparency a requirement of Trustworthy AI. Related to three elements:

traceability, explicability (why decisions are made), and comunication (distinguish AI

systems from humans). Transparency in data privacy relates to traceability.

4Similar to the Kerckhoffs’s principle (Kerckhoffs, 1883) in cryptography: a cryptosystem should be

secure even if everything about the system is public knowledge, except the key
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Privacy by design Outline

Privacy by design
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Terminology > Privacy by design Outline

Privacy by design

• Privacy by design (Cavoukian, 2011)

◦ Privacy “must ideally become an organization’s default mode of

operation” (Cavoukian, 2011) and thus, not something to be

considered a posteriori. In this way, privacy requirements need

to be specified, and then software and systems need to be engineered

from the beginning taking these requirements into account.

◦ In the context of developing IT systems, this implies that privacy protection is a

system requirement that must be treated like any other functional requirement. In

particular, privacy protection (together with all other requirements) will determine

the design and implementation of the system (Hoepman, 2014)
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Terminology > Privacy by design Outline

Privacy by design

• Privacy by design principles (Cavoukian, 2011)

1. Proactive not reactive; Preventative not remedial.

2. Privacy as the default setting.

3. Privacy embedded into design.

4. Full functionality – positive-sum, not zero-sum.

5. End-to-end security – full lifecycle protection.

6. Visibility and transparency – keep it open.

7. Respect for user privacy – keep it user-centric.
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Privacy models Outline

Privacy models
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Data privacy > Privacy models Outline

Privacy models

?
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Data privacy > Privacy models Outline

Privacy models

Privacy models. A computational definition for privacy. Examples.
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Data privacy > Privacy models Outline

Privacy models

Privacy models. A computational definition for privacy. Examples.

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.
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Data privacy > Privacy models Outline

Privacy models

Privacy models. A computational definition for privacy. Examples.

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

?
X X’
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Data privacy > Privacy models Outline

Privacy models

• Difficulties: naive anonymization does not work

◦ (Sweeney, 1997; 20005) on USA population

⋆ 87.1% (216 /248 million) is likely to be uniquely identified by

5-digit ZIP, gender, date of birth,

⋆ 3.7% (9.1 /248 million) is likely to be uniquely identified by

5-digit ZIP, gender, Month and year of birth.

• Difficulties: highly identifiable data and high dimensional data

◦ Data from mobile devices:

⋆ two positions can make you unique (home and working place)

◦ AOL and Netflix cases (search logs and movie ratings)

◦ Similar with credit card payments, shopping carts, search logs, ...

(i.e., high dimensional data)

5L. Sweeney, Simple Demographics Often Identify People Uniquely, CMU 2000
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Data privacy > Privacy models Outline

Privacy models

• Difficulties: Example 1.

◦ Q: sickness influenced by studies & commuting distance?

◦ Records: (where students live, what they study, if they got sick)
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Data privacy > Privacy models Outline

Privacy models

• Difficulties: Example 1.

◦ Q: sickness influenced by studies & commuting distance?

◦ Records: (where students live, what they study, if they got sick)

◦ No “personal data”,

DB = { (Dublin, CS, No), ( Dublin, CS, No),

( Dublin, CS, Yes), ( Maynooth, CS, No), . . . ,

( Dublin, BA MEDIA STUDIES, No)

( Dublin, BA MEDIA STUDIES, Yes), . . . }

is this ok ?
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Data privacy > Privacy models Outline

Privacy models

• Difficulties: Example 1.

◦ Q: sickness influenced by studies & commuting distance?

◦ Records: (where students live, what they study, if they got sick)

◦ No “personal data”,

DB = { (Dublin, CS, No), ( Dublin, CS, No),

( Dublin, CS, Yes), ( Maynooth, CS, No), . . . ,

( Dublin, BA MEDIA STUDIES, No)

( Dublin, BA MEDIA STUDIES, Yes), . . . }

is this ok ?

NO!!:

◦ E.g., there is only one student of anthropology living in Enfield.

(Enfield, Anthropology, Yes)
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Data privacy > Privacy models Outline

Privacy models

Privacy models. A computational definition for privacy. Examples.

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

?
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Data privacy > Privacy models Outline

Privacy models

Privacy models. A computational definition for privacy. Examples.

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.

?

f(X) g(X)

X
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Data privacy > Privacy models Outline

Privacy models

• Difficulties. Output of a function can be sensitive. Example 2

◦ Mean income of admitted to hospital unit (e.g., psychiatric unit)

◦ Mean salary of participants in Alcoholics Anonymous by town

Is this ok? NO!!

◦ disclosure of a rich person in the database
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Data privacy mechanisms Outline

Data privacy mechanisms
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Data privacy > Privacy models Outline

Privacy models

Data privacy mechanisms. Classification w.r.t. our knowledge on the

computation

• Data-driven or general purpose (analysis not known)

→ anonymization / masking methods

• Computation-driven or specific purpose (analysis known)

→ cryptographic protocols, differential privacy, integral privacy

• Result-driven (analysis known: protection of its results)

?
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Data privacy > Data-driven Outline

Data privacy mechanisms

Data-driven and general purpose
Masking methods
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Data privacy > Data-driven Outline

Masking methods

Data-driven or general purpose (analysis not known)

• Privacy model: Reidentification / k-anonymity.

