Oslo, 2017

Privacy models and disclosure risk: integral privacy

Vicenç Torra

Sept. 14, 2017

Privacy, Information and Cyber-Security Center SAIL, School of Informatics, University of Skövde, Sweden

Outline

Disclosure risk (DR)

- The worst-case scenario
 - DR using ML in reidentification: optimal attacks
 - DR under the transparency principle: transparency attacks
- Integral privacy
 - Privacy from models

Outline

Outline

- 1. Introduction
- 2. Disclosure risk assessment
 - Worst-case scenario
 - ML for reidentification
- 3. Transparency
 - Definition
 - Attacking Rank Swapping
 - Avoiding transparency attack
- 4. Updating databases and privacy: Integral privacy
- 5. Summary

Introduction > Outline

Introduction

Introduction

Introduction >

Introduction

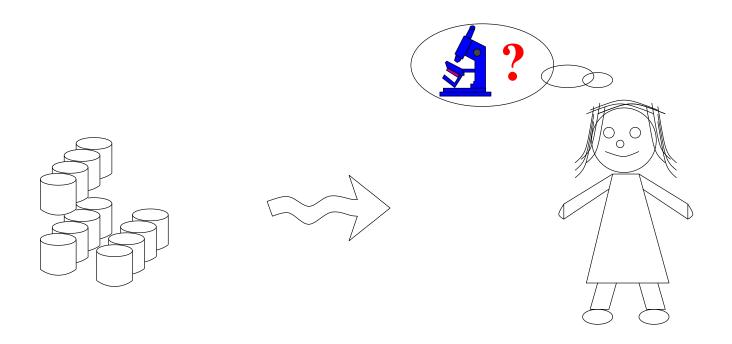
Introduction Data protection mechanisms

Outline

Data protection mechanisms

Classification w.r.t. our knowledge on the computation of a third party

- Data-driven or general purpose (analysis not known)
 - → anonymization methods / masking methods
- Computation-driven or specific purpose (analysis known)
 - → cryptographic protocols, differential privacy
- Result-driven (analysis known: protection of its results)
 Figure. Basic model (multiple/dynamic databases + multiple people)



Introduction

Introduction Privacy models and disclosure risk assessment

Disclosure risk assessment

Disclosure risk. Disclosure: leakage of information.

- Identity disclosure vs. Attribute disclosure
 - Attribute disclosure: (e.g. learn about Alice's salary)
 - * Increase knowledge about an attribute of an individual
 - Identity disclosure: (e.g. find Alice in the database)
 - * Find/identify an individual in a database (e.g., masked file)

Within machine learning, some attribute disclosure is expected.

Vicenç Torra; Disclosure Risk

Oslo, 2017 7 / 90

Disclosure risk assessment

Disclosure risk.

- Boolean vs. quantitative privacy models
 - Boolean: Disclosure either takes place or not. Check whether the definition holds or not. Includes definitions based on a threshold.
 - Quantitative: Disclosure is a matter of degree that can be quantified. Some risk is permitted.
- minimize information loss vs. multiobjetive optimization

Vicenç Torra; Disclosure Risk

Oslo, 2017 8 / 90

Disclosure risk assessment

Privacy models.

- **Secure multiparty computation.** Several parties want to compute a function of their databases, but only sharing the result.
- Reidentification privacy. Avoid finding a record in a database.
- **k-Anonymity.** A record indistinguishable with k-1 other records.
- **Differential privacy.** The output of a query to a database should not depend (much) on whether a record is in the database or not.
- Result privacy. We want to avoid some results when an algorithm is applied to a database.
- **Interval disclosure.** The value for an attribute is outside an interval computed from the protected value. I.e., original values are different enough.
- **Integral privacy.** Inference on the databases. E.g., changes have been applied to a database.

Disclosure risk assessment

Boolean definitions of risk.

- k-Anonymity (Boolean definition / identity disclosure)
- Secure multiparty computation (Boolean / identity and attribute disclosure)
- Result privacy (Boolean definition / attribute disclosure)
- Differential privacy (Boolean definition / attribute disclosure)

Quantitative measures of risk. alternative measures.

- Re-identification (for identity disclosure). Different ways to evaluate re-identification by means of record linkage.
- Uniqueness (for identity disclosure).
- Interval disclosure (for attribute disclosure). Several definitions for different types of attributes.

Disclosure risk assessment

Disclosure risk.

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures

Disclosure risk assessment

Disclosure risk.

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures

Classification of privacy models (and measures)

	Attribute disclosure	Identity disclosure
Boolean	Differential privacy Result privacy Secure multipar	k–Anonymity ty computation
Quantitative	Interval disclosure	Re-identification (record linkage) Uniqueness

Disclosure risk assessment

Classification of privacy models (and measures)

	Attribute disclosure	Identity disclosure
Boolean	Differential privacy Result privacy Secure multipar	k–Anonymity
	Secure manipar	ty computation
	Interval disclosure	Re-identification
Quantitative		(record linkage)
		Uniqueness

Other privacy models

- Other models combining features: I-diversity, secure multiparty computation ensuring differential privacy
- Alternative but related models: k-confusion, k-concealment

Introduction > Settings Outline

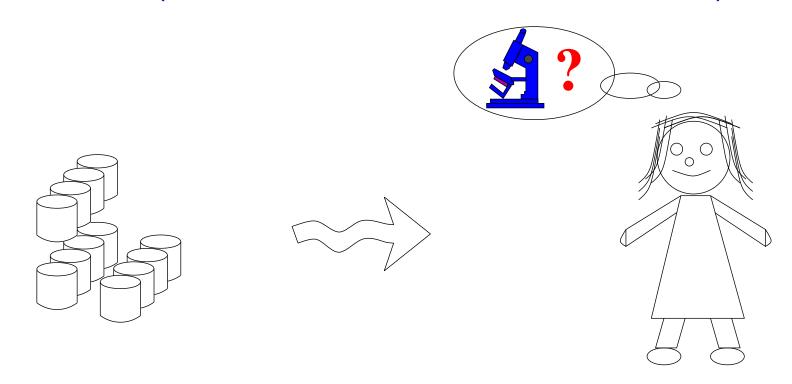
Introduction

Introduction Masking methods and disclosure risk assessment

Data protection mechanisms

Classification w.r.t. our knowledge on the computation of a third party

- Data-driven or general purpose (analysis not known)
 - → anonymization methods / masking methods
- Computation-driven or specific purpose (analysis known)
 - → cryptographic protocols, differential privacy
- Result-driven (analysis known: protection of its results)

