PAIS 2015

Transparency and disclosure risk in data privacy

Vicenç Torra¹

March, 2015

 1 School of Informatics, University of Skövde, Sweden

Quantitative measures of risk: record linkage

Transparency principle: publication of data processing methods a good practice on data privacy similar to the one in cryptography

Risk needs to consider the transparency principle

1. Introduction

- Masking methods
- Disclosure risk assessment
- 2. Transparency
 - Definition
 - Attacking Rank Swapping
 - Attacking Microaggregation
- 3. Worst-case scenario when measuring disclosure risk
- 4. Summary

Masking methods

Masking methods

Masking methods.

- Perturbative
- Non-perturbative
- Synthetic data generators

Review

- Microaggregation
- Rank swapping

Rank Swapping

Rank swapping

- For ordinal/numerical attributes
- Applied attribute-wise

```
Data: (a_1, \ldots, a_n): original data; p: percentage of records
Order (a_1, \ldots, a_n) in increasing order (i.e., a_i \le a_{i+1});
Mark a_i as unswapped for all i;
for i = 1 to n do
if a_i is unswapped then
Select \ell randomly and uniformly chosen from the limited
range [i + 1, \min(n, i + p * |X|/100)];
Swap a_i with a_\ell;
```

Undo the sorting step ;

Rank Swapping

Rank swapping.

- Marginal distributions not modified.
- Correlations between the attributes are modified
- Good trade-off between information loss and disclosure risk

Microaggregation

Microaggregation.

• Case of two attributes microaggregated together

Microaggregation. Application.

- k: number of records in the cluster
- Partition of the attributes

v_1	v_2	v_3	v_4	v_1'	v_2'	v_3'	v_4'
1	1	1	1	1.66667	2	1.33333	1.66667
2	2	1	2	1.66667	2	1.33333	1.66667
2	3	1	6	1.66667	2	2.33333	5.66667
2	9	1	10	3	7.33333	1.66667	9.66667
3	6	2	2	3	7.33333	1.33333	1.66667
4	1	2	9	4.33333	5	1.66667	9.66667
4	6	2	10	4.33333	5	1.66667	9.66667
4	7	3	2	3	7.33333	2.33333	5.66667
5	8	3	9	4.33333	5	2.33333	5.66667
6	8	4	7	7.66667	8.66667	6	5
8	1	7	2	8.66667	2.66667	6	5
8	9	7	6	7.66667	8.66667	6	5
9	3	8	1	8.66667	2.66667	8.66667	1.33333
9	4	8	2	8.66667	2.66667	8.66667	1.33333
9	9	10	1	7.66667	8.66667	8.66667	1.33333

Disclosure risk.

- Identity disclosure vs. Attribute disclosure
 - Attribute disclosure:
 - \star Increase knowledge about an attribute of an individual
 - Identity disclosure:
 - \star Find/identify an individual in a masked file

Disclosure risk.

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures

Disclosure risk.

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures (minimize information loss vs. multiobjetive optimization)

Disclosure risk.

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures (minimize information loss vs. multiobjetive optimization)

Examples.

- Boolean definitions of risk
 - k-Anonymity (Boolean definition / identity disclosure)
 - differential privacy (Boolean definition / attribute disclosure)
- Quantitative measures of risk
 - Re-identification / Record linkage (for identity disclosure)
 - Uniqueness (for identity disclosure)
 - Interval disclosure (for attribute disclosure)

- An scenario for identity disclosure: $X = id||X_{nc}||X_c$
 - $\circ\,$ Protection of the attributes
 - * **Identifiers.** Usually removed or encrypted.
 - * Confidential. X_c are usually not modified. $X'_c = X_c$.
 - * Quasi-identifiers. Apply masking method ρ to these attributes. $X'_{nc} = \rho(X_{nc}).$

- An scenario for identity disclosure: $X = id||X_{nc}||X_c$
 - \circ A: File with the protected data set
 - \circ B: File with the data from the intruder (subset of original X)

- An scenario for identity disclosure
 - Reidentification using the common attributes (quasi-identifiers):

- An scenario for identity disclosure
 - Reidentification using the common attributes (quasi-identifiers): identity disclosure

- An scenario for identity disclosure
 - Reidentification using the common attributes (quasi-identifiers):
 identity disclosure
 - Attribute disclosure may be possible

- An scenario for identity disclosure
 - Reidentification using the common attributes (quasi-identifiers): identity disclosure
 - Attribute disclosure may be possible when reidentification permits to link confidential values to identifiers (in this case: identity disclosure implies attribute disclosure)

- Flexible scenario for identity disclosure
 - \circ A protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.

