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Outline Outline

Outline

Disclosure risk (DR)

• The worst-case scenario

◦ DR using ML in reidentification: optimal attacks

◦ DR under the transparency principle: transparency attacks

• Integral privacy

◦ Privacy from models
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1. Introduction

2. Disclosure risk assessment

• Worst-case scenario

• ML for reidentification

3. Transparency

• Definition

• Attacking Rank Swapping

• Avoiding transparency attack

4. Updating databases and privacy: Integral privacy

5. Summary
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Introduction
Data protection mechanisms
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Data protection mechanisms

Classification w.r.t. our knowledge on the computation of a third party

• Data-driven or general purpose (analysis not known)

→ anonymization methods / masking methods

• Computation-driven or specific purpose (analysis known)

→ cryptographic protocols, differential privacy

• Result-driven (analysis known: protection of its results)

Figure. Basic model (multiple/dynamic databases + multiple people)

?
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Introduction

Introduction
Privacy models and disclosure risk assessment
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Disclosure risk assessment

Disclosure risk. Disclosure: leakage of information.

• Identity disclosure vs. Attribute disclosure

◦ Attribute disclosure: (e.g. learn about Alice’s salary)

⋆ Increase knowledge about an attribute of an individual

◦ Identity disclosure: (e.g. find Alice in the database)

⋆ Find/identify an individual in a database (e.g., masked file)

Within machine learning, some attribute disclosure is expected.
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Disclosure risk assessment

Disclosure risk.

• Boolean vs. quantitative privacy models

◦ Boolean: Disclosure either takes place or not. Check whether the

definition holds or not. Includes definitions based on a threshold.

◦ Quantitative: Disclosure is a matter of degree that can be

quantified. Some risk is permitted.

• minimize information loss vs. multiobjetive optimization
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Disclosure risk assessment

Privacy models.

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

• Interval disclosure. The value for an attribute is outside an interval

computed from the protected value. I.e., original values are different

enough.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.
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Disclosure risk assessment

Boolean definitions of risk.

• k-Anonymity (Boolean definition / identity disclosure)

• Secure multiparty computation (Boolean / identity and attribute

disclosure)

• Result privacy (Boolean definition / attribute disclosure)

• Differential privacy (Boolean definition / attribute disclosure)

Quantitative measures of risk. alternative measures.

• Re-identification (for identity disclosure). Different ways to evaluate

re-identification by means of record linkage.

• Uniqueness (for identity disclosure).

• Interval disclosure (for attribute disclosure). Several definitions for

different types of attributes.
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Disclosure risk assessment

Disclosure risk.

• Identity disclosure vs. Attribute disclosure

• Boolean vs. quantitative measures
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Disclosure risk assessment

Disclosure risk.

• Identity disclosure vs. Attribute disclosure

• Boolean vs. quantitative measures

Classification of privacy models (and measures)

Boolean

Quantitative

Identity disclosureAttribute disclosure

Interval disclosure Re−identification
     (record linkage)
Uniqueness

Differential privacy
Result privacy

Secure multiparty computation

k−Anonymity
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Disclosure risk assessment

Classification of privacy models (and measures)

Boolean

Quantitative

Identity disclosureAttribute disclosure

Interval disclosure Re−identification
     (record linkage)
Uniqueness

Differential privacy
Result privacy

Secure multiparty computation

k−Anonymity

Other privacy models

• Other models combining features: l-diversity, secure multiparty

computation ensuring differential privacy

• Alternative but related models: k-confusion, k-concealment
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Introduction

Introduction
Masking methods and disclosure risk

assessment
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Data protection mechanisms

Classification w.r.t. our knowledge on the computation of a third party

• Data-driven or general purpose (analysis not known)

→ anonymization methods / masking methods

• Computation-driven or specific purpose (analysis known)

→ cryptographic protocols, differential privacy

• Result-driven (analysis known: protection of its results)

?
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Masking methods

Anonymization/masking method: Given a data file X compute

a file X ′ with data of less quality.

?
X X’
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Masking methods

Approach valid for different types of data

• Databases, documents, search logs, social networks, . . .