• Privacy mechanisms: Anonymization / masking methods:

Given a data file X compute a file X ′ with data of less quality.

?
X X’
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Data privacy > Data-driven Outline

Masking methods

Data-driven or general purpose (analysis not known)

• Privacy model: reidentification / k-anonymity

• Privacy mechanisms: Anonymization / masking methods:

Given a data file X compute a file X ′ with data of less quality.

X X’ / A

B

masking

disclosure risk

X

?

f(X’)

f(X)
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Data privacy > Data-driven Outline

Masking methods

Approach valid for different types of data

• Databases, documents, search logs, social networks, . . .

(also masking taking into account semantics: wordnet, ODP)

X X’ / A

B

masking

disclosure risk

X

?

f(X’)

f(X)
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Data privacy > Data-driven Outline

Masking methods

Original 
microdata (X)

Masking
method

Protected
microdata (X’)

Result(X’)

Disclosure

Measure

Information
Loss
Measure

Data
analysis

Result(X)

Data
analysis

Risk
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Data privacy > Data-driven Outline

Research questions: (i) masking methods

Masking methods. (anonymization methods) X ′ = ρ(X)

• Privacy models

◦ k-anonymity. Single-objective optimization: utility

◦ Privacy from re-identification. Multi-objective: trade-off U/Risk

• Families of methods

◦ Perturbative. (less quality=erroneous data)

E.g. noise addition/multiplication, microaggregation, rank swapping

◦ Non-perturbative. (less quality=less detail)

E.g. generalization, suppression

◦ Synthetic data generators. (less quality=not real data)

E.g. (i) model from the data; (ii) generate data from model
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Data privacy > Data-driven Outline

Research questions: (i) masking methods

Masking methods. X ′ = ρ(X). Microaggregation (k records clusters)

• Formalization. (uij = 1 iff xj in ith cluster; vi centroid)

Minimize SSE =
∑g

i=1

∑n
j=1 uij(d(xj, vi))

2

Subject to
∑g

i=1 uij = 1 for all j = 1, . . . , n

2k ≥
∑n

j=1 uij ≥ k for all i = 1, . . . , g

uij ∈ {0, 1}
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Data privacy > Data-driven Outline

Research questions: (i) masking methods

Masking methods. X ′ = ρ(X). Additive Noise

• Description. Add noise into the original file. That is,

X ′ = X + ǫ,

where ǫ is the noise.

• The simplest approach is to require ǫ to be such that E(ǫ) = 0 and

V ar(ǫ) = kV ar(X) for a given constant k.
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Data privacy > Data-driven Outline

Research questions: (i) masking methods

Masking methods. X ′ = ρ(X). Additive Noise

• Description. Add noise into the original file. That is,

X ′ = X + ǫ,

where ǫ is the noise.

• The simplest approach is to require ǫ to be such that E(ǫ) = 0 and

V ar(ǫ) = kV ar(X) for a given constant k.

Properties:

• It makes no assumptions about the range of possible values for Vi (which may be
infinite).

• The noise added is typically continuous and with mean zero, which suits continuous
original data well.

• No exact matching is possible with external files.
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Data privacy > Data-driven Outline

Research questions: (i) masking methods

Masking methods. X ′ = ρ(X). PRAM: Post-Randomization Method

• Description.

◦ The scores on some categorical variables for certain records in the

original file are changed to a different score.

⋆ according to a transition (Markov) matrix

• Properties:

◦ PRAM is very general: it encompasses noise addition, data

suppression and data recoding.

◦ PRAM information loss and disclosure risk largely depend on the

choice of the transition matrix.
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Data privacy > Data-driven Outline

Research questions: (i) masking methods

Masking methods. X ′ = ρ(X). Rank swapping

• Description with parameter p.

◦ Values are ordered in increasing order

We assume them ordered xij ≤ xlj for all 1 ≤ i < l ≤ n

◦ Each ranked value xij is swapped with another ranked value xlj

randomly chosen within a restricted range i < l ≤ i+ p

• In applications, each variable is masked independently

• The larger the p, the larger the information loss, and the lower the

risk
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Data privacy > Data-driven Outline

Research questions: (i) masking methods

Masking methods. X ′ = ρ(X). Synthetic Data Generators

• Description. (partially synthetic data)

Data: X|Y : set of records of a given sample

Output: X|Y ′: set of records with Y ′ a masked version of Y

1. MX,Y := Build a model of Y in terms of X

2. Y ′ := MX,Y (X)

3. Return (X|Y ′)

Need to take attention to disclosure risk. Do not state

“Since released microdata are synthetic, no real re-identification is possible”.

Re-identification can indeed happen if a snooper is able to link an external identified

data source with some record in the released dataset using the quasi-identifier

attributes: coming up with a correct pair (identifier, confidential attributes) is indeed

a re-identification.
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Data privacy > Data-driven Outline

Research questions: (ii) information loss/data utility

Information loss measures. Compare X and X ′ w.r.t. analysis (f)

ILf(X,X ′) = divergence(f(X), f(X ′))

• f : depends on X; generic vs. specific data uses.