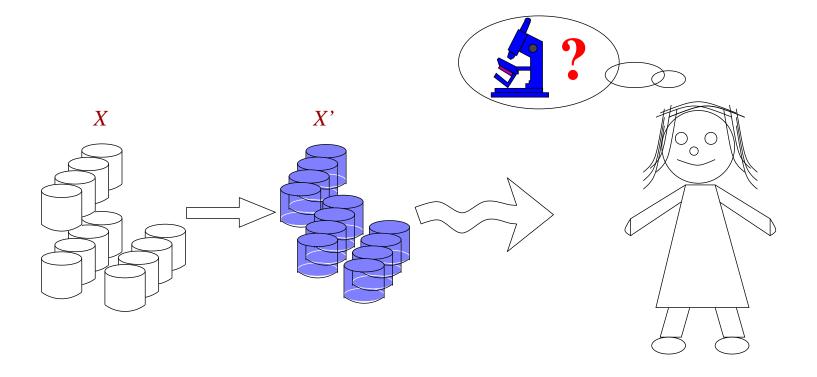


Introduction > Masking methods

Outline

Masking methods

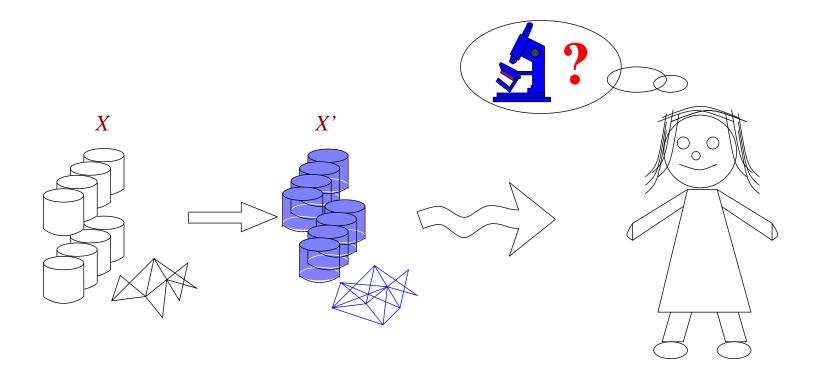
Anonymization/masking method: Given a data file X compute a file X' with data of *less quality*.



Masking methods

Approach valid for different types of data

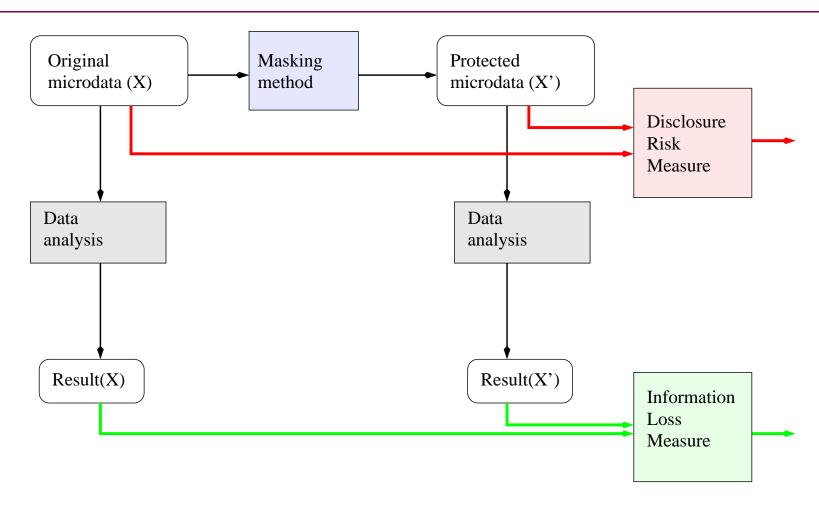
Databases, documents, search logs, social networks, . . .
 (also masking taking into account semantics: wordnet, ODP)



Introduction > Masking methods

Outline

Research questions



Masking methods (anonymization methods). Build X' from X.

Masking methods (anonymization methods). Build X' from X.

Perturbative. (less quality=erroneous data)
 E.g. noise addition/multiplication, microaggregation, rank swapping

Masking methods (anonymization methods). Build X' from X.

- Perturbative. (less quality=erroneous data)
 E.g. noise addition/multiplication, microaggregation, rank swapping
- Non-perturbative. (less quality=less detail)
 E.g. generalization, suppression

Masking methods (anonymization methods). Build X' from X.

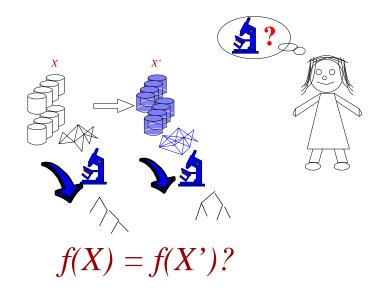
- Perturbative. (less quality=erroneous data)
 E.g. noise addition/multiplication, microaggregation, rank swapping
- Non-perturbative. (less quality=less detail)
 E.g. generalization, suppression
- Synthetic data generators. (less quality=not real data)
 E.g. (i) model from the data; (ii) generate data from model

Research questions: Information loss

Information loss measures. Compare X and X' w.r.t. analysis (f)

$$IL_f(X, X') = divergence(f(X), f(X'))$$

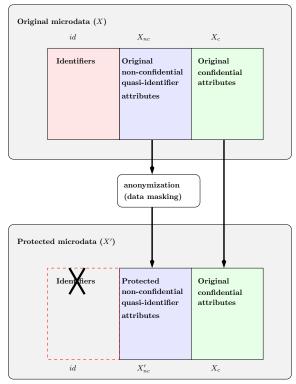
- f: generic vs. specific (data uses)
 - Statistics
 - Machine learning: Clustering and classification
 For example, classification using decision trees
 - o ... specific measures for graphs



Research questions: Disclosure risk assessment

Measuring disclosure risk in terms of # of reidentifications.

- Scenario: $X = id||X_{nc}||X_c$.
- Protection of the attributes
 - o Identifiers. Usually removed or encrypted.
 - \circ Confidential. X_c are usually not modified. $X_c' = X_c$.
 - \circ **Quasi-identifiers.** Apply masking method ρ . $X'_{nc} = \rho(X_{nc})$.