(also masking taking into account semantics: wordnet, ODP)

?
X X’
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Research questions

Original 
microdata (X)

Masking
method

Protected
microdata (X’)

Result(X’)

Disclosure

Measure

Information
Loss
Measure

Data
analysis

Result(X)

Data
analysis

Risk
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Research questions: Masking methods

Masking methods (anonymization methods). Build X ′ from X.
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Research questions: Masking methods

Masking methods (anonymization methods). Build X ′ from X.

• Perturbative. (less quality=erroneous data)

E.g. noise addition/multiplication, microaggregation, rank swapping

• Non-perturbative. (less quality=less detail)

E.g. generalization, suppression

• Synthetic data generators. (less quality=not real data)

E.g. (i) model from the data; (ii) generate data from model
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Research questions: Information loss

Information loss measures. Compare X and X ′ w.r.t. analysis (f)

ILf(X,X ′) = divergence(f(X), f(X ′))

• f : generic vs. specific (data uses)

◦ Statistics

◦ Machine learning: Clustering and classification

For example, classification using decision trees

◦ . . . specific measures for graphs

?
X X’

f(X) = f(X’)?
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Research questions: Disclosure risk assessment

Measuring disclosure risk in terms of # of reidentifications.

• Scenario: X = id||Xnc||Xc.

• Protection of the attributes

◦ Identifiers. Usually removed or encrypted.

◦ Confidential. Xc are usually not modified. X ′
c = Xc.

◦ Quasi-identifiers. Apply masking method ρ. X ′
nc = ρ(Xnc).

Identifiers

non-confidential

quasi-identifier

attributes

confidential

Protected microdata (X ′)

Protected Original

id Xc

id Xnc Xc

X ′
nc

(data masking)

anonymization

Identifiers Original

non-confidential

quasi-identifier

attributes

Original

confidential

Original microdata (X)

attributes

attributes
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Research questions: Disclosure risk assessment

A scenario for identity disclosure: Reidentification

• A: File with the protected data set

• B: File with the data from the intruder (subset of original X)

?
X

Record linkage

X’ / A

B
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Research questions: Disclosure risk assessment

A scenario for identity disclosure: X = id||Xnc||Xc

• A: File with the protected data set

• B: File with the data from the intruder (subset of original X)

(protected / public)

identifiersquasi-
identifiers

quasi-
identifiersconfidential

r1

ra

s1

sb
a1 an

a1 an i1, i2, ...

B (intruder)A

a

b

Re-identification

Record linkage
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Research questions: Disclosure risk assessment

A scenario for identity disclosure. Reidentification

• Reidentification using the common attributes (quasi-identifiers):
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Research questions: Disclosure risk assessment

A scenario for identity disclosure. Reidentification

• Reidentification using the common attributes (quasi-identifiers):

leads to identity disclosure

• Attribute disclosure may be possible
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Research questions: Disclosure risk assessment

A scenario for identity disclosure. Reidentification

• Reidentification using the common attributes (quasi-identifiers):

leads to identity disclosure

• Attribute disclosure may be possible

when reidentification permits to link confidential values to identifiers

(in this case: identity disclosure implies attribute disclosure)
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Research questions: Disclosure risk assessment

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure

◦ A protected file using a masking method

◦ B (intruder’s) is a subset of the original file.
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Research questions: Disclosure risk assessment

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure

◦ A protected file using a masking method

◦ B (intruder’s) is a subset of the original file.

→ intruder with information on only some individuals

→ intruder with information on only some characteristics

◦ But also,

⋆ B with a schema different to the one of A (different attributes)

⋆ Other scenarios. E.g., synthetic data
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Worst-case scenario

Disclosure risk assessment:
optimal attacks
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Worst-case scenario

Worst-case scenario when measuring
disclosure risk
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Worst-case scenario

A scenario for identity disclosure. Reidentification

• Flexible scenario. Different assumptions on what available

E.g., only partial information on individuals/characteristics

• Worst-case scenario for disclosure risk assessment

(upper bound of disclosure risk)
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Worst-case scenario

A scenario for identity disclosure. Reidentification

• Flexible scenario. Different assumptions on what available

E.g., only partial information on individuals/characteristics

• Worst-case scenario for disclosure risk assessment

(upper bound of disclosure risk)

◦ Maximum information

◦ Most effective reidentification method
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Worst-case scenario