◦ Statistics, ML: clustering & classification, centrality-graphs, ...

◦ For classification using decision trees:

accuracy(DT(X)) vs. accuracy(DT(X’))

?
X X’

f(X) = f(X’)?
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Data privacy > Data-driven Outline

Research questions: (ii) information loss/data utility

• Typical comparison of methods w.r.t. IL/utility and Risk

Accuracy, ACC Area Under Curve, AUC

PIL DR DT NB k-NN SVM DT NB k-NN SVM

Original 0.00% 100.00% 54.22% 54.78% 53.93% 54.56% 71.60% 73.30% 71.60% 70.30%

Noise, α = 3 7.90% 74.56% 54.39% 51.81% 53.36% 54.49% 73.09% 73.41% 71.48% 70.50%

Noise, α = 10 24.65% 38.95% 53.67% 51.88% 51.62% 54.37% 73.24% 73.42% 70.55% 70.49%
Noise, α = 100 73.94% 4.10% 51.04% 52.21% 48.17% 53.20% 72.06% 73.98% 66.47% 69.50%

MultNoise, α = 5 13.50% 50.81% 54.44% 51.90% 52.36% 54.39% 73.51% 73.42% 71.22% 70.50%

MultNoise, α = 10 24.81% 24.75% 54.20% 51.76% 54.20% 54.32% 73.15% 73.42% 72.67% 70.41%
MultNoise, α = 100 74.29% 0.00% 50.73% 52.12% 50.90% 53.27% 71.00% 73.90% 68.10% 69.52%

RS p-dist, p = 2 22.12% 51.12% 53.19% 51.23% 53.99% 54.37% 70.95% 73.24% 74.15% 70.57%

RS p-dist, p = 10 29.00% 23.49% 53.55% 51.85% 54.35% 54.18% 71.84% 73.52% 73.17% 70.40%
RS p-dist, p = 50 39.96% 7.80% 40.63% 50.56% 37.32% 53.20% 59.24% 73.17% 57.75% 69.50%

CBFS, k = 5 39.05% 13.73% 54.56% 51.64% 54.01% 54.54% 74.10% 73.29% 73.26% 70.62%

CBFS, k = 25 58.08% 6.65% 53.31% 51.95% 53.05% 54.01% 73.48% 73.10% 74.22% 70.23%
CBFS, k = 100 63.55% 4.32% 51.30% 51.59% 53.53% 54.10% 71.16% 73.24% 74.56% 70.31%

CBFS 2-sen, k = 25 58.08% 0.55% 53.31% 52.00% 53.05% 54.13% 73.44% 73.10% 74.22% 70.30%

CBFS 3-sen, k = 25 73.00% 0.00% 45.00% 42.00% 43.00% 41.00% 62.00% 61.00% 63.00% 60.00%

CBFS 2-div, k = 25 61.55% 0.40% 52.72% 51.57% 52.84% 54.37% 72.13% 73.24% 73.09% 70.36%

CBFS 3-div, k = 25 86.00% 0.00% 38.00% 39.00% 38.00% 40.00% 60.00% 61.00% 62.00% 63.00%

IPSO g = 2 65.09% 1.66% 52.81% 51.52% 50.11% 53.39% 72.36% 73.61% 68.06% 69.66%
IPSO g = 3 58.93% 4.93% 51.45% 51.09% 49.87% 52.41% 69.58% 73.22% 68.24% 68.81%

IPSO g = 4 58.56% 1.81% 52.05% 51.23% 50.68% 52.52% 70.41% 73.22% 68.52% 69.00%

Abalone (4177 records, 9 attr, 3 classes) w/ different SDC perturbation methods6.

6Herranz, Matwin, Nin, Torra (2010) Classifying data from protected statistical datasets. C&S.
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Data privacy > Data-driven Outline

Research questions: (ii) information loss/data utility

ML models, accuracy and masking methods

• Masking methods: not always equivalent to a loss of accuracy

There are cases in which the performance is even improved. Aggarwal and

Yu (2004) report that ’in many cases, the classification accuracy improves

because of the noise reduction effects of the condensation process’. The same

was concluded in [Sakuma and Osame, 2017] for recommender systems: ’we

observe that the prediction accuracy of recommendations based on anonymized

ratings can be better than those based on non- anonymized ratings in some

settings’. [Torra, 2017]
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Data privacy > Data-driven Outline

Research questions: (iii) disclosure risk assessment

• Privacy from re-identification. Identity disclosure7. Scenario:

◦ A: File with the protected data set

◦ B: File with the data from the intruder (subset of original X)

?
X

Record linkage

X’ / A

B

7Identity disclosure vs. attribute disclosure: Finding Alice in DB vs. ∆ knowledge on Alice’s salary
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Data privacy > Data-driven Outline

Research questions: (iii) disclosure risk assessment

• Privacy from re-identification. Worst-case scenario

(maximum knowledge) to give upper bounds of risk:

◦ transparency attacks (information on how data has been protected)

◦ largest data set (original data)

◦ best re-identification method (best record linkage/best parameters)

?
X

Record linkage

X’ / A

B
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Data privacy > Data-driven Outline

Research questions: (iii) disclosure risk assessment

• Privacy from re-identification. Worst-case scenario.