Vicenç Torra; Disclosure Risk

Oslo, 2017 20 / 90

Research questions: Disclosure risk assessment

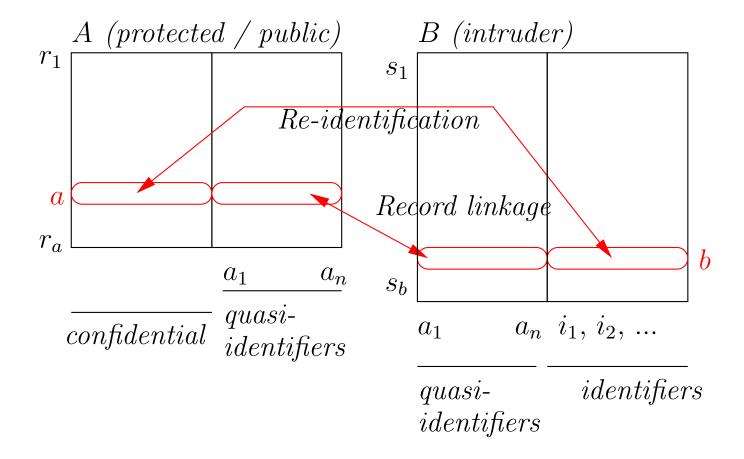
- A: File with the protected data set
- B: File with the data from the intruder (subset of original X)



Research questions: Disclosure risk assessment

A scenario for identity disclosure: $X = id||X_{nc}||X_c|$

- A: File with the protected data set
- B: File with the data from the intruder (subset of original X)



Vicenç Torra; Disclosure Risk

Oslo, 2017 22 / 90

Research questions: Disclosure risk assessment

A scenario for identity disclosure. Reidentification

• Reidentification using the common attributes (quasi-identifiers):

Research questions: Disclosure risk assessment

A scenario for identity disclosure. Reidentification

 Reidentification using the common attributes (quasi-identifiers): leads to identity disclosure

Research questions: Disclosure risk assessment

- Reidentification using the common attributes (quasi-identifiers): leads to identity disclosure
- Attribute disclosure may be possible

Research questions: Disclosure risk assessment

- Reidentification using the common attributes (quasi-identifiers): leads to identity disclosure
- Attribute disclosure may be possible when reidentification permits to link confidential values to identifiers (in this case: identity disclosure implies attribute disclosure)

Research questions: Disclosure risk assessment

- Flexible scenario for identity disclosure
 - \circ A protected file using a masking method
 - \circ B (intruder's) is a subset of the original file.

Research questions: Disclosure risk assessment

- Flexible scenario for identity disclosure
 - \circ A protected file using a masking method
 - \circ B (intruder's) is a subset of the original file.
 - → intruder with information on only some individuals

Research questions: Disclosure risk assessment

- Flexible scenario for identity disclosure
 - \circ A protected file using a masking method
 - \circ B (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals
 - → intruder with information on only some characteristics

Research questions: Disclosure risk assessment

- Flexible scenario for identity disclosure
 - \circ A protected file using a masking method
 - \circ B (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals
 - → intruder with information on only some characteristics
 - But also,
 - $\star B$ with a schema different to the one of A (different attributes)
 - * Other scenarios. E.g., synthetic data

Disclosure risk > Distances

Worst-case scenario

Disclosure risk assessment: optimal attacks

Worst-case scenario

Worst-case scenario when measuring disclosure risk

Worst-case scenario

- Flexible scenario. Different assumptions on what available E.g., only partial information on individuals/characteristics
- Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk)

Worst-case scenario

- Flexible scenario. Different assumptions on what available E.g., only partial information on individuals/characteristics
- Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk)
 - Maximum information

Worst-case scenario

- Flexible scenario. Different assumptions on what available E.g., only partial information on individuals/characteristics
- Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk)
 - Maximum information
 - Most effective reidentification method

Worst-case scenario

- Flexible scenario. Different assumptions on what available E.g., only partial information on individuals/characteristics
- Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk)
 - Maximum information: Use original file to attack
 - Most effective reidentification method: Use ML
 Use information on the masking method (transparency)

Worst-case scenario

ML for reidentification (learning distances)

Worst-case scenario

Worst-case scenario for disclosure risk assessment

- Distance-based record linkage
- Parametric distances with best parameters E.g.,
 - Weighted Euclidean distance

Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with Euclidean distance equivalent to:

$$d^{2}(a,b) = ||\frac{1}{n}(a-b)||^{2} = \sum_{i=1}^{n} \frac{1}{n} (diff_{i}(a,b))$$
$$= WM_{p}(diff_{1}(a,b), \dots, diff_{n}(a,b))$$

with
$$p = (1/n, \dots, 1/n)$$
 and
$$diff_i(a, b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$$

- $p_i = 1/n$ means equal importance to all attributes
- Appropriate for attributes with equal discriminatory power (e.g., same noise, same distribution)

Worst-case scenario

Worst-case scenario for disclosure risk assessment

 Distance-based record linkage with weighted mean distance (weighted Euclidean distance)

$$d^2(a,b) = WM_p(diff_1(a,b), \dots, diff_n(a,b))$$

with arbitrary vector
$$p = (p_1, \dots, p_n)$$
 and $diff_i(a, b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$

Worst-case scenario

Worst-case scenario for disclosure risk assessment

 Distance-based record linkage with weighted mean distance (weighted Euclidean distance)

$$d^2(a,b) = WM_p(diff_1(a,b), \dots, diff_n(a,b))$$

with arbitrary vector
$$p = (p_1, \dots, p_n)$$
 and $diff_i(a, b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$

Worst-case: Optimal selection of the weights. How??

- Supervised machine learning approach
- Using an optimization problem

Worst-case scenario

Worst-case scenario for disclosure risk assessment

Distance-based record linkage with parametric distances
 (distance/metric learning): C a combination/aggregation function

$$d^2(a,b) = \mathbb{C}_p(diff_1(a,b),\ldots,diff_n(a,b))$$

with parameter p and

$$diff_i(a,b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$$

Worst-case scenario

Worst-case scenario for disclosure risk assessment

Distance-based record linkage with parametric distances
 (distance/metric learning): C a combination/aggregation function

$$d^{2}(a,b) = \mathbb{C}_{p}(diff_{1}(a,b), \dots, diff_{n}(a,b))$$

with parameter p and

$$diff_i(a,b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$$

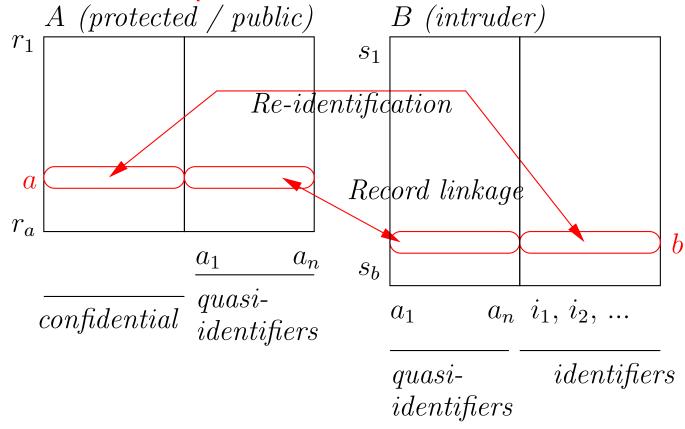
Worst-case: Optimal selection of the parameter p. How??