A scenario for identity disclosure. Reidentification

• Flexible scenario. Different assumptions on what available

E.g., only partial information on individuals/characteristics

• Worst-case scenario for disclosure risk assessment

(upper bound of disclosure risk)

◦ Maximum information: Use original file to attack

◦ Most effective reidentification method: Use ML

Use information on the masking method (transparency)
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Worst-case scenario

ML for reidentification
(learning distances)
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage

• Parametric distances with best parameters

E.g.,

◦ Weighted Euclidean distance
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with Euclidean distance equivalent to:

d2(a, b) = ||
1

n
(a− b)||2 =

n∑

i=1

1

n
(diffi(a, b))

= WMp(diff1(a, b), . . . , diffn(a, b))

with p = (1/n, . . . , 1/n) and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2

• pi = 1/n means equal importance to all attributes

• Appropriate for attributes with equal discriminatory power

(e.g., same noise, same distribution)
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with weighted mean distance

(weighted Euclidean distance)

d2(a, b) = WMp(diff1(a, b), . . . , diffn(a, b))

with arbitrary vector p = (p1, . . . , pn) and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with weighted mean distance

(weighted Euclidean distance)

d2(a, b) = WMp(diff1(a, b), . . . , diffn(a, b))

with arbitrary vector p = (p1, . . . , pn) and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2

Worst-case: Optimal selection of the weights. How??

• Supervised machine learning approach

• Using an optimization problem
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with parametric distances

(distance/metric learning): C a combination/aggregation function

d2(a, b) = Cp(diff1(a, b), . . . , diffn(a, b))

with parameter p and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with parametric distances

(distance/metric learning): C a combination/aggregation function

d2(a, b) = Cp(diff1(a, b), . . . , diffn(a, b))

with parameter p and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2

Worst-case: Optimal selection of the parameter p. How??

• Supervised machine learning approach

• Using an optimization problem
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Worst-case scenario

Worst-case scenario for distance-based record linkage

• Optimal weights using a supervised machine learning approach

• We need a set of examples from:
(protected / public)

identifiersquasi-
identifiers

quasi-
identifiersconfidential

r1

ra

s1

sb
a1 an

a1 an i1, i2, ...

B (intruder)A

a

b

Re-identification

Record linkage
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Formalization of the problem

Machine Learning for distance-based record linkage

• Generic solution, using

◦ an arbitrary combination function C (aggregation)

◦ with parameter p

d(ai, bj) = Cp(diff1(a, b), . . . , diffn(a, b))
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Formalization of the problem

Machine Learning for distance-based record linkage

• Generic solution, using C with parameter p

• Goal (A and B aligned)

◦ as much correct reidentifications as possible

◦ For record i: d(ai, bj) ≥ d(ai, bi) for all j
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Formalization of the problem

Machine Learning for distance-based record linkage

• Generic solution, using C with parameter p

• Goal (A and B aligned)

◦ as much correct reidentifications as possible

◦ For record i: d(ai, bj) ≥ d(ai, bi) for all j
That is,

Cp(diff1(ai, bj), . . . , diffn(ai, bj)) ≥ Cp(diff1(ai, bi), . . . , diffn(ai, bi))
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Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Maximize the number of records ai such that

d(ai, bj) ≥ d(ai, bi) for all j

◦ If record ai fails for at least one bj

d(ai, bj) � d(ai, bi)

Then, let Ki = 1 in this case, then for a large enough constant C

d(ai, bj) + CKi ≥ d(ai, bi)

Vicenç Torra; Disclosure Risk Oslo, 2017 37 / 90



Disclosure Risk > Distances Outline

Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Maximize the number of records ai such that

d(ai, bj) ≥ d(ai, bi) for all j

◦ If record ai fails for at least one bj

d(ai, bj) � d(ai, bi)

Then, let Ki = 1 in this case, then for a large enough constant C

d(ai, bj) + CKi ≥ d(ai, bi)

That is,

Cp(diff1(ai, bj), . . . , diffn(ai, bj)) + CKi ≥ Cp(diff1(ai, bi), . . . , diffn(ai, bi))
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Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Minimize Ki: minimize the number of records ai that fail

d(ai, bj) ≥ d(ai, bi) for all j

◦ Ki ∈ {0, 1}, if Ki = 0 reidentification is correct

d(ai, bj) + CKi ≥ d(ai, bi)
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Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Minimize Ki: minimize the number of records ai that fail
• Formalization:

Minimize
N∑

i=1

Ki

Subject to :

Cp(diff1(ai, bj), . . . , diffn(ai, bj))−

− Cp(diff1(ai, bi), . . . , diffn(ai, bi)) + CKi > 0

Ki ∈ {0, 1}

Additional constraints according to C
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Formalization of the problem

Machine Learning for distance-based record linkage

• Example: the case of the weighted mean C = WM
• Formalization:

Minimize
N∑

i=1

Ki

Subject to :

WMp(diff1(ai, bj), . . . , diffn(ai, bj))−

−WMp(diff1(ai, bi), . . . , diffn(ai, bi)) + CKi > 0

Ki ∈ {0, 1}

n∑

i=1

pi = 1

pi ≥ 0
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Weighted mean.

Weights: importance to the attributes

Parameter: weighting vector n parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Weighted mean.

Weights: importance to the attributes

Parameter: weighting vector n parameters

◦ OWA - linear combination of order statistics (weighted):

Weights: to discard lower or larger distances

Parameter: weighting vector n parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Choquet integral.

Weights: interactions of sets of attributes (µ : 2X → [0, 1]

Parameter: non-additive measure: 2n − 2 parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Choquet integral.

Weights: interactions of sets of attributes (µ : 2X → [0, 1]

Parameter: non-additive measure: 2n − 2 parameters

◦ Bilinear form - generalization of Mahalanobis distance

Weights: interactions between pairs of attributes

Parameter: square matrix: n× n parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered

Choquet
Integral

Mahalanobis
Distance

Arithmetic

Mean

Weighted

Mean

Choquet integral. A fuzzy integral w.r.t. a fuzzy measure (non-

additive measure). CI generalizes Lebesgue integral. Interactions.
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Footnote: Mahalanobis / CI
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Experiments and distances

Machine Learning for distance-based record linkage

• Data sets considered (from CENSUS dataset)

◦ M4-33 : 4 attributes microaggregated in groups of 2 with k = 3.

◦ M4-28 : 4 attributes,2 attributes with k = 2, and 2 with k = 8.

◦ M4-82 : 4 attributes, 2 attributes with k = 8, and 2 with k = 2.

◦ M5-38 : 5 attributes, 3 attributes with k = 3, and 2 with k = 8.

◦ M6-385 : 6 attributes, 2 attributes with k = 3, 2 attributes with

k = 8, and 2 with k = 5.

◦ M6-853 : 6 attributes, 2 attributes with k = 8, 2 attributes with

k = 5, and 2 with k = 3.
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Experiments and distances

Machine Learning for distance-based record linkage

• Percentage of the number of correct re-identifications.
M4-33 M4-28 M4-82 M5-38 M6-385 M6-853

d2AM 84.00 68.50 71.00 39.75 78.00 84.75

d2MD 94.00 90.00 92.75 88.25 98.50 98.00

d2WM 95.50 93.00 94.25 90.50 99.25 98.75

d2WMm 95.50 93.00 94.25 90.50 99.25 98.75

d2CI 95.75 93.75 94.25 91.25 99.75 99.25

d2CIm 95.75 93.75 94.25 90.50 99.50 98.75

d2SBNC 96.75 94.5 95.25 92.25 99.75 99.50

d2SB 96.75 94.5 95.25 92.25 99.75 99.50

d2SBPD − − − − − 99.25
dm: distance; dNC: positive; dPD: positive-definite matrix
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Experiments and distances

Machine Learning for distance-based record linkage

• Computation time comparison (in seconds).
M4-33 M4-28 M4-82 M5-38 M6-385 M6-853

d2WM 29.83 41.37 24.33 718.43 11.81 17.77

d2WMm 3.43 6.26 2.26 190.75 4.34 6.72

d2CI 280.24 427.75 242.86 42, 731.22 24.17 87.43

d2CIm 155.07 441.99 294.98 4, 017.16 79.43 829.81

d2SBNC 32.04 2, 793.81 150.66 10, 592.99 13.65 14.11

d2SB 13.67 3, 479.06 139.59 169, 049.55 13.93 13.70
1h=3600; 1d = 86400s

• Constraints specific to weighted mean and Choquet integral for distances

N : number of records; n: number of attributes
d2WMm d2CIm

Additional
∑n

i=1 pi = 1 µ(∅) = 0

Constraints pi > 0 µ(V ) = 1

µ(A) ≤ µ(B) when A ⊆ B

µ(A) + µ(B) ≥ µ(A ∪ B) + µ(A ∩ B)