◦ ML for distance-based record linkage parameters. (A and B aligned)

⋆ Goal: as many correct reidentifications as possible:

for each record i: d(ai, bj) ≥ d(ai, bi) for all j

� d(ai, bj) as average/sum of attribute/variable distances

Cp(diff1(ai, bj), . . . , diffn(ai, bj))
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Data privacy > Data-driven Outline

Research questions: (i)+(ii)+(iii) visualization

• Comparing masking methods. Information loss and risk
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Data privacy > Data-driven Outline

Data privacy mechanisms
Computation-driven and specific purpose
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Computation-driven > whose privacy Outline

Computation-driven: “Whose privacy” perspective

Respondent and owner privacy

• Data-driven or general-purpose

• Computation-driven or specific-purpose (Ch. 3.4)

◦ Single database: differential privacy (Ch. 3.4.1)
◦ Multiple databases:
⋆ Centralized approach: trusted third party (Ch. 3.4.2)
⋆ Distributed approach: secure multiparty computation (Ch. 3.4.2)

• Result-driven
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Data privacy Outline

Data privacy mechanisms

Computation-driven
Differential privacy
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Computation-driven > Differential privacy Outline

Differential privacy

• Computation-driven/single database

◦ Privacy model: differential privacy8

◦ We know the function/query to apply to the database: f

• Example:

compute the mean of the attribute salary of the database for all those living in Town.

8There are other models as e.g. query auditing (determining if answering a query can lead to a privacy

breach), and integral privacy
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DP > Computation-driven Outline

Differential privacy

• Differential privacy (Dwork, 2006).

◦ Motivation:

⋆ the result of a query should not depend on the presence (or absence)

of a particular individual

⋆ the impact of any individual in the output of the query is limited

differential privacy ensures that the removal or addition of a single database item

does not (substantially) affect the outcome of any analysis (Dwork, 2006)
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DP > Computation-driven Outline

Differential privacy

• Mathematical definition of differential privacy

(in terms of a probability distribution on the range of the

function/query)

◦ A function Kq for a query q gives ǫ-differential privacy if for all

data sets D1 and D2 differing in at most one element, and all

S ⊆ Range(Kq),
Pr[Kq(D1) ∈ S]

Pr[Kq(D2) ∈ S]
≤ eǫ.

(with 0/0=1) or, equivalently,

Pr[Kq(D1) ∈ S] ≤ eǫPr[Kq(D2) ∈ S].

• ǫ is the level of privacy required (privacy budget).

The smaller the ǫ, the greater the privacy we have.
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Differential privacy

• Differential privacy9

◦ A function Kq for a query q gives ǫ-differential privacy if . . .

⋆ Kq(D) is a constant. E.g.,

Kq(D) = 0

⋆ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise
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9Self-proclaimed the de facto standard for data privacy
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Differential privacy

• Differential privacy

◦ Kq(D) for a query q is a randomized version of q(D)

⋆ Given two neighbouring databases D and D′

Kq(D) and Kq(D
′) should be similar enough . . .

◦ Example with q(D) = 5 and q(D′) = 6 and adding a Laplacian noise

L(0, 1)

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

q(D)=5, q(D’)=6

Values

P
ro

ba
bi
li
ty

◦ Let us compare different ǫ for noise following L(0, 1) . . .
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Differential privacy: comparing ǫ for L(0, 1)

Original L(0, 1) and L(0, 1)/eǫ, L(0, 1) · eǫ
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Differential privacy: Accepting 0+2? (using ǫ,L(0, 1))

Can 0 + 2 be acceptable ? I.e., with a distribution similar enough?
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Differential privacy

• These examples use the Laplace distribution L(µ, b).

◦ I.e., probability density function:

f(x|µ, b) =
1

2b
exp

(

−
|x− µ|

b

)

where

⋆ µ: location parameter

⋆ b: scale parameter (with b > 0)

• Properties

◦ When b = 1, the function for x > 0 corresponds to the exponential

distribution scaled by 1/2.

◦ Laplace has fatter tails than the normal distribution

◦ When µ = 0, for all translations z ∈ R, h(x+ z)/h(x) ≤ exp(|z|).
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Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Kq(D) is a randomized version of q(D):

Kq(D) = q(D) + and some appropriate noise

◦ What is and some appropriate noise?

• Sensitivity of a query

◦ Let D denote the space of all databases; let q : D → R
d be a query;

then, the sensitivity of q is defined

∆D(q) = max
D,D′∈D

||q(D)− q(D′)||1.

where || · ||1 is the L1 norm, that is, ||(a1, . . . , ad)||1 =
∑d

i=1 |ai|.

