Privacy models for machine learning and statistics

Vicenç Torra

May 2021

Dept. CS, Umeå University, Sweden

- My background ...
 - Started in this field in 2000 (before the data privacy hype).
 - $\circ\,$ How to make data useful and private for statistics and ML
 - Research topics:
 - Privacy from a computational point of view
 - Privacy-aware for machine learning and statistics

A context

>

- Data analysis and data-driven models
- Data analysis and data-driven models + privacy

Privacy models

- Two motivating examples
- Privacy models
- Privacy models: Avoiding reidentification
- Privacy models: Avoiding inference from calculations

A context:

Machine learning and statistics

Data analysis and data-driven models

• Data-driven model

(regression, logistic regression, neural networks, etc.) for prediction, image processing, decision support systems, etc.

- Machine learning (usage, informal)
 - Data access (relevant and irrelevant data)
 - Exploratory data analysis
 - Model building (several models) (different types of models, different (hyper-)parameters)
 - Select a <u>good</u> model (whatever <u>good</u> means)
- Example
 - Hospital length stay at time of admission¹

¹https://www.nature.com/articles/sdata201635

• Build a data-driven model: age \rightarrow income

• Build a data-driven model: age \rightarrow income

Income of Aina (age=25, income=?)

Data analysis and data-driven models and privacy

- Relevant questions for privacy
 - \circ Who has data access? \Rightarrow access control
 - Different actors have different roles/permissions (data access):
 Admissions, pharmacy technician, clinical laboratory, physician, etc.
 - \triangleright But also
 - Health information technician, and data scientists

- Relevant questions for privacy
 - \circ Who has data access? \Rightarrow access control
 - Different actors have different roles/permissions (data access):
 Admissions, pharmacy technician, clinical laboratory, physician, etc.
 - \triangleright But also

Health information technician, and data scientists

• Access control is not enough

• Access seems ok but inferences may imply disclosure

- Relevant questions for privacy
 - From what you are allowed to access, can you infer something you shouldn't learn? E.g.,
 - Can you find someone you know from the information you are allowed to access?
 - Can you learn sensitive information from <u>anonymized</u> / view of database?
 - ▷ Can you learn sensitive information from aggregated data?
 - ▷ Can you learn sensitive information from a model?
 - \circ If so, what should we do instead? \Rightarrow Data privacy

- Relevant questions for privacy
 - From what you are allowed to access, can you infer something you shouldn't learn? E.g.,
 - Can you find someone you know from the information you are allowed to access?
 - Can you learn sensitive information from <u>anonymized</u> / view of database?
 - ▷ Can you learn sensitive information from aggregated data?
 - ▷ Can you learn sensitive information from a model?
 - \circ If so, what should we do instead? \Rightarrow Data privacy

Data privacy is (not only) about data leakages (privacy vs. security and access control)

Data privacy

Anonymization is more difficult than it seems

- Case #1. A database with people. Hospital data.
 - Solution. Remove names and identity card/passport numbers

- Case #1. A database with people. Hospital data.
 - Solution. Remove names and identity card/passport numbers
 - Naive anonymization does not work!!
 Sensitive information can still be inferred.
 Other attributes can be used to find a record_

Darth Vader, Washington National Cathedral, Northwest, Washington D.C.

Image from wikipedia

- Difficulties: Naive anonymization does not work
 - $\circ\,$ Cases about disclosure from incorrect anonymization
 - ▷ AOL, Netflix (search logs, film ratings)
 - ▷ 3.7% (9.1 /248 million) likely to be uniquely identified by 5-digit ZIP, gender, Month and year of birth
 - Similarly
 - Mobile positions (two positions identify)
 - ▷ fidelity cards, credit card payments, shopping carts ...
 - High dimensional data + highly identifiable data

- Case #2. Mean salary (or, in general, any other computation ML)
 - Solution. Mean salary is an aggregate, not personal data.

- Case #2. Mean salary (or, in general, any other computation ML)
 - \circ Solution. Mean salary is an aggregate, not personal data. Compute $\sum_{i=1}^n x_i/n$

- Case #2. Mean salary (or, in general, any other computation ML)
 - \circ Solution. Mean salary is an aggregate, not personal data. Compute $\sum_{i=1}^n x_i/n$
 - This does not work!!