Outline

- Flexible scenario for identity disclosure
 - $\circ~A$ protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals

- Flexible scenario for identity disclosure
 - $\circ~A$ protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals
 - \rightarrow intruder with information on only some characteristics

- Flexible scenario for identity disclosure
 - $\circ~A$ protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals
 - \rightarrow intruder with information on only some characteristics

\circ But also,

 $\star B$ with a schema different to the one of A (different attributes)

Quantitative measures for identity disclosure

• **Re-identification.** Risk as number of re-identifications that might be obtained by an intruder (estimation).

- **Re-identification.** Risk as number of re-identifications that might be obtained by an intruder (estimation).
 - \circ When both files have the same schema: record linkage algorithms.

- **Re-identification.** Risk as **number of re-identifications** that might be obtained by an intruder (estimation).
 - \circ When both files have the same schema: record linkage algorithms.
 - \circ Applicable to different scenarios. E.g., synthetic data

- **Re-identification.** Risk as number of re-identifications that might be obtained by an intruder (estimation).
 - \circ When both files have the same schema: record linkage algorithms.
 - \circ Applicable to different scenarios. E.g., synthetic data
- Uniqueness. Risk is defined as the probability that rare combinations of attribute values in the protected data set are indeed rare in the original population.

- **Re-identification.** Risk as number of re-identifications that might be obtained by an intruder (estimation).
 - \circ When both files have the same schema: record linkage algorithms.
 - Applicable to different scenarios. E.g., synthetic data
- Uniqueness. Risk is defined as the probability that rare combinations of attribute values in the protected data set are indeed rare in the original population.
 - Suitable for sampling ($\rho(X)$ is a subset of X).
 - $\circ\,$ For masked data, the same combination will not appear.

- **Re-identification.** Risk as number of re-identifications that might be obtained by an intruder (estimation).
 - Probabilistic and distance-based record linkage

- **Re-identification.** Risk as number of re-identifications that might be obtained by an intruder (estimation).
 - Probabilistic and distance-based record linkage

Data: A: masked file; B: intruder's data file (subset of original file) Result: LP: linked pairs; NP: non-linked pairs for $a \in \mathbf{A}$ do $\mathbf{b}' = \arg\min_{b \in \mathbf{B}} d(a, b)$; $\mathbf{LP} = \mathbf{LP} \cup (a, b')$; for $b \in \mathbf{B}$ such that $b \neq b'$ do $\left\lfloor \mathbf{NP} = \mathbf{NP} \cup (a, b) \right
ight
angle$;

Transparency

Transparency

Transparency: Definition

Definition.

 protected/masked data has to be published informing on how the data has been protected

Definition.

 protected/masked data has to be published informing on how the data has been protected

Advantage.

• Improve inference/evaluation of some statistics. E.g., noise addition with ϵ with $Var(\epsilon) = kVar(X)$, $\circ E(X') = E(X) + E(\epsilon) = E(X)$ $\circ Cov(X'_i, X'_j) = Cov(X_i, X_j)$ for $i \neq j$ $\circ Var(X') = Var(X) + kVar(X) = (1 + k)Var(X)$ $\circ \rho_{X'_i,X'_j} = \frac{Cov(X'_i,X'_j)}{\sqrt{Var(X'_i)Var(X'_j)}} = \frac{Cov(X_i,X_j)}{(1+k)\sqrt{Var(X_i)Var(X_j)}} = \frac{1}{1+k}\rho_{X_i,X_j}$

Definition.

 protected/masked data has to be published informing on how the data has been protected

Advantage.

