Uppsala 2016

Data privacy: supervised approaches for disclosure risk assessment

Vicenç Torra

May, 2016

School of Informatics, University of Skövde, Sweden

Background

- MSc and PhD in Computer Science (with maths) (U.Polytechn. BCN) 1994
- U. Rovira i Virgili (Tarragona, Catalonia, Spain) 1999
- Artificial Intelligence Research Institute -Spanish National Research Council (IIIA-CSIC, Barcelona) 1999-2014
- Professor (Skövde Al group) at U. of Skövde, 2014-

Research

- Approximate reasoning (since 1994, including non-additive measures, fuzzy sets theory, decision making)
- Data privacy (since 1999/2000)

Outline

Disclosure risk. A quantitative measures: record linkage

- The worst-case scenario
 - \circ Using ML in reidentification
- Transparency principle
 - Transparency attacks

1. Introduction

- 2. Disclosure risk assessment
 - Worst-case scenario
 - ML for reidentification

3. Transparency

- Definition
- Attacking Rank Swapping
- Avoiding transparency attack
- 4. Privacy and graphs
- 5. Summary

Introduction

Classification w.r.t. our knowledge on the computation of a third party

- Data-driven or general purpose
 → anonymization methods / masking methods
- Computation-driven or specific purpose
 → cryptographic protocols, differential privacy
- Result-driven

Masking methods

Vicenç Torra; Data privacy

Approach valid for different types of data

• Databases, documents, search logs, social networks, . . . (also masking taking into account semantics: wordnet, ODP)

Research questions

Masking methods

- Perturbative.
 - E.g. noise addition/multiplication, microaggregation, rank swapping

- Perturbative.
 - E.g. noise addition/multiplication, microaggregation, rank swapping
- Non-perturbative
 - E.g. generalization, suppression

- Perturbative.
 - E.g. noise addition/multiplication, microaggregation, rank swapping
- Non-perturbative
 - E.g. generalization, suppression
- Synthetic data generators

Information loss measures. Compare X and X' w.r.t. analysis (f)

 $IL_f(X, X') = divergence(f(X), f(X'))$

- Statistics
- Machine learning: Clustering and classification
- ... specific measures for graphs

Masking methods

Dislosure risk. ... coming soon

Disclosure risk assesment

- Identity disclosure vs. Attribute disclosure
 - Attribute disclosure:
 - \star Increase knowledge about an attribute of an individual
 - Identity disclosure:
 - \star Find/identify an individual in a masked file

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures (minimize information loss vs. multiobjetive optimization)

- Identity disclosure vs. Attribute disclosure
- Boolean vs. quantitative measures (minimize information loss vs. multiobjetive optimization)

Examples. Privacy models / disclosure risk measures

Attribute disclosure Identity disclosure

Boolean	Differential privacy	k–Anonymity
Quantitative	Interval disclosure	Re-identification (record linkage) Uniqueness

Disclosure risk assesment

A scenario for identity disclosure: $X = id||X_{nc}||X_c|$

- Protection of the attributes
 - Identifiers. Usually removed or encrypted.
 - Confidential. X_c are usually not modified. $X'_c = X_c$.
 - Quasi-identifiers. Apply masking method ρ . $X'_{nc} = \rho(X_{nc})$.

A scenario for identity disclosure: $X = id||X_{nc}||X_c$

- A: File with the protected data set
- B: File with the data from the intruder (subset of original X)

• Reidentification using the common attributes (quasi-identifiers):

• Reidentification using the common attributes (quasi-identifiers): leads to identity disclosure

- Reidentification using the common attributes (quasi-identifiers): leads to identity disclosure
- Attribute disclosure may be possible

- A scenario for identity disclosure. Reidentification
 - Reidentification using the common attributes (quasi-identifiers): leads to identity disclosure
 - Attribute disclosure may be possible when reidentification permits to link confidential values to identifiers (in this case: identity disclosure implies attribute disclosure)

- Flexible scenario for identity disclosure
 - \circ A protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.