Total Constr. N(N − 1) + N + 1 + n N(N − 1) + N + 2 + (
∑n

k=2

(

n

k

)

k) +
(

n

2

)
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Experiments and distances

Machine Learning for distance-based record linkage

• A summary of the experiments
AM MD WM OWA SB CI

Computation Very fast Very fast Fast regular Hard Hard
Results Worse Good Good Bad Very Good Very Good

Information No No Few Few Large Large
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Transparency

Disclosure risk assessment:
Transparency attacks
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Transparency

Transparency. Definition
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Transparency

Transparency.

• “the release of information about processes and even parameters used

to alter data” (Karr, 2009).

Transparency principle. (similar to the Kerckhoffs’s principle in cryptography)

• “Given a privacy model, a masking method should be compliant with

this privacy model even if everything about the method is public

knowledge” (Torra, 2017, p. 17)
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Transparency

Transparency principle.

• “Given a privacy model, a masking method should be compliant with

this privacy model even if everything about the method is public

knowledge”

Effect.

• Information Loss. Positive effect, less loss/improve inference

E.g., noise addition ρ(X) = X + ǫ where ǫ s.t.

E(ǫ) = 0 and V ar(ǫ) = kV ar(X)

V ar(X ′) = V ar(X) + kV ar(X) = (1 + k)V ar(X).
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Transparency

Transparency principle.

• “Given a privacy model, a masking method should be compliant with

this privacy model even if everything about the method is public

knowledge”

Effect.

• Disclosure Risk. Negative effect, larger risk

◦ Attack to single-ranking microaggregation (Winkler, 2002)

◦ Formalization of the transparency attack (Nin, Herranz, Torra, 2008)

◦ Attacks to microaggregation and rank swapping (Nin, Herranz, Torra,

2008)
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Transparency

Attacking Rank Swapping
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Transparency attack

Formalization:

• RS transparency attack (similar for microaggregation)

◦ X and X ′ original and masked files, V = (V1, . . . , Vs) attributes

◦ Bj(x) set of masked records associated to x w.r.t. jth variable.

◦ Then, for record x, the masked record xℓ corresponding to x is in

the intersection of Bj(x).

xℓ ∈ ∩jBj(x).

• Worst case scenario in record linkage: upper bound of risk
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Transparency attack

Rank swapping

• For ordinal/numerical attributes

• Applied attribute-wise

Data: (a1, . . . , an) : original data; p: percentage of records

Order (a1, . . . , an) in increasing order (i.e., ai ≤ ai+1) ;

Mark ai as unswapped for all i ;

for i = 1 to n do

if ai is unswapped then
Select ℓ randomly and uniformly chosen from the limited

range [i+ 1,min(n, i+ p ∗ |X|/100)] ;

Swap ai with aℓ ;

Undo the sorting step ;
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Transparency attack

Rank swapping.

• Marginal distributions not modified.

• Correlations between the attributes are modified

• Good trade-off between information loss and disclosure risk
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Transparency attack

Under the transparency principle we publish

• X ′ (protected data set)
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Transparency attack

Under the transparency principle we publish

• X ′ (protected data set)

• masking method: rank swapping

• parameter of the method: p (proportion of |X|)
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Transparency attack

Under the transparency principle we publish

• X ′ (protected data set)

• masking method: rank swapping

• parameter of the method: p (proportion of |X|)

Then, the intruder can use (method, parameter) to attack
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Transparency attack

Under the transparency principle we publish

• X ′ (protected data set)

• masking method: rank swapping

• parameter of the method: p (proportion of |X|)

Then, the intruder can use (method, parameter) to attack

→ (method, parameter) = (rank swapping, p)
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Transparency attack

Intruder perspective.

• Intruder data are available
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Intruder perspective.