• Definition essentially meaningful when data has upper & lower bounds
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Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Sensitivity of the mean:

∆D(mean) = (max−min)/S

where [min,max] is the range of the attribute, and S is the minimal
cardinality of the set.
⋆ If no assumption is made on the size of S: ∆D(mean) = (max−min)

◦ Parameter ǫ:

(Lee, Clifton, 2011) recommend ǫ = 0.3829 for the mean
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Differential privacy

• Implementation of differential privacy for a numerical query.

◦ Differential privacy via noise addition to the true response

◦ Noise following a Laplace distribution L(0, b) with

mean equal to zero and scale parameter b = ∆(q)/ǫ.

(∆(q) is the sensitivity of the query)

◦ Algorithm Differential privacy:
⋆ Input: D: Database; q: query; ǫ: parameter of differential privacy;
⋆ Output: Answer to the query q satisfying ǫ-differential privacy
⋆ a := q(D) with the original data
⋆ ∆D(q):= the sensitivity of the query for a space of databases D
⋆ Generate a random noise r from a L(0, b) where b = ∆(q)/ǫ
⋆ Return a+ r
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Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ Example10:

⋆ D = {1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}

⇒ mean = 3300

⋆ Adding Ms. Rich’s salary 100,000 Eur/month: mean = 12090,90 !

(a extremely high salary changes the mean significantly)

⇒ We infer Ms. Rich from Town was attending the unit

⇒ Differential privacy to solve this problem

10Average wage in Ireland (2018): 38878 ⇒ monthly 3239 Eur

https://www.frsrecruitment.com/blog/market-insights/average-wage-in-ireland/
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Differential privacy

• Implementation of differential privacy: The case of the mean

◦ Consider the mean salary

◦ Range of salaries [1000, 100000]

• Compute for ǫ = 1, assume that at least S = 5 records

◦ sensitivity ∆D(q) = (max−min)/S = 19800
◦ scale parameter b = 19800/1 = 19800
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 19800)

• Compute for ǫ = 1, assume that at least S = 106 records

◦ sensitivity ∆D(q) = (max−min)/S = 0.099
◦ scale parameter b = 0.099/1 = 0.099
◦ For the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}
◦ Output: Kmean(D) = 3300 + L(0, 0.099)
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Differential privacy: The two distributions

• Comparing

◦ (i) (S = 5, ǫ = 1) Kmean(D) = 3300 + L(0, 19800) and

◦ (ii) (S = 106, ǫ = 1) Kmean(D) = 3300 + L(0, 0.099)
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Differential privacy

• Laplace mechanism for differential privacy (numerical query)

Kq(D) = q(D) + L(0,∆(q)/ǫ)

◦ Proposition. For any function q, the Laplace mechanism satisfies

ǫ-differential privacy.
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Differential privacy

• Implementation of differential privacy: The case of the mean.

◦ “Clamping down” on the output: (McSherry, 2009; Li, Lyu, Su, Yang, 2016

Sections 2.5.3 and 2.5.4)

⋆ The output of a query is within a range [mn,mx] even if data is

not. E.g., compute q(D) = q′mn,mx(mean(D)) with q′ as follows

q′mn,mx(x) =











mn if x < mn

x if mn ≤ x ≤ mx

mx if mx < x

⇒ we can define ǫ-differential privacy for this query q(D)
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Differential privacy

• Implementation of clamping-down mean

◦ Differential privacy via noise addition to the true response

◦ Arbitrary size S of the database D (i.e, S = |D|)

◦ Output in the interval [mn,mx]

◦ Solution and proof in (Li, Lyu, Su, Yang, 2016 Section 2.5.4)

◦ Algorithm Differentially private clamping-down mean
⋆ Input: D: (one-dimensional) Database; S : size; ǫ: parameter of differential
privacy; mn,mx: real

⋆ Output: A ǫ-differentially private mean
⋆ if S = 0 then
r := uniform random in [0, 1]
if r < 1/2exp(−ǫ/2) return mn
else if r < 2/2exp(−ǫ/2) return mx
else return mn+ (mx−mn)(r − exp(−ǫ/2))/(1− exp(−ǫ/2))

⋆ else return q′
(

sum(D)+L(0,(mx−mn)/ǫ)
S

)

⋆ end if
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Differential privacy

• Implementation of clamping-down mean. Applying it to

◦ the interval: [2000, 4000]

◦ so, sensitivity ∆D(q) = (max−min) = 2000

◦ and the database: (mean = 3300)

D={1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000}

◦ Applying the procedure 10000 times, and ploting the histogram
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Differential privacy

• Properties of differential privacy

◦ On the ǫ:
⋆ Small ǫ, more privacy, more noise into the solution
⋆ Large ǫ, less privacy, less noise into the solution

◦ On the sensitivity:
⋆ Small sensitivity, less noise for achieving the same privacy
⋆ Large sensitivity, more noise for achieving the same privacy

◦ Discussion here is for a single query (with privacy budget ǫ). Multiple

queries (even multiple applications of the same query) need special

treatment. E.g., additional privacy budget.

◦ Randomness via e.g. Laplace means that any number can be selected.

