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Outline

Background

• MSc and PhD in Computer Science (with maths) (U.Polytechn. BCN) 1994
• U. Rovira i Virgili (Tarragona, Catalonia, Spain) - 1999
• Artificial Intelligence Research Institute -
Spanish National Research Council (IIIA-CSIC, Barcelona) 1999-2014

• Professor (Skövde AI group) at U. of Skövde, 2014-

Research

• Approximate reasoning (since 1994, including non-additive measures, fuzzy sets
theory, decision making)

• Data privacy (since 1999/2000)
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Disclosure risk. A quantitative measures: record linkage

• The worst-case scenario

◦ Using ML in reidentification

• Transparency principle

◦ Transparency attacks
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1. Introduction

2. Disclosure risk assessment

• Worst-case scenario

• ML for reidentification

3. Transparency

• Definition

• Attacking Rank Swapping

• Avoiding transparency attack

4. Privacy and graphs

5. Summary
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Introduction

Introduction

Uppsala 2016 4 / 69



Introduction > Masking methods Outline

Masking methods

Classification w.r.t. our knowledge on the computation of a third party

• Data-driven or general purpose

→ anonymization methods / masking methods

• Computation-driven or specific purpose

→ cryptographic protocols, differential privacy

• Result-driven
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Masking methods

Identifiers

non-confidential

quasi-identifier

attributes

confidential

Protected microdata (X ′)

Protected Original

id Xc

id Xnc Xc

X ′
nc

(data masking)

anonymization

Identifiers Original

non-confidential

quasi-identifier

attributes

Original

confidential

Original microdata (X)

attributes

attributes

Vicenç Torra; Data privacy Uppsala 2016 6 / 69



Introduction > Masking methods Outline

Masking methods

Approach valid for different types of data

• Databases, documents, search logs, social networks, . . .

(also masking taking into account semantics: wordnet, ODP)
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Research questions

Original 
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Masking methods

Masking methods. (anonymization methods)
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Masking methods

Masking methods. (anonymization methods)

• Perturbative.

E.g. noise addition/multiplication, microaggregation, rank swapping
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Masking methods

Masking methods. (anonymization methods)

• Perturbative.

E.g. noise addition/multiplication, microaggregation, rank swapping

• Non-perturbative

E.g. generalization, suppression
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Masking methods

Masking methods. (anonymization methods)

• Perturbative.

E.g. noise addition/multiplication, microaggregation, rank swapping

• Non-perturbative

E.g. generalization, suppression

• Synthetic data generators
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Masking methods

Information loss measures. Compare X and X ′ w.r.t. analysis (f)

ILf(X,X ′) = divergence(f(X), f(X ′))

• f : generic vs. specific (data uses)

◦ Statistics

◦ Machine learning: Clustering and classification

◦ . . . specific measures for graphs
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Masking methods

Dislosure risk. ... coming soon
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Introduction

Disclosure risk assesment
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Disclosure risk assesment

Disclosure risk.

• Identity disclosure vs. Attribute disclosure

◦ Attribute disclosure:

⋆ Increase knowledge about an attribute of an individual

◦ Identity disclosure:

⋆ Find/identify an individual in a masked file
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Disclosure risk assesment

Disclosure risk.

• Identity disclosure vs. Attribute disclosure

• Boolean vs. quantitative measures
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Disclosure risk.

• Identity disclosure vs. Attribute disclosure

• Boolean vs. quantitative measures

(minimize information loss vs. multiobjetive optimization)
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Disclosure risk assesment

Disclosure risk.

• Identity disclosure vs. Attribute disclosure

• Boolean vs. quantitative measures

(minimize information loss vs. multiobjetive optimization)

Examples. Privacy models / disclosure risk measures

Boolean

Quantitative

Identity disclosureAttribute disclosure

Interval disclosure Re−identification
     (record linkage)
Uniqueness

Differential privacy k−Anonymity
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Disclosure risk assesment

A scenario for identity disclosure: X = id||Xnc||Xc

• Protection of the attributes

◦ Identifiers. Usually removed or encrypted.