• Improve inference/evaluation of some statistics. E.g., noise addition with ϵ with $Var(\epsilon) = kVar(X)$, $\circ E(X') = E(X) + E(\epsilon) = E(X)$ $\circ Cov(X'_i, X'_j) = Cov(X_i, X_j)$ for $i \neq j$ $\circ Var(X') = Var(X) + kVar(X) = (1 + k)Var(X)$ $\circ \rho_{X'_i, X'_j} = \frac{Cov(X'_i, X'_j)}{\sqrt{Var(X'_i)Var(X'_j)}} = \frac{Cov(X_i, X_j)}{(1 + k)\sqrt{Var(X_i)Var(X_j)}} = \frac{1}{1 + k}\rho_{X_i, X_j}$

Inconvenient

• intruders can use this information to attack the data
Discussion.

- Cryptography relationship. Encryption method is known.
- Guessing the method. We do not need to worry about the intruder guessing or learning about the method use.
 - \circ Microaggregation find by visual inspection
 - Rank swapping can be guessed if the intruder has a large enough data set.

Attacking Rank Swapping

• X' (protected data set)

- X' (protected data set)
- masking method: rank swapping

- X' (protected data set)
- masking method: rank swapping
- parameter of the method: p (proportion of |X|)

Then, the intruder can use *(method, parameter)* to attack

- X' (protected data set)
- masking method: rank swapping
- parameter of the method: p (proportion of |X|)

Then, the intruder can use *(method, parameter)* to attack

 \rightarrow (method, parameter) = (rank swapping, p)

Intruder perspective.

• All protected values are available.

l.e.,

Intruder perspective.

• All protected values are available.

l.e.,

Intruder data are available

Intruder perspective.

• All protected values are available.

l.e.,

Intruder data are available

All data in the original data set are also available

Intruder perspective.

• All protected values are available.

l.e.,

- Intruder data are available
- All data in the original data set are also available

Intruder's attack for a single attribute

Given a value a, we can define the set of possible swaps for a_i
 Proceed as rank swapping does: a₁,..., a_n ordered values If a_i = a, it can only be swapped with a_ℓ in the range

$$\ell \in [i+1, \min(n, i+p * |X|/100)]$$

• Define $B_j(a)$

the set of masked records that can be the masked version of \boldsymbol{a}

• Define $B_j(a)$

the set of masked records that can be the masked version of aNo uncertainty on $B_j(a)$

 $x'_{\ell} \in B_j(a)$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

• Define $B_j(a)$

the set of masked records that can be the masked version of aNo uncertainty on $B_j(a)$

 $x'_{\ell} \in B_j(a)$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

$$x_{\ell}' \in \bigcap_{1 \le j \le c} B_j(x_i).$$

• Define $B_j(a)$

the set of masked records that can be the masked version of aNo uncertainty on $B_j(a)$

 $x'_{\ell} \in B_j(a)$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

$$x_{\ell}' \in \bigcap_{1 \le j \le c} B_j(x_i).$$

No uncertainty!

Intruder's attack for all available attributes

• Intersection attack:

 $x_{\ell}' \in \bigcap_{1 \le j \le c} B_j(x_i).$

- When $|\cap_{1 \leq j \leq c} B_j(x_i)| = 1$, we have a true match
- Otherwise, we can apply record linkage within this set

Data: $Y \subseteq X$: data file of the intruder; X': masked file; p: percentage of records for swapping Result: linkage between Y and X' $LP = \emptyset$; for each $x_i \in Y$ do $\begin{bmatrix} B(x_i) = \bigcap_{1 \le j \le c} B_j(x_i) ; \\ x' = \arg \min_{x' \in B(x_i)} d(x', x_i) ; \\ LP = LP \cup (x', x_i) ; \end{bmatrix}$ return (LP); Undo the sorting step ;

Intruder's attack. Example.