Including e.g. negative ones for salaries. Special treatment may be

necessary.
◦ Implementations for other type of functions

⋆ The exponential mechanism for non-numerical queries
⋆ Differential privacy for machine learning and statistical models
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Data privacy mechanisms

Computation-driven
Centralized approach: trusted third party
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Trusted third party

Computation-driven approaches/multiple databases: centralized

• Example. Parties P1, . . . , Pn own databases DB1, . . . ,DBn. The

parties want to compute a function, say f , of these databases (i.e.,

f(DB1, . . . ,DBn)) without revealing unnecessary information. In

other words, after computing f(DB1, . . . ,DBn) and delivering this

result to all Pi, what Pi knows is nothing more than what can be

deduced from his DBi and the function f .

• So, the computation of f has not given Pi any extra knowledge.
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Data privacy mechanisms

Computation-driven
Distributed approach: secure multiparty

computation
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

• The centralized approach as a reference

?

96 / 130



DP > Computation-driven Outline

Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Compute the sum of salaries of 4 people: Aine, Brianna, Cathleen,

and Deirdre.

We denote these salaries by s1, s2, s3, and s4, respectively.

• Each person’s salary is confidential and they do not want to share.

• Define a protocol to compute involving only the 4 people (no trusted

third party).

• Assume that the sum lies in the range [0, n].

� Example with 4 people. Similar method applies with other number of people.

� We use public-key cryptography. I.e., each party requires two separate keys: a

private and a public one. This is also known as asymmetric cryptography.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
encrypted with Aine’s public key.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
encrypted with Aine’s public key.

• Aine decrypts Deirdre’s message with Aine’s private key. She substracts (modulo n)
the random number r added in the first step, obtaining in this way s1+s2+s3+s4
(this will be in [0, n]).
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Aine adds a secret random number, say r (uniformly chosen in [0, n]) to her salary
and sends it to Brianna encrypted with Brianna public key. Addition is modulo n.
In this way, the outcome of r + s1 mod n will be a number uniformly distributed
in [0, n] and so Brianna will learn nothing about the actual value of s1.

• Brianna decrypts Aine’s message with Brianna’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 mod n) to Cathleen encrypted
with Cathleen’s public key.

• Cathleen decrypts Brianna’s message with Cathleen’s private key, adds her salary
(modulo n) and sends the result (i.e., r+s1+s2+s3 mod n) to Deirdre encrypted
with Deirdre’s public key.

• Deirdre decrypts Cathleen’s message with Deirdre’s private key, adds her salary
(modulo n) and sends the result (i.e., r + s1 + s2 + s3 + s4 mod n) to Aine
encrypted with Aine’s public key.

• Aine decrypts Deirdre’s message with Aine’s private key. She substracts (modulo n)
the random number r added in the first step, obtaining in this way s1+s2+s3+s4
(this will be in [0, n]).

• Aine announces the result to the participants.
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• This protocol assumes that all of the participants are honest

• A participant can lie about her salary.

• Aine can announce a wrong addition.
• Participants can collude. E.g.,

◦ Brianna and Deirdree can share their figures to find the salary of Cathleen
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

• Solving collusion.

◦ Each salary is divided into shares.

◦ The sum of each share is computed individually.

◦ Different paths are used for different shares in a way that neighbors

are different.

To compute any si all neighbors of all paths are required.

◦ Different number of shares imply different minimum coalition sizes

for violating security
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed. Sum

Important observation

• This method is compliant with the privacy model selected:

Secure multiparty computation

• This method is not compliant with other privacy models:

differential privacy

We can define appropriate methods that satisfy multiple privacy models

• E.g., method that computes differentially private secure sum
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Secure multiparty computation

Computation-driven approaches/multiple databases/distributed.

• Dining Cryptographers Problem.

◦ (Chaum, 1985) Three cryptographers are sitting down to dinner at

their favorite three-star restaurant. Their waiter informs them that

arrangements have been made with the mâıtre d’hôtel for the bill to

be paid anonymously. One of the cryptographers might be paying

the dinner, or it might have been NSA (U.S. National Security

Agency). The three cryptographers respect each other’s right to

make an anonymous payment, but they wonder if NSA is paying.

• This problem (and previous ones) can be seen from a user’s privacy

perspective (more particularly, about protecting the data of the user).

I.e., the cryptographers does not want to share whether they paid or

not.
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed.

• Machine learning and data mining methods.

• Parties can be seen as sharing the schema of a database.

• Two types of problems usually considered.

◦ Vertically partitioned data. Parties (data holders) have information

on the same individuals but different attributes.

◦ Horizontally partitioned data. Parties (data holders) have

information on different individuals but on the same attributes

(i.e., the share the database schema).
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.
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Secure multiparty computation

Computation-driven approaches/multiple databases: distributed

Privacy leakage for the distributed approach is usually analyzed

considering two types of adversaries.

• Semi-honest adversaries. Data owners follow the cryptographic

protocol but they analyse all the information they get during its

execution to discover as much information as they can.