- Flexible scenario for identity disclosure
 - $\circ~A$ protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals

- Flexible scenario for identity disclosure
 - $\circ~A$ protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals
 - \rightarrow intruder with information on only some characteristics

- Flexible scenario for identity disclosure
 - $\circ~A$ protected file using a masking method
 - $\circ B$ (intruder's) is a subset of the original file.
 - \rightarrow intruder with information on only some individuals
 - \rightarrow intruder with information on only some characteristics

• But also,

- $\star B$ with a schema different to the one of A (different attributes)
- * Other scenarios. E.g., synthetic data

Worst-case scenario

Worst-case scenario when measuring disclosure risk

Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk) Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk)

• Maximum information

Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk)

- Maximum information
- Most effective reidentification method

Worst-case scenario for disclosure risk assessment (upper bound of disclosure risk)

- Maximum information: Use original file to attack
- Most effective reidentification method: Use ML

Worst-case scenario

ML for reidentification (learning distances)
- Distance-based record linkage
- Parametric distances with best parameters E.g.,
 - \circ Weighted Euclidean distance

• Distance-based record linkage with Euclidean distance equivalent to:

$$d^{2}(a,b) = ||\frac{1}{n}(a-b)||^{2} = \sum_{i=1}^{n} \frac{1}{n} (diff_{i}(a,b))$$
$$= WM_{p}(diff_{1}(a,b), \dots, diff_{n}(a,b))$$

with $p = (1/n, \dots, 1/n)$ and $diff_i(a, b) = ((a_i - \overline{a}_i)/\sigma(a_i) - (b_i - \overline{b}_i)/\sigma(b_i))^2$

- $p_i = 1/n$ means equal importance to all attributes
- Appropriate for attributes with equal discriminatory power (e.g., same noise, same distribution)

• Distance-based record linkage with weighted mean distance (weighted Euclidean distance)

$$d^{2}(a,b) = WM_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with arbitrary vector $p = (p_1, \dots, p_n)$ and $diff_i(a, b) = ((a_i - \overline{a}_i)/\sigma(a_i) - (b_i - \overline{b}_i)/\sigma(b_i))^2$

• Distance-based record linkage with weighted mean distance (weighted Euclidean distance)

$$d^{2}(a,b) = WM_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with arbitrary vector
$$p = (p_1, \dots, p_n)$$
 and
 $diff_i(a, b) = ((a_i - \overline{a}_i)/\sigma(a_i) - (b_i - \overline{b}_i)/\sigma(b_i))^2$

Worst-case: Optimal selection of the weights. How??

- Supervised machine learning approach
- Using an optimization problem

 Distance-based record linkage with parametric distances (distance/metric learning): C a combination/aggregation function

$$d^{2}(a,b) = \mathbb{C}_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with parameter p and $diff_i(a,b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$

 Distance-based record linkage with parametric distances (distance/metric learning): C a combination/aggregation function

$$d^{2}(a,b) = \mathbb{C}_{p}(diff_{1}(a,b),\ldots,diff_{n}(a,b))$$

with parameter p and $diff_i(a,b) = ((a_i - \bar{a}_i)/\sigma(a_i) - (b_i - \bar{b}_i)/\sigma(b_i))^2$

Worst-case: Optimal selection of the parameter p. How??

