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Outline

Background

• My background ...

◦ Started in this field in 2000 (before the data privacy hype).

◦ How to make data useful and private for statistics and ML

◦ Research topics:

⊲ Privacy from a computational point of view

⊲ Privacy-aware for machine learning and statistics
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A context

• Data analysis and data-driven models

• Data analysis and data-driven models + privacy

Privacy models

• Two motivating examples

• Privacy models

• Privacy models: Avoiding reidentification

• Privacy models: Avoiding inference from calculations
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A context:

Machine learning and statistics
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Data analysis and data-driven models
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Data-driven models

• Data-driven model

(regression, logistic regression, neural networks, etc.) for prediction,

image processing, decision support systems, etc.

Machine 
Learning
Algorithm

Data

Base

(DB)

Data−driven

model
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Data-driven models

• Machine learning (usage, informal)

◦ Data access (relevant and irrelevant data)

◦ Exploratory data analysis

◦ Model building (several models)

(different types of models, different (hyper-)parameters)

◦ Select a good model

(whatever good means)

• Example

◦ Hospital length stay at time of admission1

1https://www.nature.com/articles/sdata201635
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Data-driven models

• Build a data-driven model: age → income

Machine
Learning
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Data-
driven
model
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Data-driven models

• Build a data-driven model: age → income
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income income = 1418.63 + 0.5864 * age2

Income of Aina (age=25, income=?)
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Data analysis and data-driven models

and privacy
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Data-driven models and privacy

• Relevant questions for privacy

◦ Who has data access? ⇒ access control

⊲ Different actors have different roles/permissions (data access):

Admissions, pharmacy technician, clinical laboratory, physician, etc.

⊲ But also

Health information technician, and data scientists
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Data-driven models and privacy

• Relevant questions for privacy

◦ Who has data access? ⇒ access control

⊲ Different actors have different roles/permissions (data access):

Admissions, pharmacy technician, clinical laboratory, physician, etc.

⊲ But also

Health information technician, and data scientists

• Access control is not enough

◦ Access seems ok but inferences may imply disclosure
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Data-driven models and privacy

• Relevant questions for privacy

◦ From what you are allowed to access,

can you infer something you shouldn’t learn? E.g.,

⊲ Can you find someone you know from the information you are

allowed to access?

⊲ Can you learn sensitive information from anonymized / view of

database?

⊲ Can you learn sensitive information from aggregated data?

⊲ Can you learn sensitive information from a model?

◦ If so, what should we do instead? ⇒ Data privacy
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Data-driven models and privacy

• Relevant questions for privacy

◦ From what you are allowed to access,

can you infer something you shouldn’t learn? E.g.,

⊲ Can you find someone you know from the information you are

allowed to access?

⊲ Can you learn sensitive information from anonymized / view of

database?

⊲ Can you learn sensitive information from aggregated data?

⊲ Can you learn sensitive information from a model?

◦ If so, what should we do instead? ⇒ Data privacy

Data privacy is (not only) about data leakages

(privacy vs. security and access control)
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Data privacy
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Two motivating examples

Anonymization is more difficult than it seems
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Two motivating examples

• Case #1. A database with people. Hospital data.

◦ Solution. Remove names and identity card/passport numbers

?
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Two motivating examples

• Case #1. A database with people. Hospital data.

◦ Solution. Remove names and identity card/passport numbers

◦ Naive anonymization does not work ......!!

Sensitive information can still be inferred.

Other attributes can be used to find a record

Darth Vader, Washington National Cathedral, Northwest, Washington D.C.

Image from wikipedia
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Two motivating examples

• Difficulties: Naive anonymization does not work

◦ Cases about disclosure from incorrect anonymization

⊲ AOL, Netflix (search logs, film ratings)

⊲ 3.7% (9.1 /248 million) likely to be uniquely identified by 5-digit

ZIP, gender, Month and year of birth

◦ Similarly

⊲ Mobile positions (two positions identify)

⊲ fidelity cards, credit card payments, shopping carts ...

◦ High dimensional data + highly identifiable data
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Two motivating examples

• Case #2. Mean salary (or, in general, any other computation – ML)

◦ Solution. Mean salary is an aggregate, not personal data.

?
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Two motivating examples

• Case #2. Mean salary (or, in general, any other computation – ML)

◦ Solution. Mean salary is an aggregate, not personal data.