• Malicious adversaries. Data owners try to fool the protocol (e.g.

aborting it or sending incorrect messages on purpose) so that they

can infer confidential information.
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Data privacy mechanisms

Result-driven
Result-driven for association rule mining
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Data Privacy

Respondent and owner privacy

• Data-driven or general-purpose

• Computation-driven or specific-purpose

• Result-driven (Ch. 3.5)
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Data Privacy

Result-driven

• Prevent data mining procedures infer some knowledge that is valuable

for the database owner

• Other uses: avoid discriminatory knowledge inferred from databases
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Data Privacy

Result-driven

• Formalization. Database D, A data mining algorithm, with

parameters Θ is said to have ability to derive knowledge K from

D if and only if K is obtained from the output of the algorithm.

Notation: (A,D,Θ) ⊢ K.

• Any knowledge K such that (A,D,Θ) ⊢ K is in KSetD.
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Data Privacy

Result-driven

• Formalization. Database D, A data mining algorithm, with

parameters Θ is said to have ability to derive knowledge K from

D if and only if K is obtained from the output of the algorithm.

Notation: (A,D,Θ) ⊢ K.

• Any knowledge K such that (A,D,Θ) ⊢ K is in KSetD.

Definition. D a database, K = {K1, . . . ,Kn} sensitive knowledge to

be hidden. The problem of hiding knowledge K from D consists on

transforming D into a database D′ such that

1. K ∩KSetD′ = ∅

2. the information loss from D to D′ is minimal
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Data Privacy

Result-driven for association rules mining: Association rule hiding

• Recall that rules are mined when

Support(R) ≥ thr − s

and

Confidence(R) ≥ thr − c

for certain thresholds thr − s and thr − c.
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Data Privacy

Result-driven for association rules mining: Association rule hiding

• Recall that rules are mined when

Support(R) ≥ thr − s

and

Confidence(R) ≥ thr − c

for certain thresholds thr − s and thr − c.

Two approaches:

• To reduce the support of the rule.

• To reduce the confidence of the rule.
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Data Privacy

Result-driven for association rules mining: example

• A formalization. D a database; thr − s threshold. Let K =

{K1, . . . ,Kn} sensitive itemsets, A non-sensitive itemsets.
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Data Privacy

Result-driven for association rules mining: example

• A formalization. D a database; thr − s threshold. Let K =

{K1, . . . ,Kn} sensitive itemsets, A non-sensitive itemsets.

• Transform D → D′ such that

1. SupportD′(K) < thr − s for all Ki ∈ K

2. The number of itemsets K in A such that SupportD′(K) < thr−s

is minimized.

This problem is NP-hard (Atallah et al., 1999)

Because of this: heuristic approaches
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Data Privacy

Result-driven for association rules mining: heuristic algorithm

• Algorithm.

While HI is not hidden do

HI’ = HI;

While |HI ′| > 2 do

P = subsets of HI with cardinality |HI ′| − 1;

HI’= argmaxhi∈P Support(hi);

Ts = transaction in T supporting HI that affects

the mininum number of itemsets of cardinality 2;

Set HI’ = 0 in Ts;

Propagate results forward;
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• Algorithm.

While HI is not hidden do

HI’ = HI;

While |HI ′| > 2 do

P = subsets of HI with cardinality |HI ′| − 1;

HI’= argmaxhi∈P Support(hi);

Ts = transaction in T supporting HI that affects

the mininum number of itemsets of cardinality 2;

Set HI’ = 0 in Ts;

Propagate results forward;

• The algorithm does not cause false positives,

• only false negatives (rules no longer inferred)
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Result-driven for association rules mining: heuristic algorithm

• Example. Computation of the algorithm to hide HI = {a, b, c}.
Transaction Items

number

T1 a, b, c, d

T2 a, b, c

T3 a, c, d

◦ Subsets of HI with cardinality |HI| − 1: {a, b}, {b, c}, {a, c}.
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Result-driven for association rules mining: heuristic algorithm

• Example. Computation of the algorithm to hide HI = {a, b, c}.
Transaction Items

number

T1 a, b, c, d

T2 a, b, c

T3 a, c, d

◦ Subsets of HI with cardinality |HI| − 1: {a, b}, {b, c}, {a, c}.

◦ Support({a, b}) = Support({b, c}) = 2, and Support({a, c}) = 3

→ We select HI ′ = {a, c}.

◦ Set of transactions in T that support HI (and HI ′): {T1, T2}.

◦ Ts transaction in {T1, T2} that affects the minimum number of

itemsets of cardinality 2: T2 affects less itemsets than T1.
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Result-driven for association rules mining: heuristic algorithm

• Example. Computation of the algorithm to hide HI = {a, b, c}.

• Remove one of the items in HI ′ = {a, c} that are in T2:
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Data Privacy

Result-driven for association rules mining: heuristic algorithm

• Example. Computation of the algorithm to hide HI = {a, b, c}.

• Remove one of the items in HI ′ = {a, c} that are in T2:

Both have the same support, we select one of them at random.

• Propagate the results forward: recompute supports
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Data privacy mechanisms

Result-driven
Tabular data (Ch. 3.6)
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Tabular data

• Aggregates of data with respect to a few variables.