'I sense something. A presence I have not felt since . . . '

(Darth Vader, Star Wars IV: A new hope)

A simple function can give information on who is in the database
 ▷ Mean salary of psychiatric unit by town
 For a given town, ⇒ disclosure of a rich person

- Case #2. Mean salary
 - Q: Mean income of admitted (unit, town) psychiatric unit

(similar problem: mean salary by town)

• Mean income is not "personal data", is this ok ?

▷ Example:

 $1000\ 2000\ 3000\ 2000\ 1000\ 6000\ 2000\ 10000\ 2000\ 4000$

 \Rightarrow mean = 3300

▷ Adding Ms. Rich's salary 100,000 Eur/month:

 \Rightarrow mean = 12090,90 !

- (a extremely high salary changes the mean significantly)
- \Rightarrow We infer Ms. Rich from Town was attending the unit

Obi-Wan Kenobi is in the Death Star

Example #2. Another computation

• Q: Regressions (and other ML models) membership attacks (Ms Rich data as has been used?)

income = $1418.63 + 0.5864 * age^2$ vs. income = $2774 + 0.04639 * age^2$

Privacy models

Privacy model. A computational definition for privacy.

(Some) Privacy models. Computational definitions for privacy.

- **Reidentification privacy.** Avoid finding a record in a database.
- k-Anonymity. A record indistinguishable with k-1 other records.
- Secure multiparty computation. Several parties want to compute a function of their databases, but only sharing the result.
- **Result privacy.** We want to avoid some results when an algorithm is applied to a database.
- **Differential privacy.** Output of a query does not change when a record is added/removed from a DB.
- Integral privacy. Inference on the databases. E.g., changes have been applied to a database.

Privacy models:

Avoiding reidentification

Privacy models. A computational definition for privacy.

- Reidentification privacy. Avoid finding a record
- **k-Anonymity.** k indistinguishable records

? we don't want this possible ...

can we find

Privacy models. A computational definition for privacy.

- **Reidentification privacy.** Avoid finding a record
- **k-Anonymity.** k indistinguishable records

How? Change the level of detail or add noise to the data

• Additive noise:

x' = x + r with $r \sim N(0, b)$: 2019 \rightarrow 2018

- Generalization: x' = county(town(x)): Maynooth \rightarrow Kildare (Ireland)
- Microaggregation:

We build clusters with a minimum size and publish means

. . .

Microaggregation

Data protection. Microaggregation. Clusters: at least k records

• **Privacy model.** k-Anonymity (k = 3)

е

Database: (age, income)

- Original cluster: {(22,1500), (24,1000), (28, 1750), (30, 1250)}
- Protected cluster: {(26, 1375),(26, 1375),(26, 1375),(26, 1375)}

• Formalization.
$$u_{ij} = 1$$
 iff x_j is in the *i*-th cluster; v_i centroid
Minimize $SSE = \sum_{i=1}^{g} \sum_{j=1}^{n} u_{ij} (d(x_j, v_i))^2$
Subject to $\sum_{i=1}^{g} u_{ij} = 1$ for all $j = 1, ..., n$
 $2k \ge \sum_{j=1}^{n} u_{ij} \ge k$ for all $i = 1, ..., g$
 $u_{ij} \in \{0, 1\}$

Microaggregation

Data protection. Microaggregation. Clusters: at least k records

• Clusters ensure anonymity, but we also want to preserve utility

Can we infer Aina's salary? (age=25, income=?)

Fuzzy microaggregation. The boundaries of clusters are not crisp, we can assign a record to several clusters, and reduce influence of outliers (income of Ms Rich)

Privacy models:

Avoiding inference from calculations

- Differential privacy.
 - The outcome does not depend (much) on the presence (absence) of a record
- Implementation: instead of f(X) compute g(X), and so that g does not depend so much on the input add noise

• Differential privacy.

Result does not depend (much) on the presence (absence) of a record

• Implementation: instead of f(X) compute g(X),

typically g(X) = f(X) + r with $r \sim L(0, b)$ (Laplace distribution)

Definition. The result g(D) satisfies differential privacy in degree ϵ if for all BD_1 and BD_2 it holds for all $S \subseteq Range(K_q)$, $Pr[K_q(BD_1) \in S] \leq e^{\epsilon}Pr[K_q(BD_2) \in S]$

• The smaller the ϵ , the more similar the two distributions

- Differential privacy. Implementation
 - Define g(X) = f(X) + r with $r \sim L(0, b)$ (Laplace distribution)
 - \circ Example f(BD)=3300 and f(BD')=3450, with Laplace distribution L(0,50)

• The value b in L(0,b) depends on ϵ (the privacy level) and the sensitivity of the function f to the possible DBs

• Differential privacy.