• Intruder's record: $x_2 = (6, 7, 10, 2)$, p = 2. First attribute: $x_{21} = 6$

$- \underbrace{(4, 1, 10, 10), (0, 0, 0, 1), (0, 1, 0, 0), (1, 0, 0), (0, 4, 2, 2)}_{(0, 1, 0, 0), (0, 4, 2, 2)}$										
	C)rigir	al fil	е	Masked file				$B(x_{2j})$	
	a_1	a_2	a_3	a_4	a'_1	a'_2	a'_3	a'_4	$B(x_{21})$	
	8	9	1	3	10	10	3	5		
	6	7	10	2	5	5	8	1	Х	
	10	3	4	1	8	4	2	2	Х	
	7	1	2	6	9	2	4	4		
	9	4	6	4	7	3	5	6	Х	
	2	2	8	8	4	1	10	10	Х	
	1	10	3	9	3	9	1	7		
	4	8	7	10	2	6	9	8		
	5	5	5	5	6	7	6	3	Х	

• $B_1(a=6) = \{(4,1,10,10), (5,5,8,1), (6,7,6,3), (7,3,5,6), (8,4,2,2)\}$

6

3

9

7

1

8 7

9

Intruder's attack. Example.

• Intruder's record: $x_2 = (6, 7, 10, 2)$, p = 2. Second attribute: $x_{22} = 7$

\cdot		<u>, , , , , ,</u>	<u>, (-, «</u>					$\frac{D(m)}{D(m)}$	
Original file				IVIASKED THE				$B(x_{2j})$	
a_1	a_2	a_3	a_4	a'_1	a'_2	a'_3	a'_4	$B(x_{21})$	$B(x_{22})$
8	9	1	3	10	10	3	5		
6	7	10	2	5	5	8	1	Х	Х
10	3	4	1	8	4	2	2	Х	
7	1	2	6	9	2	4	4		
9	4	6	4	7	3	5	6	Х	
2	2	8	8	4	1	10	10	Х	
1	10	3	9	3	9	1	7		Х
4	8	7	10	2	6	9	8		Х
5	5	5	5	6	7	6	3	Х	Х
3	6	9	7	1	8	7	9		Х

• $B_2(a=7) = \{(5,5,8,1), (2,6,9,8), (6,7,6,3), (1,8,7,9), (3,9,1,7)\}$

Intruder's attack. Example.

- Intruder's record: $x_2 = (6, 7, 10, 2)$, p = 2.
 - $\circ B_1(x_{21} = 6) = \{(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)\}$
 - $\circ B_2(x_{22} = 7) = \{(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)\}$
 - $\circ \ B_3(x_{23} = 10) = \{(5, 5, 8, 1), (2, 6, 9, 8), (4, 1, 10, 10)\}$
 - $\circ B_4(x_{24}=2) = \{(5,5,8,1), (8,4,2,2), (6,7,6,3), (9,2,4,4)\}$
- The intersection is a single record

(5, 5, 8, 1)

Intruder's attack. Application.

- Data:
 - Census (1080 records, 13 attributes)
 - EIA (4092 records, 10 attributes)
- Rank swaping parameter:

 $\circ \ p=2,\ldots,20$

Intruder's attack. Result

		Census		EIA			
	RSLD	DLD	PLD	RSLD	DLD	PLD	
rs 2	77.73	73.52	71.28	43.27	21.71	16.85	
rs 4	66.65	58.40	42.92	12.54	10.61	4.79	
rs 6	54.65	43.76	22.49	7.69	7.40	2.03	
rs 8	41.28	32.13	11.74	6.12	5.98	1.12	
rs 10	29.21	23.64	6.03	5.60	5.19	0.69	
rs 12	19.87	18.96	3.46	5.39	4.87	0.51	
rs 14	16.14	15.63	2.06	5.28	4.55	0.32	
rs 16	13.81	13.59	1.29	5.19	4.54	0.23	
rs 18	12.21	11.50	0.83	5.20	4.54	0.22	
rs 20	10.88	10.87	0.59	5.15	4.36	0.18	

Intruder's attack. Summary

- When | ∩ B_j| = 1, this is a match.
 25% of reidentifications in this way ≠ 25% in distance-based or probabilistic record linkage.
- Approach applicable when the intruder knows a single record
- The more attributes the intruder has, the better is the reidentification. Intersection never increases when the number of attributes increases.
- When p is not known, an upper bound can help If the upper bound is too high, some $|\cap B_j|$ can be zero

Avoiding Transparency Attack in Rank Swapping

Avoiding transparency attack in rank swapping.