- Supervised machine learning approach
- Using an optimization problem

Worst-case scenario

Worst-case scenario for distance-based record linkage

- Optimal weights using a supervised machine learning approach
- We need a set of examples from:



Formalization of the problem

Machine Learning for distance-based record linkage

- Generic solution, using
 - \circ an arbitrary combination function \mathbb{C} (aggregation)
 - \circ with parameter p

$$d(a_i, b_j) = \mathbb{C}_p(diff_1(a, b), \dots, diff_n(a, b))$$

Formalization of the problem

Machine Learning for distance-based record linkage

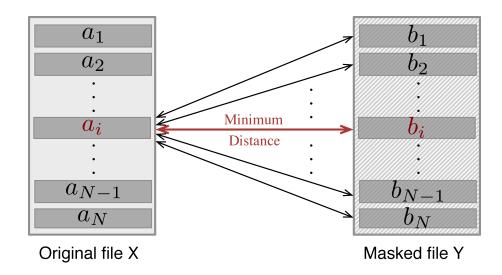
- ullet Generic solution, using ${\mathbb C}$ with parameter p
- Goal (A and B aligned)
 - o as much correct reidentifications as possible
 - \circ For record $i: d(a_i, b_i) \geq d(a_i, b_i)$ for all j

Formalization of the problem

Machine Learning for distance-based record linkage

- ullet Generic solution, using ${\mathbb C}$ with parameter p
- Goal (A and B aligned)
 - o as much correct reidentifications as possible
 - \circ For record i: $d(a_i,b_j) \geq d(a_i,b_i)$ for all j That is,

$$\mathbb{C}_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) \ge \mathbb{C}_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i))$$



Vicenç Torra; Disclosure Risk

Oslo, 2017 36 / 90

Formalization of the problem

Machine Learning for distance-based record linkage

- Goal
 - o as much correct reidentifications as possible
 - Maximize the number of records a_i such that $d(a_i,b_j) \geq d(a_i,b_i)$ for all j
 - \circ If record a_i fails for at least one b_i

$$d(a_i, b_j) \ngeq d(a_i, b_i)$$

Then, let $K_i = 1$ in this case, then for a large enough constant C

$$d(a_i, b_i) + CK_i \ge d(a_i, b_i)$$

Formalization of the problem

Machine Learning for distance-based record linkage

Goal

- o as much correct reidentifications as possible
- Maximize the number of records a_i such that $d(a_i, b_i) \ge d(a_i, b_i)$ for all j
- \circ If record a_i fails for at least one b_j

$$d(a_i, b_j) \ngeq d(a_i, b_i)$$

Then, let $K_i = 1$ in this case, then for a large enough constant C

$$d(a_i, b_j) + CK_i \ge d(a_i, b_i)$$

That is,

$$\mathbb{C}_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) + CK_i \ge \mathbb{C}_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i))$$

Formalization of the problem

Machine Learning for distance-based record linkage

- Goal
 - o as much correct reidentifications as possible
 - Minimize K_i : minimize the number of records a_i that fail $d(a_i,b_j) \geq d(a_i,b_i)$ for all j
 - $\circ K_i \in \{0,1\}$, if $K_i = 0$ reidentification is correct

$$d(a_i, b_i) + CK_i \ge d(a_i, b_i)$$

Formalization of the problem

Machine Learning for distance-based record linkage

- Goal
 - o as much correct reidentifications as possible
 - o Minimize K_i : minimize the number of records a_i that fail
- Formalization:

$$Minimize \sum_{i=1}^{N} K_i$$

Subject to:

$$\mathbb{C}_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) -$$

$$- \mathbb{C}_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i)) + CK_i > 0$$

$$K_i \in \{0, 1\}$$

Additional constraints according to $\mathbb C$

Formalization of the problem

Machine Learning for distance-based record linkage

- Example: the case of the weighted mean $\mathbb{C} = WM$
- Formalization:

$$Minimize \sum_{i=1}^{N} K_i$$

Subject to:

$$\begin{split} WM_p(\textit{diff}_1(a_i,b_j),\ldots,\textit{diff}_n(a_i,b_j)) - \\ - WM_p(\textit{diff}_1(a_i,b_i),\ldots,\textit{diff}_n(a_i,b_i)) + CK_i > 0 \\ K_i \in \{0,1\} \\ \sum_{i=1}^n p_i = 1 \\ p_i \geq 0 \end{split}$$

Experiments and distances

Machine Learning for distance-based record linkage

- ullet Distances considered through the following ${\mathbb C}$
 - Weighted mean.

Weights: importance to the attributes

Parameter: weighting vector n parameters

Experiments and distances

Machine Learning for distance-based record linkage

- ullet Distances considered through the following ${\mathbb C}$
 - Weighted mean.

Weights: importance to the attributes

Parameter: weighting vector n parameters

OWA - linear combination of order statistics (weighted):

Weights: to discard lower or larger distances

Parameter: weighting vector n parameters

Experiments and distances

Machine Learning for distance-based record linkage

- ullet Distances considered through the following ${\mathbb C}$
 - Choquet integral.

Weights: interactions of sets of attributes $(\mu: 2^X \to [0,1])$

Parameter: non-additive measure: $2^n - 2$ parameters

Vicenç Torra; Disclosure Risk

Oslo, 2017 42 / 90

Experiments and distances

Machine Learning for distance-based record linkage

- ullet Distances considered through the following ${\mathbb C}$
 - Choquet integral.