- Supervised machine learning approach
- Using an optimization problem

Worst-case scenario for distance-based record linkage

- Optimal weights using a supervised machine learning approach
- We need a set of examples from:

Machine Learning for distance-based record linkage

- Generic solution, using
 - \circ an arbitrary combination function $\mathbb C$ (aggregation)
 - \circ with parameter p

 $d(a_i, b_j) = \mathbb{C}_p(diff_1(a, b), \dots, diff_n(a, b))$

Machine Learning for distance-based record linkage

- \bullet Generic solution, using ${\mathbb C}$ with parameter p
- Goal (A and B aligned)
 - \circ as much correct reidentifications as possible
 - For record *i*: $d(a_i, b_j) \ge d(a_i, b_i)$ for all *j*

Machine Learning for distance-based record linkage

- \bullet Generic solution, using $\mathbb C$ with parameter p
- Goal (A and B aligned)
 - \circ as much correct reidentifications as possible
 - \circ For record $i:~d(a_i,b_j) \geq d(a_i,b_i)$ for all j That is,

 $\mathbb{C}_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) \ge \mathbb{C}_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i))$

Machine Learning for distance-based record linkage

- Goal
 - as much correct reidentifications as possible
 - Maximize the number of records a_i such that $d(a_i, b_j) \ge d(a_i, b_i)$ for all j
 - \circ If record a_i fails for at least one b_j

 $d(a_i, b_j) \not\geq d(a_i, b_i)$

Then, let $K_i = 1$ in this case, then for a large enough constant C

$$d(a_i, b_j) + CK_i \ge d(a_i, b_i)$$

Machine Learning for distance-based record linkage

- Goal
 - $\circ\,$ as much correct reidentifications as possible
 - Maximize the number of records a_i such that $d(a_i, b_j) \ge d(a_i, b_i)$ for all j
 - \circ If record a_i fails for at least one b_j

 $d(a_i, b_j) \not\geq d(a_i, b_i)$

Then, let $K_i = 1$ in this case, then for a large enough constant C

 $d(a_i, b_j) + CK_i \ge d(a_i, b_i)$

That is,

 $\mathbb{C}_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) + CK_i \ge \mathbb{C}_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i))$

Machine Learning for distance-based record linkage

- Goal
 - \circ as much correct reidentifications as possible
 - Minimize K_i : minimize the number of records a_i that fail $d(a_i, b_j) \ge d(a_i, b_i)$ for all j
 - $K_i \in \{0,1\}$, if $K_i = 0$ reidentification is correct

 $d(a_i, b_j) + CK_i \ge d(a_i, b_i)$

Machine Learning for distance-based record linkage

• Goal

- as much correct reidentifications as possible
- Minimize K_i : minimize the number of records a_i that fail
- Formalization:

$$Minimize \sum_{i=1}^{N} K_i$$

Subject to :

$$\mathbb{C}_{p}(diff_{1}(a_{i}, b_{j}), \dots, diff_{n}(a_{i}, b_{j})) - \\ -\mathbb{C}_{p}(diff_{1}(a_{i}, b_{i}), \dots, diff_{n}(a_{i}, b_{i})) + CK_{i} > 0$$
$$K_{i} \in \{0, 1\}$$
Additional constraints according to \mathbb{C}

- Example: the case of the weighted mean $\mathbb{C}=WM$
- Formalization:

$$\begin{split} Minimize \sum_{i=1}^{N} K_i \\ Subject \ to: \\ & WM_p(diff_1(a_i, b_j), \dots, diff_n(a_i, b_j)) - \\ & -WM_p(diff_1(a_i, b_i), \dots, diff_n(a_i, b_i)) + CK_i > 0 \\ & K_i \in \{0, 1\} \\ & \sum_{i=1}^{n} p_i = 1 \\ & p_i \ge 0 \end{split}$$

Machine Learning for distance-based record linkage

- \bullet Distances considered through the following $\mathbb C$
 - Weighted mean.

Weights: importance to the attributes

Parameter: weighting vector n parameters

Machine Learning for distance-based record linkage

- \bullet Distances considered through the following $\mathbb C$
 - Weighted mean.

Weights: importance to the attributes Parameter: weighting vector *n* parameters

OWA - linear combination of order statistics (weighted):
 Weights: to discard lower or larger distances
 Parameter: weighting vector n parameters

Machine Learning for distance-based record linkage

- \bullet Distances considered through the following $\mathbb C$
 - Choquet integral.