◦ Aggregates of data can lead to disclosure
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Tabular data

• Aggregates of data with respect to a few variables. Ex. (Castro, 2012)

P1 P2 P3 P4 P5 Total
M1 2 15 30 20 10 77
M2 72 20 1 30 10 133
M3 38 38 15 40 5 136

TOTAL 112 73 46 90 25 346

Cell (M2, P3): number of people with profession P3 living in municipality M2.

P1 P2 P3 P4 P5 Total
M1 360 450 720 400 360 2290
M2 1440 540 22 570 320 2892
M3 722 1178 375 800 363 3438

TOTAL 2522 2168 1117 1770 1043 8620

Cell (M2, P3): total salary received by people with profession P3 living in M2.
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Tabular data

• Aggregates of data do not avoid disclosure

◦ External attack. Combining the information of the two tables the

adversary is able to infer some sensitive information.

⇒ (M2, P3)
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Tabular data

• Aggregates of data do not avoid disclosure

◦ External attack. Combining the information of the two tables the

adversary is able to infer some sensitive information.

⇒ (M2, P3)

◦ Internal attack. A person whose data is in the database is able to

use the information of the tables to infer some sensitive information

about other individuals. A doctor infers the salary of another doctor.

⇒ (M1, P1)

◦ Internal attack with dominance. This is an internal attack where

a contribution of one person, say p0, in a cell is so high that permits

p0 to obtain accurate bounds of the contribution of the others.

⇒ (M3, P5) with 5 people. salary(p0) = 350, then the salary of the

other four is at most 363− 350 = 13.
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Tabular data

• Privacy model / disclosure risk measure

• Data protection mechanism

• Information loss
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Tabular data: privacy model

• Rule (n, k)-dominance. A cell is sensitive when n contributions

represent more than the k fraction of the total. That is, the cell is

sentitive when
∑n

i=1 cσ(i)
∑t

i=1 ci
> k

where {σ(1), ..., σ(t)} is a permutation of {1, ..., t} such that cσ(i−1) ≥

cσ(i) for all i = {2, ..., t} (i.e., cσ(i) is the ith largest element in the

collection c1, ..., ct).

This rule is used with n = 1 or n = 2 and k > 0.6.
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Tabular data: privacy model

• Rule pq. This rule is also known as the prior/posterior rule. It is based

on two positive parameters p and q with p < q. Prior to the publication

of the table, any intruder can estimate the contribution of contributors

within the q percent. Then, a cell is considered sensitive if an intruder

on the light of the released table can estimate the contribution of a

contributor within p percent.

• Rule p%. This rule can be seen as a special case of the previous rule

when no prior knowledge is assumed on any cell. Because of that, it

can be seen as equivalent to the previous rule with q = 100.
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Tabular data: data protection mechanism

• Protection of a tabular data

◦ Perturbative. values are modified

⋆ Post-tabular. Noise added after table preparation

− Rounding

− Controlled tabular adjustment (CTA). Replacing a table by

another that is similar

⋆ Pre-tabular. Noise added before table preparation

◦ Non-perturbative. cell suppression
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Tabular data: data protection mechanism

• Protection of a tabular data: cell suppression

• Primary suppression not enough:

P1 P2 P3 P4 P5 Total
M1 360 450 720 400 360 2290
M2 1440 540 22 570 320 2892
M3 722 1178 375 800 363 3438

TOTAL 2522 2168 1117 1770 1043 8620

• Secondary suppressions required:

P1 P2 P3 P4 P5 Total
M1 360 450 400 2290
M2 1440 540 570 2892
M3 722 1178 375 800 363 3438

TOTAL 2522 2168 1117 1770 1043 8620

• Solutions built using optimization
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Tabular data: data protection mechanism

• Protection of a tabular data: cell suppression

◦ Decide which cells to suppress

◦ Given a set of sensitive cells

◦ Estimated values for suppressed cells should be outside a given

interval

(upper and lower protection levels;

estimation based on non suppressed values + linear relationships)

⇒ Problem formulated as an optimization problem
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Tabular data: data protection mechanism

• Protection of a tabular data: cell suppression

min
n
∑

i=1

wiyi

subject to

Adl = 0

(kloi − ai)yi ≤ dl,i ≤ (kupi − ai)yi for all i = 1, . . . , n

dl,p ≤ −lop for all p ∈ P

Adu = 0

(kloi − ai)yi ≤ du,i ≤ (kupi − ai)yi for all i = 1, . . . , n

du,p ≥ upp for all p ∈ P

yi ∈ {0, 1} for i = 1, . . . , n
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Tabular data: information loss

• Minimal number of suppressions

• Weights associated to cells: minimal weight of suppressed cells
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Summary
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Terminology

• Main concepts

◦ Naive anonymization does not work

◦ Transparency and Privacy by design

◦ (large number of) Privacy models

• Data privacy mechanisms

◦ Data-driven (unknown use):

⋆ databases (masking methods, IL, DR)

⋆ tabular data (risk cells, IL)

◦ Computation-driven (known use):

⋆ differential privacy

⋆ secure multiparty computation

◦ Result-driven
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