Weights: interactions of sets of attributes $(\mu: 2^X \to [0,1])$

Parameter: non-additive measure: $2^n - 2$ parameters

Bilinear form - generalization of Mahalanobis distance

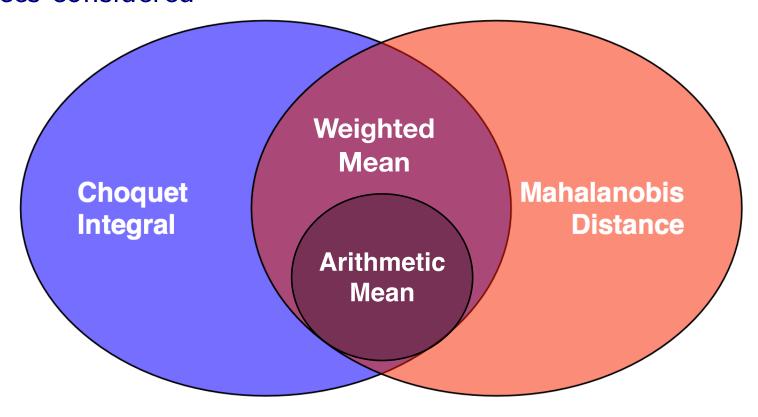
Weights: interactions between pairs of attributes

Parameter: square matrix: $n \times n$ parameters

Experiments and distances

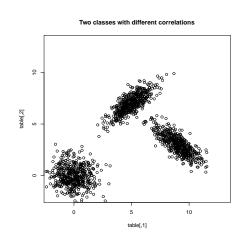
Machine Learning for distance-based record linkage

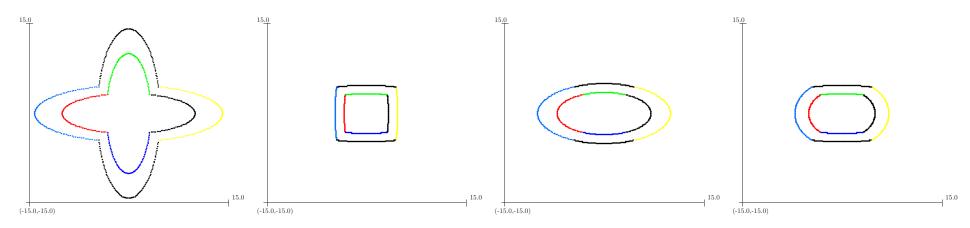
Distances considered



Choquet integral. A fuzzy integral w.r.t. a fuzzy measure (non-additive measure). Cl generalizes Lebesgue integral. Interactions.

Footnote: Mahalanobis / CI





Experiments and distances

Machine Learning for distance-based record linkage

- Data sets considered (from CENSUS dataset)
 - \circ M4-33: 4 attributes microaggregated in groups of 2 with k=3.
 - \circ M4-28: 4 attributes,2 attributes with k=2, and 2 with k=8.
 - \circ M4-82: 4 attributes, 2 attributes with k=8, and 2 with k=2.
 - \circ *M5-38*: 5 attributes, 3 attributes with k=3, and 2 with k=8.
 - \circ *M6-385*: 6 attributes, 2 attributes with k=3, 2 attributes with k=8, and 2 with k=5.
 - \circ *M6-853*: 6 attributes, 2 attributes with k=8, 2 attributes with k=5, and 2 with k=3.

Experiments and distances

Machine Learning for distance-based record linkage

•	Percentage	of t	he num	nber of	correct	re-iden	itifications.
		M4-33	M4-28	M4-82	<i>M5-38</i>	<i>M6-385</i>	<i>M6-853</i>
	d^2AM	84.00	68.50	71.00	39.75	78.00	84.75
	d^2MD	94.00	90.00	92.75	88.25	98.50	98.00
	d^2WM	95.50	93.00	94.25	90.50	99.25	98.75
	d^2WM_m	95.50	93.00	94.25	90.50	99.25	98.75
	d^2CI	95.75	93.75	94.25	91.25	99.75	99.25
	d^2CI_m	95.75	93.75	94.25	90.50	99.50	98.75
	d^2SB_{NC}	$\boldsymbol{96.75}$	94.5	95.25	92.25	99.75	$\boldsymbol{99.50}$
	d^2SB	96.75	94.5	95.25	92.25	99.75	$\boldsymbol{99.50}$
	d^2SB_{PD}	_	_	_	_	_	99.25

 $\overline{d_m}$: distance; d_{NC} : positive; d_{PD} : positive-definite matrix

Experiments and distances

Machine Learning for distance-based record linkage

Computation time comparison (in seconds).

	M4-33	M4-28	M4-82	<i>M5-38</i>	<i>M6-385</i>	<i>M6-853</i>
d^2WM	29.83	41.37	24.33	718.43	11.81	17.77
d^2WM_m	3.43	6.26	2.26	190.75	4.34	6.72
d^2CI	280.24	427.75	242.86	42,731.22	24.17	87.43
d^2CI_m	155.07	441.99	294.98	4,017.16	79.43	829.81
d^2SB_{NC}	32.04	2,793.81	150.66	10,592.99	13.65	14.11
d^2SB	13.67	3,479.06	139.59	169,049.55	13.93	13.70

1h=3600; 1d=86400s

• Constraints specific to weighted mean and Choquet integral for distances

N: number of records; n: number of attributes

The manual of the control for manual of a detributed						
	d^2WM_m	d^2CI_m				
Additional	$\sum_{i=1}^{n} p_i = 1$	$\mu(\emptyset) = 0$				
Constraints	$p_i > 0$	$\mu(V) = 1$				
		$\mu(A) \leq \mu(B)$ when $A \subseteq B$				
		$\mu(A) + \mu(B) \ge \mu(A \cup B) + \mu(A \cap B)$				
Total Constr.	N(N-1) + N + 1 + n	$N(N-1) + N + 2 + (\sum_{k=2}^{n} {n \choose k} k) + {n \choose 2}$				

Experiments and distances

Machine Learning for distance-based record linkage

• A summary of the experiments

-	AM	MD	WM	OWA	SB	CI
Computation	Very fast	Very fast	Fast	regular	Hard	Hard
Results	Worse	Good	Good	Bad	Very Good	Very Good
Information	No	No	Few	Few	Large	Large

Transparency

Disclosure risk assessment: Transparency attacks

Outline

Transparency > Definition Outline

Transparency

Transparency. Definition

Transparency

Transparency.

• "the release of information about processes and even parameters used to alter data" (Karr, 2009).

Transparency principle. (similar to the Kerckhoffs's principle in cryptography)

• "Given a privacy model, a masking method should be compliant with this privacy model even if everything about the method is public knowledge" (Torra, 2017, p. 17)

Transparency

Transparency principle.

 "Given a privacy model, a masking method should be compliant with this privacy model even if everything about the method is public knowledge"

Effect.

• Information Loss. Positive effect, less loss/improve inference E.g., noise addition $\rho(X)=X+\epsilon$ where ϵ s.t. $E(\epsilon)=0$ and $Var(\epsilon)=kVar(X)$

$$Var(X') = Var(X) + kVar(X) = (1+k)Var(X).$$

Transparency > Definition Outline

Transparency

Transparency principle.

 "Given a privacy model, a masking method should be compliant with this privacy model even if everything about the method is public knowledge"

Effect.