Weights: interactions of sets of attributes $(\mu : 2^X \rightarrow [0, 1])$ Parameter: non-additive measure: $2^n - 2$ parameters

- \bullet Distances considered through the following $\mathbb C$
 - Choquet integral.

Weights: interactions of sets of attributes $(\mu : 2^X \rightarrow [0, 1])$ Parameter: non-additive measure: $2^n - 2$ parameters

• Bilinear form - generalization of Mahalanobis distance Weights: interactions between pairs of attributes Parameter: square matrix: $n \times n$ parameters

• Distances considered

Choquet integral. A fuzzy integral w.r.t. a fuzzy measure (non-additive measure). CI generalizes Lebesgue integral. Interactions.

Disclosure Risk > Distances

Outline

Footnote: Mahalanobis / Cl

- Data sets considered (from CENSUS dataset)
 - *M4-33*: 4 attributes microaggregated in groups of 2 with k = 3.
 - *M4-28*: 4 attributes, 2 attributes with k = 2, and 2 with k = 8.
 - *M4-82*: 4 attributes, 2 attributes with k = 8, and 2 with k = 2.
 - *M5-38*: 5 attributes, 3 attributes with k = 3, and 2 with k = 8.
 - *M6-385*: 6 attributes, 2 attributes with k = 3, 2 attributes with k = 8, and 2 with k = 5.
 - *M6-853*: 6 attributes, 2 attributes with k = 8, 2 attributes with k = 5, and 2 with k = 3.

•	Percentage	of t	he num	iber of	correct	re-iden	tifications.
		M4-33	M4-28	M4-82	M5-38	M6-385	M6-853
	d^2AM	84.00	68.50	71.00	39.75	78.00	84.75
	$d^2 M D$	94.00	90.00	92.75	88.25	98.50	98.00
	d^2WM	95.50	93.00	94.25	90.50	99.25	98.75
	d^2WM_m	95.50	93.00	94.25	90.50	99.25	98.75
	d^2CI	95.75	93.75	94.25	91.25	99.75	99.25
	d^2CI_m	95.75	93.75	94.25	90.50	99.50	98.75
	d^2SB_{NC}	96.75	94.5	95.25	92.25	99.75	99.50
	d^2SB	96.75	94.5	95.25	92.25	99.75	99.50
	d^2SB_{PD}	_	_	_	_	_	99.25

 d_m : distance; d_{NC} : positive; d_{PD} : positive-definite matrix

nds).
)

	M4-33	M4-28	M4-82	M5-38	M6-385	M6-853
d^2WM	29.83	41.37	24.33	718.43	11.81	17.77
d^2WM_m	3.43	6.26	2.26	190.75	4.34	6.72
$d^2 C I$	280.24	427.75	242.86	42,731.22	24.17	87.43
$d^2 C I_m$	155.07	441.99	294.98	4,017.16	79.43	829.81
d^2SB_{NC}	32.04	2,793.81	150.66	10,592.99	13.65	14.11
d^2SB	13.67	3,479.06	139.59	169,049.55	13.93	13.70
$1b - 3600 \cdot 1d - 86400c$						

1h=3000; 1d=80400s

• Constraints specific to weighted mean and Choquet integral for distances

IV. number of records, <i>n</i> . number of attributes							
	d^2WM_m	$d^2 C I_m$					
Additional	$\sum_{i=1}^{n} p_i = 1$	$\mu(\emptyset) = 0$					
Constraints	$p_i > 0$	$\mu(V) = 1$					
		$\mu(A) \leq \mu(B)$ when $A \subseteq B$					
		$\mu(A) + \mu(B) \ge \mu(A \cup B) + \mu(A \cap B)$					
Total Constr.	N(N-1) + N + 1 + n	$N(N-1) + N + 2 + (\sum_{k=2}^{n} {n \choose k}k) + {n \choose 2}$					

Machine Learning for distance-based record linkage

• A summary of the experiments

	AM	MD	WM	OWA	SB	CI
Computation	Very fast	Very fast	Fast	regular	Hard	Hard
Results	Worse	Good	Good	Bad	Very Good	Very Good
Information	No	No	Few	Few	Large	Large

Transparency

Transparency

Transparency: Definition

Transparency.