• Intruder data are available

• All protected values are available.

I.e.,

All data in the original data set are also available
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Transparency attack

Intruder perspective.

• Intruder data are available

• All protected values are available.

I.e.,

All data in the original data set are also available

Intruder’s attack for a single attribute

• Given a value a, we can define the set of possible swaps for ai
Proceed as rank swapping does: a1, . . . , an ordered values If ai = a,

it can only be swapped with aℓ in the range

ℓ ∈ [i+ 1,min(n, i+ p ∗ |X|/100)]
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Transparency attack

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a
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Transparency attack

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a

No uncertainty on Bj(a)

x′
ℓ ∈ Bj(a)
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Transparency attack

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a

No uncertainty on Bj(a)

x′
ℓ ∈ Bj(a)

Intruder’s attack for all available attributes

• Define Bj(aj) for all available Vj

• Intersection attack:
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Transparency attack

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a

No uncertainty on Bj(a)

x′
ℓ ∈ Bj(a)

Intruder’s attack for all available attributes

• Define Bj(aj) for all available Vj

• Intersection attack:

x′
ℓ ∈ ∩1≤j≤cBj(xi).
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Transparency attack

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a

No uncertainty on Bj(a)

x′
ℓ ∈ Bj(a)

Intruder’s attack for all available attributes

• Define Bj(aj) for all available Vj

• Intersection attack:

x′
ℓ ∈ ∩1≤j≤cBj(xi).

No uncertainty!
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Transparency attack

Intruder’s attack for all available attributes

• Intersection attack:

x′
ℓ ∈ ∩1≤j≤cBj(xi).

• When | ∩1≤j≤c Bj(xi)| = 1, we have a true match

• Otherwise, we can apply record linkage within this set
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Transparency attack

Intruder’s attack. Example.

• Intruder’s record: x2 = (6, 7, 10, 2), p = 2. First attribute: x21 = 6

• B1(a = 6) = {(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)}

Original file Masked file B(x2j)

a1 a2 a3 a4 a′1 a′2 a′3 a′4 B(x21)

8 9 1 3 10 10 3 5

6 7 10 2 5 5 8 1 X

10 3 4 1 8 4 2 2 X

7 1 2 6 9 2 4 4

9 4 6 4 7 3 5 6 X

2 2 8 8 4 1 10 10 X

1 10 3 9 3 9 1 7

4 8 7 10 2 6 9 8

5 5 5 5 6 7 6 3 X

3 6 9 7 1 8 7 9
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Transparency attack

Intruder’s attack. Example.

• Intruder’s record:x2 = (6, 7, 10, 2), p = 2. Second attribute:x22 = 7

• B2(a = 7) = {(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)}

Original file Masked file B(x2j)

a1 a2 a3 a4 a′1 a′2 a′3 a′4 B(x21) B(x22)

8 9 1 3 10 10 3 5

6 7 10 2 5 5 8 1 X X

10 3 4 1 8 4 2 2 X

7 1 2 6 9 2 4 4

9 4 6 4 7 3 5 6 X

2 2 8 8 4 1 10 10 X

1 10 3 9 3 9 1 7 X

4 8 7 10 2 6 9 8 X

5 5 5 5 6 7 6 3 X X

3 6 9 7 1 8 7 9 X
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Transparency attack

Intruder’s attack. Example.

• Intruder’s record: x2 = (6, 7, 10, 2), p = 2.

◦ B1(x21 = 6) = {(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)}

◦ B2(x22 = 7) = {(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)}

◦ B3(x23 = 10) = {(5, 5, 8, 1), (2, 6, 9, 8), (4, 1, 10, 10)}

◦ B4(x24 = 2) = {(5, 5, 8, 1), (8, 4, 2, 2), (6, 7, 6, 3), (9, 2, 4, 4)}

• The intersection is a single record

(5, 5, 8, 1)
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Transparency attack

Intruder’s attack. Application.