◦ Confidential. Xc are usually not modified. X ′
c = Xc.

◦ Quasi-identifiers. Apply masking method ρ. X ′
nc = ρ(Xnc).
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Disclosure risk assesment

A scenario for identity disclosure: X = id||Xnc||Xc

• A: File with the protected data set

• B: File with the data from the intruder (subset of original X)

(protected / public)

identifiersquasi-
identifiers

quasi-
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sb
a1 an
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a
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Re-identification

Record linkage
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Disclosure risk assesment

A scenario for identity disclosure. Reidentification

• Reidentification using the common attributes (quasi-identifiers):
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Disclosure risk assesment

A scenario for identity disclosure. Reidentification

• Reidentification using the common attributes (quasi-identifiers):

leads to identity disclosure

• Attribute disclosure may be possible
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Disclosure risk assesment

A scenario for identity disclosure. Reidentification

• Reidentification using the common attributes (quasi-identifiers):

leads to identity disclosure

• Attribute disclosure may be possible

when reidentification permits to link confidential values to identifiers

(in this case: identity disclosure implies attribute disclosure)
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Disclosure risk assesment

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure

◦ A protected file using a masking method

◦ B (intruder’s) is a subset of the original file.
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Disclosure risk assesment

A scenario for identity disclosure. Reidentification

• Flexible scenario for identity disclosure

◦ A protected file using a masking method

◦ B (intruder’s) is a subset of the original file.

→ intruder with information on only some individuals

→ intruder with information on only some characteristics

◦ But also,

⋆ B with a schema different to the one of A (different attributes)

⋆ Other scenarios. E.g., synthetic data
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Worst-case scenario

Worst-case scenario when measuring
disclosure risk
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

(upper bound of disclosure risk)
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

(upper bound of disclosure risk)

• Maximum information
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

(upper bound of disclosure risk)

• Maximum information

• Most effective reidentification method
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

(upper bound of disclosure risk)

• Maximum information: Use original file to attack

• Most effective reidentification method: Use ML
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Worst-case scenario

ML for reidentification
(learning distances)
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage

• Parametric distances with best parameters

E.g.,

◦ Weighted Euclidean distance

Vicenç Torra; Data privacy Uppsala 2016 23 / 69



Disclosure Risk > Distances Outline

Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with Euclidean distance equivalent to:

d2(a, b) = ||
1

n
(a− b)||2 =

n∑

i=1

1

n
(diffi(a, b))

= WMp(diff1(a, b), . . . , diffn(a, b))

with p = (1/n, . . . , 1/n) and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2

• pi = 1/n means equal importance to all attributes

• Appropriate for attributes with equal discriminatory power

(e.g., same noise, same distribution)
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with weighted mean distance

(weighted Euclidean distance)

d2(a, b) = WMp(diff1(a, b), . . . , diffn(a, b))

with arbitrary vector p = (p1, . . . , pn) and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with weighted mean distance

(weighted Euclidean distance)

d2(a, b) = WMp(diff1(a, b), . . . , diffn(a, b))

with arbitrary vector p = (p1, . . . , pn) and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2

Worst-case: Optimal selection of the weights. How??

• Supervised machine learning approach

• Using an optimization problem
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with parametric distances

(distance/metric learning): C a combination/aggregation function

d2(a, b) = Cp(diff1(a, b), . . . , diffn(a, b))

with parameter p and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2
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Worst-case scenario

Worst-case scenario for disclosure risk assessment

• Distance-based record linkage with parametric distances

(distance/metric learning): C a combination/aggregation function

d2(a, b) = Cp(diff1(a, b), . . . , diffn(a, b))

with parameter p and

diffi(a, b) = ((ai − āi)/σ(ai)− (bi − b̄i)/σ(bi))
2

Worst-case: Optimal selection of the parameter p. How??

• Supervised machine learning approach

• Using an optimization problem
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Worst-case scenario

Worst-case scenario for distance-based record linkage

• Optimal weights using a supervised machine learning approach

• We need a set of examples from:
(protected / public)

identifiersquasi-
identifiers

quasi-
identifiersconfidential

r1

ra

s1

sb
a1 an

a1 an i1, i2, ...