- Disclosure Risk. Negative effect, larger risk
 - Attack to single-ranking microaggregation (Winkler, 2002)
 - o Formalization of the transparency attack (Nin, Herranz, Torra, 2008)
 - Attacks to microaggregation and rank swapping (Nin, Herranz, Torra, 2008)

Transparency

Attacking Rank Swapping

Formalization:

- RS transparency attack (similar for microaggregation)
 - \circ X and X' original and masked files, $\mathbf{V} = (V_1, \dots, V_s)$ attributes
 - $\circ B_j(x)$ set of masked records associated to x w.r.t. jth variable.
 - \circ Then, for record x, the masked record x_{ℓ} corresponding to x is in the intersection of $B_{j}(x)$.

$$x_{\ell} \in \cap_{j} B_{j}(x).$$

Worst case scenario in record linkage: upper bound of risk

Rank swapping

For ordinal/numerical attributes

Undo the sorting step;

Applied attribute-wise

Rank swapping.

- Marginal distributions not modified.
- Correlations between the attributes are modified
- Good trade-off between information loss and disclosure risk

Under the transparency principle we publish

• X' (protected data set)

Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping

Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping
- ullet parameter of the method: p (proportion of |X|)

Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping
- ullet parameter of the method: p (proportion of |X|)

Then, the intruder can use (method, parameter) to attack

Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping
- ullet parameter of the method: p (proportion of |X|)

Then, the intruder can use (method, parameter) to attack

 \rightarrow (method, parameter) = (rank swapping, p)

Intruder perspective.

• Intruder data are available

Intruder perspective.

- Intruder data are available
- All protected values are available.

Intruder perspective.

- Intruder data are available
- All protected values are available.

I.e.,

All data in the original data set are also available

Intruder perspective.

- Intruder data are available
- All protected values are available.

I.e.,

All data in the original data set are also available

Intruder's attack for a single attribute

• Given a value a, we can define the set of possible swaps for a_i Proceed as rank swapping does: a_1, \ldots, a_n ordered values If $a_i = a$, it can only be swapped with a_ℓ in the range

$$\ell \in [i+1, \min(n, i+p*|X|/100)]$$

Outline

Transparency attack

Intruder's attack for a single attribute attribute V_j

• Define $B_j(a)$ the set of masked records that can be the masked version of a

Intruder's attack for a single attribute attribute V_j

• Define $B_j(a)$ the set of masked records that can be the masked version of a No uncertainty on $B_j(a)$

$$x'_{\ell} \in B_i(a)$$

Intruder's attack for a single attribute attribute V_j

• Define $B_j(a)$ the set of masked records that can be the masked version of a No uncertainty on $B_j(a)$

$$x'_{\ell} \in B_j(a)$$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

Intruder's attack for a single attribute attribute V_j

• Define $B_j(a)$ the set of masked records that can be the masked version of a No uncertainty on $B_j(a)$

$$x'_{\ell} \in B_j(a)$$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

$$x_{\ell}' \in \cap_{1 \le j \le c} B_j(x_i).$$

Intruder's attack for a single attribute attribute V_j

• Define $B_j(a)$ the set of masked records that can be the masked version of a No uncertainty on $B_j(a)$

$$x'_{\ell} \in B_j(a)$$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

$$x_{\ell}' \in \cap_{1 \le j \le c} B_j(x_i).$$

No uncertainty!

Intruder's attack for all available attributes

Intersection attack:

$$x_{\ell}' \in \cap_{1 \le j \le c} B_j(x_i).$$

- When $|\bigcap_{1 \le i \le c} B_i(x_i)| = 1$, we have a true match
- Otherwise, we can apply record linkage within this set

Intruder's attack. Example.

• Intruder's record: $x_2 = (6, 7, 10, 2)$, p = 2. First attribute: $x_{21} = 6$

• $B_1(a=6) = \{(4,1,10,10), (5,5,8,1), (6,7,6,3), (7,3,5,6), (8,4,2,2)\}$

Original file				Masked file				$B(x_{2j})$
a_1	a_2	a_3	a_4	a_1'	a_2'	a_3'	a_4'	$B(x_{21})$
8	9	1	3	10	10	3	5	
6	7	10	2	5	5	8	1	X
10	3	4	1	8	4	2	2	X
7	1	2	6	9	2	4	4	
9	4	6	4	7	3	5	6	X
2	2	8	8	4	1	10	10	X
1	10	3	9	3	9	1	7	
4	8	7	10	2	6	9	8	
5	5	5	5	6	7	6	3	X
3	6	9	7	1	8	7	9	

Intruder's attack. Example.

• Intruder's record: $x_2 = (6, 7, 10, 2)$, p = 2. Second attribute: $x_{22} = 7$

• $B_2(a=7) = \{(5,5,8,1), (2,6,9,8), (6,7,6,3), (1,8,7,9), (3,9,1,7)\}$

Original file				Masked file				$B(x_{2j})$	
a_1	a_2	a_3	a_4	a_1'	a_2'	a_3'	a_4'	$B(x_{21})$	$B(x_{22})$
8	9	1	3	10	10	3	5		
6	7	10	2	5	5	8	1	X	X
10	3	4	1	8	4	2	2	X	
7	1	2	6	9	2	4	4		
9	4	6	4	7	3	5	6	X	
2	2	8	8	4	1	10	10	X	
1	10	3	9	3	9	1	7		X
4	8	7	10	2	6	9	8		X
5	5	5	5	6	7	6	3	X	X
3	6	9	7	1	8	7	9		X

Intruder's attack. Example.

• Intruder's record: $x_2 = (6, 7, 10, 2), p = 2.$

$$B_1(x_{21} = 6) = \{(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)\}$$

$$B_2(x_{22} = 7) = \{(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)\}$$

$$\circ B_3(x_{23} = 10) = \{(5, 5, 8, 1), (2, 6, 9, 8), (4, 1, 10, 10)\}\$$

$$\circ B_4(x_{24}=2) = \{(5,5,8,1), (8,4,2,2), (6,7,6,3), (9,2,4,4)\}$$

The intersection is a single record

(5,5,8,1)

Intruder's attack. Application.