• Data:

◦ Census (1080 records, 13 attributes)

◦ EIA (4092 records, 10 attributes)

• Rank swaping parameter:

◦ p = 2, . . . , 20
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Transparency attack

Intruder’s attack. Result

Census EIA

RSLD DLD PLD RSLD DLD PLD

rs 2 77.73 73.52 71.28 43.27 21.71 16.85

rs 4 66.65 58.40 42.92 12.54 10.61 4.79

rs 6 54.65 43.76 22.49 7.69 7.40 2.03

rs 8 41.28 32.13 11.74 6.12 5.98 1.12

rs 10 29.21 23.64 6.03 5.60 5.19 0.69

rs 12 19.87 18.96 3.46 5.39 4.87 0.51

rs 14 16.14 15.63 2.06 5.28 4.55 0.32

rs 16 13.81 13.59 1.29 5.19 4.54 0.23

rs 18 12.21 11.50 0.83 5.20 4.54 0.22

rs 20 10.88 10.87 0.59 5.15 4.36 0.18
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Transparency attack

Intruder’s attack. Summary

• When | ∩Bj| = 1, this is a match.

25% of reidentifications in this way 6= 25% in distance-based or

probabilistic record linkage.

• Approach applicable when the intruder knows a single record

• The more attributes the intruder has, the better is the reidentification.

Intersection never increases when the number of attributes increases.

• When p is not known, an upper bound can help

If the upper bound is too high, some | ∩Bj| can be zero
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Transparency

Avoiding Transparency Attack in Rank
Swapping
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Transparency aware methods

Avoiding transparency attack in rank swapping.

• Enlarge the Bj set to encompass the whole file.
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Transparency aware methods

Avoiding transparency attack in rank swapping.

• Enlarge the Bj set to encompass the whole file.

• Then,

∩Bj = X
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Transparency aware methods

Approaches to avoid transparency attack in rank swapping.

• Rank swapping p-buckets. Select bucket Bs using

Pr[Bs is choosen |Br] =
1

K

1

2s−r+1
.

• Rank swapping p-distribution. Swap ai with aℓ where ℓ = i+ r and

r according to a N(0.5p, 0.5p).
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Updating databases and privacy

Transparency, updating databases and privacy
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Updating and privacy

Motivation. Data mining: from databases to models

• Deletion/amendment may require the reconsideration of inferences.
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Updating and privacy

Motivation. Data mining: from databases to models

• Deletion/amendment may require the reconsideration of inferences.

where, inferences = machine learning models (decision trees)
X X’

BD update

• Fairness, accountability and transparency principles in ML (how ?)
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Updating and privacy

Motivation. Data mining: from databases to models

X X’

BD update

• Should we annul/nullify a model G learnt from a dataset when some

records are deleted/amended? Decisions should be revoked?
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Updating and privacy

Motivation. Data mining: from databases to models

X X’

BD update

• Should we annul/nullify a model G learnt from a dataset when some

records are deleted/amended? Decisions should be revoked?

e.g. G=decision tree (mortgage denied/accepted)

µ=remove (all) people with salary between [15000,20000] EUR.
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Updating and privacy

Motivation. Data mining: from databases to models

X X’

BD update

• Should we annul/nullify a model G learnt from a dataset when some

records are deleted/amended? Decisions should be revoked?

e.g. G=decision tree (mortgage denied/accepted)

µ=remove (all) people with salary between [15000,20000] EUR.

• Given two (different) models G and G′ extracted from the files, do

they guarantee privacy on the modifications (µ)?
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Updating and privacy

Motivation. Data mining: from databases to models

X X’

BD update

• Should we annul/nullify a model G learnt from a dataset when some

records are deleted/amended? Decisions should be revoked?

e.g. G=decision tree (mortgage denied/accepted)

µ=remove (all) people with salary between [15000,20000] EUR.

• Given two (different) models G and G′ extracted from the files, do

they guarantee privacy on the modifications (µ)?

e.g., intruder has G and G′, can infer µ?
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Updating and privacy

Problem definition.

X X’

BD update

• Given two (different) models G and G′ extracted from the files, do

they guarantee privacy on the modifications (µ)?
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Updating and privacy

Problem definition.

X X’

BD update

• Given two (different) models G and G′ extracted from the files, do

they guarantee privacy on the modifications (µ)?

e.g., intruder has G and G′, can infer µ?
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Integral Privacy
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Integral privacy

Notation. Problem different from information loss assessment

• M(X) = M(X ′) (here) vs. M(X)(y) = M(X ′)(y) (in IL)

?
X X’

BD Update

Masking
Masking
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Integral privacy

Notation.