Other mechanisms for non-numerical functions and, for example, for neural networks/deep learning, decision trees

 Solutions are robust to membership attacks (recall Ms. Rich!)

- Integral privacy.
 - The outcome is a recurrent result
 - Several databases can provide the same result
- Privacy:
 - $\circ k$ databases generate the same result (k-anonymity)
 - plausible deniability: I wasn't there Says Ms. Rich

Privacy models

Privacy models. Avoiding inferences from computations

• Integral privacy.

The outcome is a recurrent result

Definition. The result G = g(D) satisfies integral privacy given background knowledge S^* if $Gen(G, S^*)$ is <u>large (k BDs)</u> and $\bigcap_{g \in Gen^*(G, S^*)} g = \emptyset$. where $Gen(G, S^*) = \{S' | S^* \subseteq S' \subseteq P, A(S') = G\}$ $Gen^*(G, S^*) = \{S' \setminus S^* | S^* \subseteq S' \subseteq P, A(S') = G\}$

 k different databases, not sharing records (and different enough) to avoid membership attacks

- Integral privacy.
 - The outcome is a recurrent result
 - Example

 $\{1000, 2000, 3000, 2000, 1000, 6000, 2000, 10000, 2000, 4000\} \cup \{100000\}$

- $\circ\,$ Several subsets return the same output: mean equal 3000
 - \triangleright {3000}
 - \triangleright {2000, 4000}
 - \triangleright {6000, 2000, 1000}
 - \triangleright {10000, 1000, 1000, 3000}
 - \triangleright {6000, 4000, 1000, 2000, 3000, 2000}

- Integral privacy.
 - The outcome is a recurrent result
- Recurrent models also appear in machine learning
- Decision trees built from a database (Iris dataset). Models/freq.

- Integral privacy.
 - The outcome is a recurrent result
- Recurrent models can also have good accuracy
- Decision trees built from a database (Iris dataset). Accuracy/freq.

• Differential privacy, smooth function

$$f(D) \sim f(D \oplus x)$$

where $D \oplus x$ represents adding a record x to a database D

• Integral privacy, recurrent function If $f^{-1}(G)$ is the set of all (real) databases that can generate G, we require $f^{-1}(G)$ to be a large and diverse set.

• Differential privacy, smooth function

$$f(D) \sim f(D \oplus x)$$

where $D \oplus x$ represents adding a record x to a database D

- Integral privacy, recurrent function If $f^{-1}(G)$ is the set of all (real) databases that can generate G, we require $f^{-1}(G)$ to be a large and diverse set.
- An example of a simple function that satisfies integral privacy is:
 A an algorithm that returns 1 if the number of records of D is even and 0 if it is odd
 That is, f(D) = 1 if and only if |D| is even.

Summary

- Achieve a good anonymization is challenging (if we want data to be useful, of course!)
- It is possible to obtain data and models protected enough to be useful and with certain privacy levels.

Summary

- My research ...
 - Data masking methods for SQL/noSQL (microaggregation, rank swapping)
 - Disclosure risk assessment for masked data. Worst-case scenario: transparency attacks + machine learning to identify best parameters
 - Differential privacy + Integral privacy
 - Federated learning

Thank you

Related references.

- V. Torra, Fuzzy microaggregation for the transparency principle. J. Appl. Log. 23 (2017) 70-80.
- D. Abril, G. Navarro-Arribas, V. Torra, Supervised Learning Using a Symmetric Bilinear Form for Record Linkage, Information Fusion 26 (2015) 144-153.
- N. Senavirathne, V. Torra, Integrally private model selection for decision trees, Comput. Secur. 83 (2019) 167-181.
- V. Torra, G. Navarro-Arribas, E. Galván, Explaining Recurrent Machine Learning Models: Integral Privacy Revisited. Proc. PSD 2020 62-73.
- V. Torra (2017) Data Privacy: Foundations, New Developments and the Big Data Challenge. Springer.
- http://ppdm.cat/dp/