- Data:
 - Census (1080 records, 13 attributes)
 - EIA (4092 records, 10 attributes)
- Rank swaping parameter:
 - $p = 2, \dots, 20$

Intruder's attack. Result

		Census		EIA			
	RSLD	DLD	PLD	RSLD	DLD	PLD	
rs 2	77.73	73.52	71.28	43.27	21.71	16.85	
rs 4	66.65	58.40	42.92	12.54	10.61	4.79	
rs 6	54.65	43.76	22.49	7.69	7.40	2.03	
rs 8	41.28	32.13	11.74	6.12	5.98	1.12	
rs 10	29.21	23.64	6.03	5.60	5.19	0.69	
rs 12	19.87	18.96	3.46	5.39	4.87	0.51	
rs 14	16.14	15.63	2.06	5.28	4.55	0.32	
rs 16	13.81	13.59	1.29	5.19	4.54	0.23	
rs 18	12.21	11.50	0.83	5.20	4.54	0.22	
rs 20	10.88	10.87	0.59	5.15	4.36	0.18	

Intruder's attack. Summary

- When $|\cap B_j| = 1$, this is a match. 25% of reidentifications in this way \neq 25% in distance-based or probabilistic record linkage.
- Approach applicable when the intruder knows a single record
- The more attributes the intruder has, the better is the reidentification.
 Intersection never increases when the number of attributes increases.
- When p is not known, an upper bound can help If the upper bound is too high, some $|\cap B_i|$ can be zero

Transparency

Avoiding Transparency Attack in Rank Swapping

Transparency aware methods

Avoiding transparency attack in rank swapping.

• Enlarge the B_j set to encompass the whole file.

Transparency aware methods

Avoiding transparency attack in rank swapping.

- Enlarge the B_j set to encompass the whole file.
- Then,

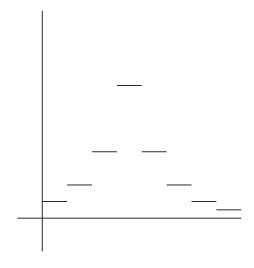
$$\cap B_i = X$$

Transparency aware methods

Approaches to avoid transparency attack in rank swapping.

• Rank swapping p-buckets. Select bucket B_s using

$$Pr[B_s \ is \ choosen \ |B_r] = \frac{1}{K} \frac{1}{2^{s-r+1}}.$$



• Rank swapping p-distribution. Swap a_i with a_ℓ where $\ell=i+r$ and r according to a N(0.5p,0.5p).

Updating and privacy
Outline

Updating databases and privacy

Transparency, updating databases and privacy

Motivation. Data mining: from databases to models

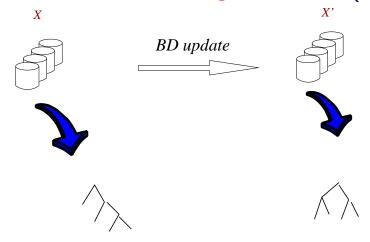
• Deletion/amendment may require the reconsideration of inferences.

Motivation. Data mining: from databases to models

Deletion/amendment may require the reconsideration of inferences.
 where, inferences = machine learning models (decision trees)

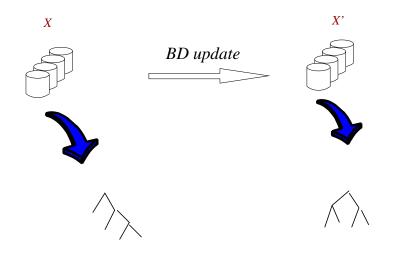
Motivation. Data mining: from databases to models

Deletion/amendment may require the reconsideration of inferences.
 where, inferences = machine learning models (decision trees)



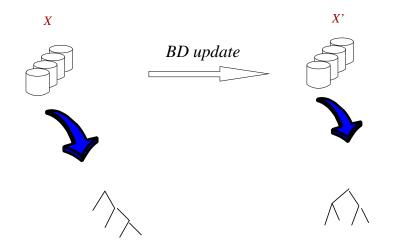
• Fairness, accountability and transparency principles in ML (how ?)

Motivation. Data mining: from databases to models



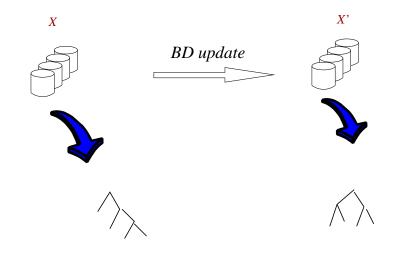
ullet Should we annul/nullify a model G learnt from a dataset when some records are deleted/amended? Decisions should be revoked?

Motivation. Data mining: from databases to models



• Should we annul/nullify a model G learnt from a dataset when some records are deleted/amended? Decisions should be revoked? e.g. G=decision tree (mortgage denied/accepted) μ =remove (all) people with salary between [15000,20000] EUR.

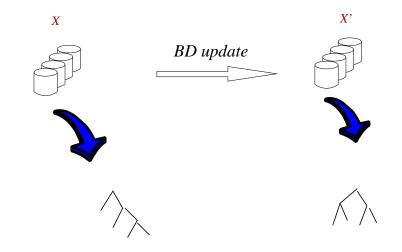
Motivation. Data mining: from databases to models



- Should we annul/nullify a model G learnt from a dataset when some records are deleted/amended? Decisions should be revoked? e.g. G=decision tree (mortgage denied/accepted) μ =remove (all) people with salary between [15000,20000] EUR.
- Given two (different) models G and G' extracted from the files, do they guarantee privacy on the modifications (μ) ?

Updating and privacy

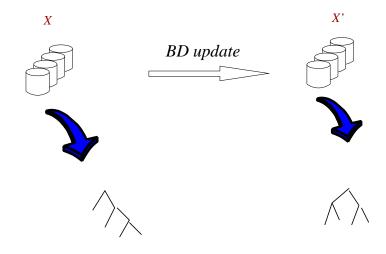
Motivation. Data mining: from databases to models



- Should we annul/nullify a model G learnt from a dataset when some records are deleted/amended? Decisions should be revoked? e.g. G=decision tree (mortgage denied/accepted) μ =remove (all) people with salary between [15000,20000] EUR.
- Given two (different) models G and G' extracted from the files, do they guarantee privacy on the modifications (μ) ? e.g., intruder has G and G', can infer μ ?

Updating and privacy

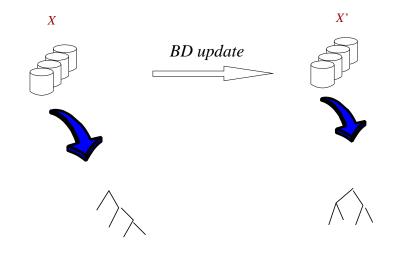
Problem definition.



• Given two (different) models G and G' extracted from the files, do they guarantee privacy on the modifications (μ) ?

Updating and privacy

Problem definition.



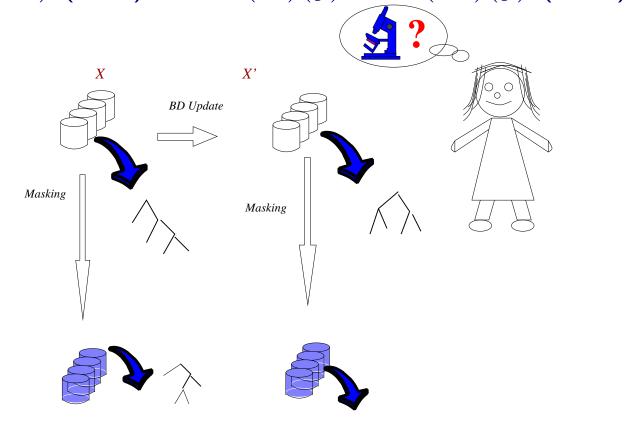
• Given two (different) models G and G' extracted from the files, do they guarantee privacy on the modifications (μ) ? e.g., intruder has G and G', can infer μ ?