• Enlarge the B_j set to encompass the whole file.

Avoiding transparency attack in rank swapping.

- Enlarge the B_j set to encompass the whole file.
- Then,

$$\cap B_j = X$$

Approaches to avoid transparency attack in rank swapping.

• Rank swapping p-buckets. Select bucket B_s using

$$Pr[B_s \text{ is choosen } |B_r] = \frac{1}{K} \frac{1}{2^{s-r+1}}.$$

• Rank swapping p-distribution. Swap a_i with a_ℓ where $\ell = i + r$ and r according to a N(0.5p, 0.5p).

Attacking Microaggregation

Microaggregation and transparency

Transparency attack to microaggregation.

• Define $B_j(a)$ as the set of records that can be the masked versio of a for attribute V_j

$$x'_{\ell} \in B_j(a)$$

In optimal univariate microaggregation $B_j(a)$ is the union of two clusters $(p_i < a < p_{i+1})$.

• Intersection attack

 $x_{\ell}' \in \cap_{1 \le j \le c} B_j(x_i).$

Avoiding Transparency Attack in Microaggregation

Microaggregation and transparency

Avoiding transparency attack in microaggregation.

- Fuzzy microaggregation.
 - Construct fuzzy clusters: records belong to several clusters
 - Assign values from cluster centers from a random distribution built from membership functions

Worst-case scenario

Worst-case scenario when measuring disclosure risk

- Distance-based record linkage
- Parametric distances with best parameters E.g.,
 - Weighted Euclidean distance

• Distance-based record linkage with Euclidean distance equivalent to:

$$d^{2}(a,b) = \sum_{i=1}^{n} \frac{1}{n} \left(diff_{i}(a,b) \right)^{2}$$
$$= WM_{p}(diff_{1}(a,b), \dots, diff_{n}(a,b))$$

with $p = (1/n, \dots, 1/n)$ and $diff_i(a, b) = ((a_i - \overline{a}_i)/\sigma(a_i) - (b_i - \overline{b}_i)/\sigma(b_i))^2$

- $p_i = 1/n$ means equal importance to all attributes
- Appropriate for attributes with equal discriminatory power (e.g., same noise, same distribution)

• Distance-based record linkage with weighted mean distance (weighted Euclidean distance)

$$d^{2}(a,b) = WM_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with arbitrary vector $p = (p_1, \dots, p_n)$ and $diff_i(a, b) = ((a_i - \overline{a}_i)/\sigma(a_i) - (b_i - \overline{b}_i)/\sigma(b_i))^2$

• Distance-based record linkage with weighted mean distance (weighted Euclidean distance)

$$d^{2}(a,b) = WM_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with arbitrary vector
$$p = (p_1, \dots, p_n)$$
 and
 $diff_i(a, b) = ((a_i - \overline{a}_i)/\sigma(a_i) - (b_i - \overline{b}_i)/\sigma(b_i))^2$

Worst-case: Optimal selection of the weights. How??

- Supervised machine learning approach
- Using an optimization problem

 Distance-based record linkage with parametric distances (distance/metric learning): C a combination/aggregation function

$$d^{2}(a,b) = \mathbb{C}_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with parameter p and $diff_i(a,b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$

 Distance-based record linkage with parametric distances (distance/metric learning): C a combination/aggregation function

$$d^{2}(a,b) = \mathbb{C}_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with parameter p and $diff_i(a,b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$

Worst-case: Optimal selection of the parameter p. How??