Compute
∑n

i=1 xi/n
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Two motivating examples

• Case #2. Mean salary (or, in general, any other computation – ML)

◦ Solution. Mean salary is an aggregate, not personal data.

Compute
∑n

i=1 xi/n

◦ This does not work ......!!

’I sense something. A presence I have not felt since . . . ’

(Darth Vader, Star Wars IV: A new hope)

◦ A simple function can give information on who is in the database

⊲ Mean salary of psychiatric unit by town

For a given town, ⇒ disclosure of a rich person
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Two motivating examples

• Case #2. Mean salary

◦ Q: Mean income of admitted (unit, town) – psychiatric unit

(similar problem: mean salary by town)
◦ Mean income is not “personal data”, is this ok ?

⊲ Example:
1000 2000 3000 2000 1000 6000 2000 10000 2000 4000
⇒ mean = 3300

⊲ Adding Ms. Rich’s salary 100,000 Eur/month:
⇒ mean = 12090,90 !
(a extremely high salary changes the mean significantly)
⇒ We infer Ms. Rich from Town was attending the unit

Obi-Wan Kenobi is in the Death Star
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Two motivating examples

Example #2. Another computation

• Q: Regressions (and other ML models)

membership attacks (Ms Rich data as has been used?)
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income = 1418.63 + 0.5864 * age2 vs. income = 2774 + 0.04639 * age2
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Privacy models

?
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Privacy models

Privacy model. A computational definition for privacy.

?

Vicenç Torra; Data privacy 21 / 43



Privacy models > Outline

Privacy models

(Some) Privacy models. Computational definitions for privacy.

• Reidentification privacy. Avoid finding a record in a database.

• k-Anonymity. A record indistinguishable with k − 1 other records.

• Secure multiparty computation. Several parties want to compute

a function of their databases, but only sharing the result.

• Result privacy. We want to avoid some results when an algorithm

is applied to a database.

• Differential privacy. Output of a query does not change when a

record is added/removed from a DB.

• Integral privacy. Inference on the databases. E.g., changes have

been applied to a database.
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Privacy models:

Avoiding reidentification

?
X X’
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Privacy models

Privacy models. A computational definition for privacy.

• Reidentification privacy. Avoid finding a record

• k-Anonymity. k indistinguishable records

?
X X’

can we find ? we don’t want this possible ...
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Privacy models

Privacy models. A computational definition for privacy.

• Reidentification privacy. Avoid finding a record

• k-Anonymity. k indistinguishable records

How? Change the level of detail or add noise to the data

• Additive noise:

x′ = x+ r with r ∼ N(0, b): 2019 → 2018

• Generalization: x′ = county(town(x)):

Maynooth → Kildare (Ireland)

• Microaggregation:

We build clusters with a minimum size and publish means

• . . .
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Microaggregation

Data protection. Microaggregation. Clusters: at least k records

• Privacy model. k-Anonymity (k = 3)
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Database: (age, income)

◦ Original cluster: {(22,1500), (24,1000), (28, 1750), (30, 1250)}

◦ Protected cluster: {(26, 1375),(26, 1375),(26, 1375),(26, 1375)}

• Formalization. uij = 1 iff xj is in the i-th cluster; vi centroide

Minimize SSE =
∑g

i=1

∑n
j=1 uij(d(xj, vi))

2

Subject to
∑g

i=1 uij = 1 for all j = 1, . . . , n
2k ≥

∑n
j=1 uij ≥ k for all i = 1, . . . , g

uij ∈ {0, 1}
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Microaggregation

Data protection. Microaggregation. Clusters: at least k records

• Clusters ensure anonymity, but

we also want to preserve utility

Can we infer Aina’s salary? (age=25, income=?)
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Fuzzy microaggregation. The boundaries of
clusters are not crisp, we can assign
a record to several clusters,
and reduce influence of outliers
(income of Ms Rich)
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Privacy models:

Avoiding inference from calculations

?
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Privacy models

Privacy models. Avoiding inferences from computations

• Differential privacy.

The outcome does not depend (much) on the presence (absence) of

a record

• Implementation: instead of f(X) compute g(X),

and so that g does not depend so much on the input add noise

?

f(X)
g(X)
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Privacy models

Privacy models. Avoiding inferences from computations

• Differential privacy.