• "the release of information about processes and even parameters used to alter data" (Karr, 2009).

Effect.

• Information Loss. Positive effect, less loss/improve inference E.g., noise addition $\rho(X) = X + \epsilon$ where ϵ s.t. $E(\epsilon) = 0$ and $Var(\epsilon) = kVar(X)$

Var(X') = Var(X) + kVar(X) = (1+k)Var(X).

Transparency.

• "the release of information about processes and even parameters used to alter data" (Karr, 2009).

Effect.

- Disclosure Risk. Negative effect, larger risk
 - Attack to single-ranking microaggregation (Winkler, 2002)
 - Formalization of the transparency attack (Nin, Herranz, Torra, 2008)
 - Attacks to microaggregation and rank swapping (Nin, Herranz, Torra, 2008)

Transparency.

• "the release of information about processes and even parameters used to alter data" (Karr, 2009).

Effect.

- Disclosure Risk. Formalization
 - $\circ X$ and X' original and masked files, $\mathbf{V} = (V_1, \ldots, V_s)$ attributes
 - $B_j(x)$ set of masked records associated to x w.r.t. *j*th variable.
 - Then, for record x, the masked record x_{ℓ} corresponding to x is in the intersection of $B_j(x)$.

$$x_{\ell} \in \cap_j B_j(x).$$

• Worst case scenario in record linkage: upper bound of risk

Attacking Rank Swapping

Transparency

Rank swapping

- For ordinal/numerical attributes
- Applied attribute-wise

```
Data: (a_1, \ldots, a_n): original data; p: percentage of records
Order (a_1, \ldots, a_n) in increasing order (i.e., a_i \le a_{i+1});
Mark a_i as unswapped for all i;
for i = 1 to n do
if a_i is unswapped then
Select \ell randomly and uniformly chosen from the limited
range [i + 1, \min(n, i + p * |X|/100)];
Swap a_i with a_\ell;
```

Undo the sorting step ;

Transparency

Rank swapping.

- Marginal distributions not modified.
- Correlations between the attributes are modified
- Good trade-off between information loss and disclosure risk

Under the transparency principle we publish

• X' (protected data set)

Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping

Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping
- parameter of the method: p (proportion of |X|)
Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping
- parameter of the method: p (proportion of |X|)

Then, the intruder can use *(method, parameter)* to attack

Under the transparency principle we publish

- X' (protected data set)
- masking method: rank swapping
- parameter of the method: p (proportion of |X|)

Then, the intruder can use *(method, parameter)* to attack

 \rightarrow (method, parameter) = (rank swapping, p)

Intruder perspective.

• Intruder data are available

Intruder perspective.

- Intruder data are available
- All protected values are available.

Intruder perspective.

- Intruder data are available
- All protected values are available.

l.e.,

All data in the original data set are also available

Intruder perspective.

- Intruder data are available
- All protected values are available.

l.e.,

All data in the original data set are also available

Intruder's attack for a single attribute

Given a value a, we can define the set of possible swaps for a_i
 Proceed as rank swapping does: a₁,..., a_n ordered values If a_i = a, it can only be swapped with a_ℓ in the range

$$\ell \in [i+1, \min(n, i+p * |X|/100)]$$

• Define $B_j(a)$

the set of masked records that can be the masked version of \boldsymbol{a}

• Define $B_j(a)$

the set of masked records that can be the masked version of a No uncertainty on $B_{j}(a)$

 $x'_{\ell} \in B_j(a)$

• Define $B_j(a)$

the set of masked records that can be the masked version of aNo uncertainty on $B_j(a)$