- Supervised machine learning approach
- Using an optimization problem
Worst-case scenario for distance-based record linkage

- Optimal weights using a supervised machine learning approach
- We need a set of examples from:

Machine Learning for distance-based record linkage

- Generic solution, using
 - \circ an arbitrary combination function $\mathbb C$
 - \circ with parameter p

 $d(a_i, b_j) = \mathbb{C}_p(diff_1(a, b), \dots, diff_n(a, b))$

- \bullet Generic solution, using $\mathbb C$ with parameter p
- Goal
 - \circ as much correct reidentifications as possible
 - For record *i*: $d(a_i, b_j) \ge d(a_i, b_i)$ for all *j*

Machine Learning for distance-based record linkage

- \bullet Generic solution, using $\mathbb C$ with parameter p
- Goal
 - \circ as much correct reidentifications as possible
 - \circ For record $i:~d(a_i,b_j) \geq d(a_i,b_i)$ for all j That is,

 $\mathbb{C}_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) \ge \mathbb{C}_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i))$

Machine Learning for distance-based record linkage

- Goal
 - as much correct reidentifications as possible
 - Maximize the number of records a_i such that $d(a_i, b_j) \ge d(a_i, b_i)$ for all j
 - \circ If record a_i fails for at least one b_j

 $d(a_i, b_j) \ngeq d(a_i, b_i)$

Then, let $K_i = 1$ in this case, then for a large enough constant C

$$d(a_i, b_j) + CK_i \ge d(a_i, b_i)$$

Machine Learning for distance-based record linkage

- Goal
 - $\circ\,$ as much correct reidentifications as possible
 - Maximize the number of records a_i such that $d(a_i, b_j) \ge d(a_i, b_i)$ for all j
 - \circ If record a_i fails for at least one b_j

 $d(a_i, b_j) \not\geq d(a_i, b_i)$

Then, let $K_i = 1$ in this case, then for a large enough constant C

 $d(a_i, b_j) + CK_i \ge d(a_i, b_i)$

That is,

 $\mathbb{C}_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) + CK_i \ge \mathbb{C}_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i))$

Machine Learning for distance-based record linkage

- Goal
 - \circ as much correct reidentifications as possible
 - Minimize K_i : minimize the number of records a_i that fail $d(a_i, b_j) \ge d(a_i, b_i)$ for all j
 - $K_i \in \{0,1\}$, if $K_i = 0$ reidentification is correct

 $d(a_i, b_j) + CK_i \ge d(a_i, b_i)$

Machine Learning for distance-based record linkage

• Goal

- as much correct reidentifications as possible
- Minimize K_i : minimize the number of records a_i that fail
- Formalization:

$$Minimize \sum_{i=1}^{N} K_i$$

Subject to :

$$\mathbb{C}_{p}(diff_{1}(a_{i}, b_{j}), \dots, diff_{n}(a_{i}, b_{j})) - \\ - \mathbb{C}_{p}(diff_{1}(a_{i}, b_{i}), \dots, diff_{n}(a_{i}, b_{i})) + CK_{i} > 0$$
$$K_{i} \in \{0, 1\}$$
Additional constraints according to \mathbb{C}

- Example: the case of the weighted mean
- Formalization:

$$\begin{split} Minimize \sum_{i=1}^{N} K_i \\ Subject \ to: \\ & WM_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) - \\ & - WM_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i)) + CK_i > 0 \\ & K_i \in \{0, 1\} \\ & \sum_{i=1}^{n} p_i = 1 \\ & p_i \ge 0 \end{split}$$

- Distances considered
 - \circ Weighted mean: importance to the attributes Parameter: weighting vector n parameters
 - OWA linear combination of order statistics (weighted): discard lower or larger distances
 Parameter: weighting vector n parameters
 - Choquet integral: weights to interactions of sets of attributes Parameter: non-additive measure: $2^n - 2$ parameters
 - Bilinear form generalization of the Mahalanobis distance: weights to interactions between pairs of attributes Parameter: square matrix: $n \times n$ parameters

Machine Learning for distance-based record linkage

• Distances considered

- Data sets considered (from CENSUS dataset)
 - *M4-33*: 4 attributes microaggregated in groups of 2 with k = 3.
 - *M4-28*: 4 attributes, 2 attributes with k = 2, and 2 with k = 8.
 - \circ *M4-82*: 4 attributes, 2 attributes with k = 8, and 2 with k = 2.
 - *M5-38*: 5 attributes, 3 attributes with k = 3, and 2 with k = 8.
 - *M6-385*: 6 attributes, 2 attributes with k = 3, 2 attributes with k = 8, and 2 with k = 5.
 - *M6-853*: 6 attributes, 2 attributes with k = 8, 2 attributes with k = 5, and 2 with k = 3.