Result does not depend (much) on the presence (absence) of a record

• Implementation: instead of f(X) compute g(X),

typically g(X) = f(X) + r with r ∼ L(0, b) (Laplace distribution)

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

epsilon = 0

valors

p
ro

b
a
b
ili

ta
t

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

epsilon = 0.5

valors

p
ro

b
a
b
ili

ta
t

Definition. The result g(D) satisfies
differential privacy in degree ǫ
if for all BD1 and BD2 it holds
for all S ⊆ Range(Kq),
Pr[Kq(BD1) ∈ S] ≤ eǫPr[Kq(BD2) ∈ S]

• The smaller the ǫ, the more similar the two distributions
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Privacy models

Privacy models. Avoiding inferences from computations

• Differential privacy. Implementation

◦ Define g(X) = f(X) + r with r ∼ L(0, b) (Laplace distribution)

◦ Example f(BD) = 3300 and f(BD′) = 3450, with Laplace

distribution L(0, 50)
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• The value b in L(0, b) depends on ǫ (the privacy level) and the

sensitivity of the function f to the possible DBs
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Privacy models

Privacy models. Avoiding inferences from computations

• Differential privacy.

Other mechanisms for non-numerical functions

and, for example, for neural networks/deep learning, decision trees

• Solutions are robust to membership attacks

(recall Ms. Rich!)
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Privacy models

Privacy models. Avoiding inferences from computations

• Integral privacy.

The outcome is a recurrent result

◦ Several databases can provide the same result

• Privacy:

◦ k databases generate the same result (k-anonymity)

◦ plausible deniability: I wasn’t there – Says Ms. Rich

?

f(X)
g(X)
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Privacy models

Privacy models. Avoiding inferences from computations

• Integral privacy.

The outcome is a recurrent result
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Definition. The result G = g(D) satisfies
integral privacy given background knowledge S∗

if Gen(G,S∗) is large (k BDs) and
∩g∈Gen∗(G,S∗)g = ∅.
where Gen(G, S∗) = {S′|S∗ ⊆ S′ ⊆ P,A(S′) = G}

Gen∗(G,S∗) = {S′ \ S∗|S∗ ⊆ S′ ⊆ P,A(S′) = G}

• k different databases,

not sharing records (and different enough)

to avoid membership attacks
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Privacy models

Privacy models. Avoiding inferences from computations

• Integral privacy.

The outcome is a recurrent result
◦ Example

{1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000} ∪ {100000}

◦ Several subsets return the same output: mean equal 3000

⊲ {3000}

⊲ {2000, 4000}

⊲ {6000, 2000, 1000}

⊲ {10000, 1000, 1000, 3000}

⊲ {6000, 4000, 1000, 2000, 3000, 2000}
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Privacy models

Privacy models. Avoiding inferences from computations

• Integral privacy.

The outcome is a recurrent result

• Recurrent models also appear in machine learning

• Decision trees built from a database (Iris dataset). Models/freq.
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Privacy models

Privacy models. Avoiding inferences from computations

• Integral privacy.

The outcome is a recurrent result

• Recurrent models can also have good accuracy

• Decision trees built from a database (Iris dataset). Accuracy/freq.
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Privacy models

Privacy models. Avoiding inferences from computations

• Differential privacy, smooth function

f(D) ∼ f(D ⊕ x)

where D ⊕ x represents adding a record x to a database D

• Integral privacy, recurrent function

If f−1(G) is the set of all (real) databases that can generate G, we

require f−1(G) to be a large and diverse set.
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Privacy models

Privacy models. Avoiding inferences from computations

• Differential privacy, smooth function

f(D) ∼ f(D ⊕ x)

where D ⊕ x represents adding a record x to a database D

• Integral privacy, recurrent function

If f−1(G) is the set of all (real) databases that can generate G, we

require f−1(G) to be a large and diverse set.

• An example of a simple function that satisfies integral privacy is:

A an algorithm that returns 1 if the number of records of D is even

and 0 if it is odd

That is, f(D) = 1 if and only if |D| is even.
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Summary
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Summary

• Achieve a good anonymization is challenging

(if we want data to be useful, of course!)

• It is possible to obtain data and models protected enough to be useful

and with certain privacy levels.
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Summary

• My research ...

◦ Data masking methods for SQL/noSQL (microaggregation, rank

swapping)

◦ Disclosure risk assessment for masked data. Worst-case scenario:

transparency attacks + machine learning to identify best parameters

◦ Differential privacy + Integral privacy

◦ Federated learning
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Thank you
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