 $x'_{\ell} \in B_j(a)$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

• Define $B_j(a)$

the set of masked records that can be the masked version of aNo uncertainty on $B_j(a)$

 $x'_{\ell} \in B_j(a)$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

$$x_{\ell}' \in \bigcap_{1 \le j \le c} B_j(x_i).$$

• Define $B_j(a)$

the set of masked records that can be the masked version of aNo uncertainty on $B_j(a)$

 $x'_{\ell} \in B_j(a)$

Intruder's attack for all available attributes

- Define $B_j(a_j)$ for all available V_j
- Intersection attack:

$$x_{\ell}' \in \bigcap_{1 \le j \le c} B_j(x_i).$$

No uncertainty!

Intruder's attack for all available attributes

• Intersection attack:

 $x_{\ell}' \in \bigcap_{1 \le j \le c} B_j(x_i).$

- When $|\cap_{1 \leq j \leq c} B_j(x_i)| = 1$, we have a true match
- Otherwise, we can apply record linkage within this set

Intruder's attack. Example.

• Intruder's record: $x_2 = (6, 7, 10, 2)$, p = 2. First attribute: $x_{21} = 6$

-0) - ((4, 1, 10, 10), (0, 0, 0, 1), (0, 1, 0, 0), (1, 0, 0), (0, 4, 2, 2))											
	C)rigir	nal fil	е	Masked file				$B(x_{2j})$		
	a_1	a_2	a_3	a_4	a'_1	a_2'	a'_3	a'_4	$B(x_{21})$		
	8	9	1	3	10	10	3	5			
	6	7	10	2	5	5	8	1	X		
	10	3	4	1	8	4	2	2	X		
	7	1	2	6	9	2	4	4			
	9	4	6	4	7	3	5	6	X		
	2	2	8	8	4	1	10	10	X		
	1	10	3	9	3	9	1	7			
	4	8	7	10	2	6	9	8			
	5	5	5	5	6	7	6	3	X		
	3	6	9	7	1	8	7	9			

• $B_1(a=6) = \{(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)\}$

Intruder's attack. Example.

• Intruder's record: $x_2 = (6, 7, 10, 2)$, p = 2. Second attribute: $x_{22} = 7$

0	-1) - ((0, 0, 0, 1), (2, 0, 0), (0, 1, 0), (1, 0, 1, 0), (0, 0, 1, 1))										
	C)rigir	nal fil	е	Masked file				$B(x_{2j})$		
	a_1	a_2	a_3	a_4	a'_1	a'_2	a'_3	a'_4	$B(x_{21})$	$B(x_{22})$	
	8	9	1	3	10	10	3	5			
	6	7	10	2	5	5	8	1	Х	Х	
	10	3	4	1	8	4	2	2	Х		
	7	1	2	6	9	2	4	4			
	9	4	6	4	7	3	5	6	Х		
	2	2	8	8	4	1	10	10	Х		
	1	10	3	9	3	9	1	7		Х	
	4	8	7	10	2	6	9	8		Х	
	5	5	5	5	6	7	6	3	Х	X	
	3	6	9	7	1	8	7	9		X	

• $B_2(a = 7) = \{(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)\}$

Intruder's attack. Example.

- Intruder's record: $x_2 = (6, 7, 10, 2), p = 2.$
 - $\circ B_1(x_{21} = 6) = \{(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)\}$
 - $\circ B_2(x_{22} = 7) = \{(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)\}$
 - $\circ \ B_3(x_{23} = 10) = \{(5, 5, 8, 1), (2, 6, 9, 8), (4, 1, 10, 10)\}$
 - $\circ B_4(x_{24}=2) = \{(5,5,8,1), (8,4,2,2), (6,7,6,3), (9,2,4,4)\}$
- The intersection is a single record

(5, 5, 8, 1)

Intruder's attack. Application.