•	Percentage	of tl	he num	iber of	correct	re-iden	tifications.
		M4-33	M4-28	M4-82	M5-38	M6-385	M6-853
	d^2AM	84.00	68.50	71.00	39.75	78.00	84.75
	$d^2 M D$	94.00	90.00	92.75	88.25	98.50	98.00
	d^2WM	95.50	93.00	94.25	90.50	99.25	98.75
	d^2WM_m	95.50	93.00	94.25	90.50	99.25	98.75
	d^2CI	95.75	93.75	94.25	91.25	99.75	99.25
	d^2CI_m	95.75	93.75	94.25	90.50	99.50	98.75
	d^2SB_{NC}	96.75	94.5	95.25	92.25	99.75	99.50
	d^2SB	96.75	94.5	95.25	92.25	99.75	99.50
	d^2SB_{PD}	_	_	_	_	_	99.25

Machine Learning for distance-based record linkage

computation time comparison (in seconds).						
	M4-33	M4-28	M4-82	M5-38	M6-385	M6-853
d^2WM	29.83	41.37	24.33	718.43	11.81	17.77
d^2WM_m	3.43	6.26	2.26	190.75	4.34	6.72
$d^2 C I$	280.24	427.75	242.86	42,731.22	24.17	87.43
$d^2 C I_m$	155.07	441.99	294.98	4,017.16	79.43	829.81
d^2SB_{NC}	32.04	2,793.81	150.66	10,592.99	13.65	14.11
d^2SB	13.67	3,479.06	139.59	169,049.55	13.93	13.70

Computation time comparison (in seconds)

• Constraints specific to weighted mean and Choquet integral for distances

IV. number of records, <i>n</i> . number of attributes						
d^2WM_m	$d^2 C I_m$					
$\sum_{i=1}^{n} p_i = 1$	$\mu(\emptyset) = 0$					
$p_i > 0$	$\mu(V) = 1$					
	$\mu(A) \leq \mu(B)$ when $A \subseteq B$					
	$\mu(A) + \mu(B) \ge \mu(A \cup B) + \mu(A \cap B)$					
N(N-1) + N + 1 + n	$N(N-1) + N + 2 + (\sum_{k=2}^{n} {n \choose k} k) + {n \choose 2}$					
	$\frac{d^2 W M_m}{\sum_{i=1}^{n} p_i = 1}$ $p_i > 0$ $N(N-1) + N + 1 + n$					

N number of records: n number of attributes

Machine Learning for distance-based record linkage

• A summary of the experiments

	AM	MD	WM	OWA	SBF	CI
Computation	Very fast	Very fast	Fast	regular	Hard	Hard
Results	Worse	Good	Good	Bad	Very Good	Very Good
Information	No	No	Few	Few	Large	Large

Summary

- Quantitative measures of risk
- Transparency and disclosure risk
 - Masking method and parameters published
 - Disclosure risk revisited
 - New masking methods resistant to transparency
- Worst-case scenario for disclosure risk
 - Parametric distances
 - Distance/metric learning

Thank you

* Special thanks to Jordi Nin, Daniel Abril, Guillermo Navarro-Arribas

Main references.

- D. Abril, G. Navarro-Arribas, V. Torra, Supervised Learning Using a Symmetric Bilinear Form for Record Linkage, Information Fusion, in press.
- D. Abril, G. Navarro-Arribas, V. Torra, Improving record linkage with supervised learning for disclosure risk assessment, Information Fusion 13:4 (2012) 274-284.
- J. Nin, J. Herranz, V. Torra, On the Disclosure Risk of Multivariate Microaggregation, Data and Knowledge Engineering, 67 (2008) 399-412.
- J. Nin, J. Herranz, V. Torra, Rethinking Rank Swapping to Decrease Disclosure Risk, Data and Knowledge Engineering, 64:1 (2008) 346-364.