• Original file X, protected file χ

• Updated file X ′ and protected file χ′. X ′ = X + µ

• Knowledge/models G and Γ extracted from X and χ

• Knowledge/models G′ and Γ′ extracted from X and χ′

• Protection method ρ and knowledge discovery algorithm A.

X X ′

χ χ′

G G′

Γ Γ
′

ρ ρ

AA

A A

µ
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Integral privacy

Scenario. Intruder’s goal

• Given S ⊂ X, G, G′, find the set of possible modifications µ that

are consistent with data S ⊆ X and knowledge G and G′, and find

elements in X \ S.
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Integral privacy

Scenario. Intruder’s goal

• Given S ⊂ X, G, G′, find the set of possible modifications µ that

are consistent with data S ⊆ X and knowledge G and G′, and find

elements in X \ S.

Under the transparency principle, we may assume that the intruder knows the

algorithm A used to generate G.

◦ Find:

M = {µ|G = A(X) and G′ = A(X + µ)}.

◦ Find:

elements in X \ S: also known as membership attack.
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Integral privacy

Scenario. Intruder’s goal

• For some machine learning algorithms, the set of possible

transformations will be not empty.

A ML model can be generated from different datasets, so any µ to

transform from one set to another is a possible modification.
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Integral privacy

Scenario. Privacy problem

• Find algorithms A that maximize the uncertainty of the intruder

(with respect to the set of possible modifications). That is, we are

interested in machine learning methods A such that the set

M = {µ|G = A(X) and G′ = A(X + µ)}. (1)

is large, and such that

∩m∈M m = ∅. (2)
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Integral privacy

Scenario. Definition

• We define i-integral privacy when M is large and such that the

intersection is empty.

• We define integral privacy à la k-anonymity, when the set M contains

at least k alternatives.

• We define k-anonymous integral privacy when the set M has at least

k minimal elements. (Modifications define a lattice)
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Integral privacy

Scenario. Using masking

• Solving the privacy problem combining machine learning algorithms

with data privacy algorithms: Â(X) = A(ρ(X)). Then, given X, G,

G′, and an algorithm A, a good masking method ρ is the one that

makes the set

M = {µ|G = A(ρ(X))andG′ = A(ρ(X + µ))}

large and such that ∩m∈Mm = ∅.

• We can consider additional restrictions for the set M as above.
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Integral privacy

Scenario. Considering differential privacy

• The case of differential privacy for G

Distr(G(X)) ∼ Distr(G(X + x)).

• If G(X) and G(X + x) is different, does not satisfy differential

privacy, but can be safe if the set of possible elements x is large.

• If we want both differential + integral: differintegral
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Summary

Summary
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Summary Outline

Summary

• Quantitative measures of risk

• Worst-case scenario for disclosure risk

◦ Parametric distances

◦ Distance/metric learning

• Transparency and disclosure risk

◦ Masking method and parameters published

◦ Disclosure risk revisited (rank swapping)

◦ New masking methods resistant to transparency

• Definition of integral privacy
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Thank you
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• Vicenç Torra, Data Privacy: Foundations, New Developments and the

Big Data Challenge, Springer, 2017

◦ Table of contents: 1. Introduction. 2. Machine and statistical

learning. 3. On the classification of protection procedures. 4. User’s

privacy. 5. Privacy models and disclosure risk measures. 6. Masking

methods. 7. Information loss: evaluation and measures. 8. Selection

of masking methods. 9. Conclusions.
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• Vicenç Torra, Data Privacy: Foundations, New Developments and the

Big Data Challenge, Springer, 2017

◦ Table of contents: 1. Introduction. 2. Machine and statistical

learning. 3. On the classification of protection procedures. 4. User’s

privacy. 5. Privacy models and disclosure risk measures. 6. Masking

methods. 7. Information loss: evaluation and measures. 8. Selection

of masking methods. 9. Conclusions.

◦ Includes sections on masking methods and transparency, and variants

for big data. User privacy for communications and information

retrieval (PIR).
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• Vicenç Torra, Data Privacy: Foundations, New Developments and the

Big Data Challenge, Springer, 2017
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