- Data:
 - Census (1080 records, 13 attributes)
 - EIA (4092 records, 10 attributes)
- Rank swaping parameter:

 $\circ \ p=2,\ldots,20$

Intruder's attack. Result

		Census		EIA				
	RSLD	DLD	PLD	RSLD	DLD	PLD		
rs 2	77.73	73.52	71.28	43.27	21.71	16.85		
rs 4	66.65	58.40	42.92	12.54	10.61	4.79		
rs 6	54.65	43.76	22.49	7.69	7.40	2.03		
rs 8	41.28	32.13	11.74	6.12	5.98	1.12		
rs 10	29.21	23.64	6.03	5.60	5.19	0.69		
rs 12	19.87	18.96	3.46	5.39	4.87	0.51		
rs 14	16.14	15.63	2.06	5.28	4.55	0.32		
rs 16	13.81	13.59	1.29	5.19	4.54	0.23		
rs 18	12.21	11.50	0.83	5.20	4.54	0.22		
rs 20	10.88	10.87	0.59	5.15	4.36	0.18		

Intruder's attack. Summary

- When | ∩ B_j| = 1, this is a match.
 25% of reidentifications in this way ≠ 25% in distance-based or probabilistic record linkage.
- Approach applicable when the intruder knows a single record
- The more attributes the intruder has, the better is the reidentification. Intersection never increases when the number of attributes increases.
- When p is not known, an upper bound can help If the upper bound is too high, some $|\cap B_j|$ can be zero

Avoiding Transparency Attack in Rank Swapping

Avoiding transparency attack in rank swapping.

• Enlarge the B_j set to encompass the whole file.

Avoiding transparency attack in rank swapping.

- Enlarge the B_j set to encompass the whole file.
- Then,

$$\cap B_j = X$$

Approaches to avoid transparency attack in rank swapping.

• Rank swapping p-buckets. Select bucket B_s using

$$Pr[B_s \text{ is choosen } |B_r] = \frac{1}{K} \frac{1}{2^{s-r+1}}.$$

• Rank swapping *p*-distribution. Swap a_i with a_ℓ where $\ell = i + r$ and r according to a N(0.5p, 0.5p).

Graphs > Privacy and graphs

Privacy and Graphs

Approaches. As for databases owner privacy (vs. user privacy)

- Perturbative. $X' = X + \epsilon$
- Nonperturbative. X'=generalization(X)
- Synthetic data. M = Model(X). Draw X' from M

Disclosure risk. Attacks (knowledge)

- degree of a node,
- neighborhood of a node (links and non-links),
- subgraph

Privacy and Graphs

Approaches. Synthetic spatial graphs

- Degree sequence
- Nodes on a map according to a density
- Edges according to nearness

Algorithm.

- Heuristic approach for edge assignment which leads to multigraphs
- Correction of multiple edges

Summary

Experiments and distances

- Quantitative measures of risk
- Worst-case scenario for disclosure risk
 - Parametric distances
 - Distance/metric learning
- Transparency and disclosure risk
 - Masking method and parameters published
 - Disclosure risk revisited
 - New masking methods resistant to transparency

Thank you

Related references.

- D. Abril, G. Navarro-Arribas, V. Torra, Supervised Learning Using a Symmetric Bilinear Form for Record Linkage, Information Fusion 26 (2015) 144-153.
- D. Abril, G. Navarro-Arribas, V. Torra, Improving record linkage with supervised learning for disclosure risk assessment, Information Fusion 13:4 (2012) 274-284.
- J. Nin, J. Herranz, V. Torra, On the Disclosure Risk of Multivariate Microaggregation, Data and Knowledge Engineering, 67 (2008) 399-412.
- J. Nin, J. Herranz, V. Torra, Rethinking Rank Swapping to Decrease Disclosure Risk, Data and Knowledge Engineering, 64:1 (2008) 346-364.
- V. Torra, Fuzzy microaggregation for the transparency principle, accepted.
- V. Torra, A. Jonsson, G. Navarro-Arribas, J. Salas, Generation of spatial graphs for a given degree sequence, submitted.