Integral Privacy Outline

Integral Privacy

Notation. Problem different from information loss assessment

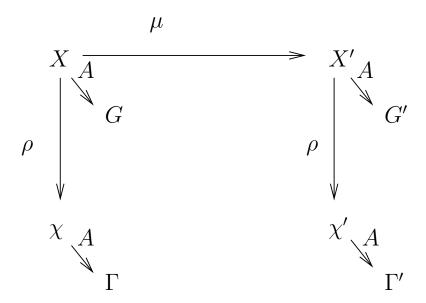
• M(X) = M(X') (here) vs. M(X)(y) = M(X')(y) (in IL)



Outline

Notation.

- Original file X, protected file χ
- Updated file X' and protected file χ' . $X' = X + \mu$
- ullet Knowledge/models G and Γ extracted from X and χ
- ullet Knowledge/models G' and Γ' extracted from X and χ'
- ullet Protection method ho and knowledge discovery algorithm A.



Integral privacy > Definition

Integral privacy

Scenario. Intruder's goal

• Given $S \subset X$, G, G', find the set of possible modifications μ that are consistent with data $S \subseteq X$ and knowledge G and G', and find elements in $X \setminus S$.

Outline

Scenario. Intruder's goal

• Given $S \subset X$, G, G', find the set of possible modifications μ that are consistent with data $S \subseteq X$ and knowledge G and G', and find elements in $X \setminus S$.

Under the transparency principle, we may assume that the intruder knows the algorithm A used to generate G.

o Find:

$$\mathcal{M} = \{ \mu | G = A(X) \text{ and } G' = A(X + \mu) \}.$$

o Find:

elements in $X \setminus S$: also known as membership attack.

Scenario. Intruder's goal

 For some machine learning algorithms, the set of possible transformations will be not empty.

A ML model can be generated from different datasets, so any μ to transform from one set to another is a possible modification.

Scenario. Privacy problem

ullet Find algorithms A that maximize the uncertainty of the intruder (with respect to the set of possible modifications). That is, we are interested in machine learning methods A such that the set

$$\mathcal{M} = \{ \mu | G = A(X) \text{ and } G' = A(X + \mu) \}.$$
 (1)

is large, and such that

$$\cap_{m \in \mathcal{M}} m = \emptyset. \tag{2}$$

Integral privacy > Definition Outline

Integral privacy

Scenario. Definition

- We define i-integral privacy when \mathcal{M} is large and such that the intersection is empty.
- We define integral privacy à la k-anonymity, when the set \mathcal{M} contains at least k alternatives.
- We define k-anonymous integral privacy when the set \mathcal{M} has at least k minimal elements. (Modifications define a lattice)

Scenario. Using masking

• Solving the privacy problem combining machine learning algorithms with data privacy algorithms: $\hat{A}(X) = A(\rho(X))$. Then, given X, G, G', and an algorithm A, a good masking method ρ is the one that makes the set

$$\mathcal{M} = \{ \mu | G = A(\rho(X)) \text{ and } G' = A(\rho(X + \mu)) \}$$

large and such that $\cap_{m \in \mathcal{M}} m = \emptyset$.

ullet We can consider additional restrictions for the set ${\mathcal M}$ as above.

Scenario. Considering differential privacy

ullet The case of differential privacy for G

$$Distr(G(X)) \sim Distr(G(X+x)).$$

- If G(X) and G(X+x) is different, does not satisfy differential privacy, but can be safe if the set of possible elements x is large.
- If we want both differential + integral: differintegral

Summary

Summary

Summary

- Quantitative measures of risk
- Worst-case scenario for disclosure risk
 - Parametric distances
 - Distance/metric learning
- Transparency and disclosure risk
 - Masking method and parameters published
 - Disclosure risk revisited (rank swapping)
 - New masking methods resistant to transparency
- Definition of integral privacy

Outline

Thank you

References

References

References.

- Worst-case scenario
 - o D. Abril, G. Navarro-Arribas, V. Torra, Supervised Learning Using a Symmetric Bilinear Form for Record Linkage, Information Fusion 26 (2015) 144-153.
 - o D. Abril, G. Navarro-Arribas, V. Torra, Improving record linkage with supervised learning for disclosure risk assessment, Information Fusion 13:4 (2012) 274-284.
- Transparency attacks and transparency aware methods
 - J. Nin, J. Herranz, V. Torra, On the Disclosure Risk of Multivariate Microaggregation, Data and Knowledge Engineering, 67 (2008) 399-412.
 - o J. Nin, J. Herranz, V. Torra, Rethinking Rank Swapping to Decrease Disclosure Risk, Data and Knowledge Engineering, 64:1 (2008) 346-364.
 - V. Torra, Fuzzy microaggregation for the transparency principle, J. Applied Logic 23 (2017) 70-80.
- Integral privacy
 - o V. Torra, G. Navarro-Arribas, Integral privacy, Proc. CANS 2016.
- Book
 - V. Torra, Data Privacy: Foundations, New Developments and the Big Data Challenge, Springer, 2017.

Book

 Vicenç Torra, Data Privacy: Foundations, New Developments and the Big Data Challenge, Springer, 2017

Table of contents: 1. Introduction. 2. Machine and statistical learning. 3. On the classification of protection procedures. 4. User's privacy. 5. Privacy models and disclosure risk measures. 6. Masking methods. 7. Information loss: evaluation and measures. 8. Selection of masking methods. 9. Conclusions.

 Vicenç Torra, Data Privacy: Foundations, New Developments and the Big Data Challenge, Springer, 2017

- Table of contents: 1. Introduction. 2. Machine and statistical learning. 3. On the classification of protection procedures. 4. User's privacy. 5. Privacy models and disclosure risk measures. 6. Masking methods. 7. Information loss: evaluation and measures. 8. Selection of masking methods. 9. Conclusions.
- Includes sections on masking methods and transparency, and variants for big data. User privacy for communications and information retrieval (PIR).

Vicenc Series

Data Privacy:
Foundations, New
Developments
and the Big Data
Challenge

 Vicenç Torra, Data Privacy: Foundations, New Developments and the Big Data Challenge, Springer, 2017