B (intruder)A

a

b

Re-identification

Record linkage
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Formalization of the problem

Machine Learning for distance-based record linkage

• Generic solution, using

◦ an arbitrary combination function C (aggregation)

◦ with parameter p

d(ai, bj) = Cp(diff1(a, b), . . . , diffn(a, b))
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Formalization of the problem

Machine Learning for distance-based record linkage

• Generic solution, using C with parameter p

• Goal (A and B aligned)

◦ as much correct reidentifications as possible

◦ For record i: d(ai, bj) ≥ d(ai, bi) for all j
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Formalization of the problem

Machine Learning for distance-based record linkage

• Generic solution, using C with parameter p

• Goal (A and B aligned)

◦ as much correct reidentifications as possible

◦ For record i: d(ai, bj) ≥ d(ai, bi) for all j
That is,

Cp(diff1(ai, bj), . . . , diffn(ai, bj)) ≥ Cp(diff1(ai, bi), . . . , diffn(ai, bi))
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Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Maximize the number of records ai such that

d(ai, bj) ≥ d(ai, bi) for all j

◦ If record ai fails for at least one bj

d(ai, bj) � d(ai, bi)

Then, let Ki = 1 in this case, then for a large enough constant C

d(ai, bj) + CKi ≥ d(ai, bi)
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Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Maximize the number of records ai such that

d(ai, bj) ≥ d(ai, bi) for all j

◦ If record ai fails for at least one bj

d(ai, bj) � d(ai, bi)

Then, let Ki = 1 in this case, then for a large enough constant C

d(ai, bj) + CKi ≥ d(ai, bi)

That is,
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Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Minimize Ki: minimize the number of records ai that fail

d(ai, bj) ≥ d(ai, bi) for all j

◦ Ki ∈ {0, 1}, if Ki = 0 reidentification is correct

d(ai, bj) + CKi ≥ d(ai, bi)
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Formalization of the problem

Machine Learning for distance-based record linkage

• Goal

◦ as much correct reidentifications as possible

◦ Minimize Ki: minimize the number of records ai that fail
• Formalization:

Minimize
N∑

i=1

Ki

Subject to :

Cp(diff1(ai, bj), . . . , diffn(ai, bj))−

− Cp(diff1(ai, bi), . . . , diffn(ai, bi)) + CKi > 0

Ki ∈ {0, 1}

Additional constraints according to C

Vicenç Torra; Data privacy Uppsala 2016 32 / 69



Disclosure Risk > Distances Outline

Formalization of the problem

Machine Learning for distance-based record linkage

• Example: the case of the weighted mean C = WM
• Formalization:

Minimize
N∑

i=1

Ki

Subject to :

WMp(diff1(ai, bj), . . . , diffn(ai, bj))−

−WMp(diff1(ai, bi), . . . , diffn(ai, bi)) + CKi > 0

Ki ∈ {0, 1}

n∑

i=1

pi = 1

pi ≥ 0
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Weighted mean.

Weights: importance to the attributes

Parameter: weighting vector n parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Weighted mean.

Weights: importance to the attributes

Parameter: weighting vector n parameters

◦ OWA - linear combination of order statistics (weighted):

Weights: to discard lower or larger distances

Parameter: weighting vector n parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Choquet integral.

Weights: interactions of sets of attributes (µ : 2X → [0, 1]

Parameter: non-additive measure: 2n − 2 parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered through the following C
◦ Choquet integral.

Weights: interactions of sets of attributes (µ : 2X → [0, 1]

Parameter: non-additive measure: 2n − 2 parameters

◦ Bilinear form - generalization of Mahalanobis distance

Weights: interactions between pairs of attributes

Parameter: square matrix: n× n parameters
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Experiments and distances

Machine Learning for distance-based record linkage

• Distances considered

Choquet
Integral

Mahalanobis
Distance

Arithmetic

Mean

Weighted

Mean

Choquet integral. A fuzzy integral w.r.t. a fuzzy measure (non-

additive measure). CI generalizes Lebesgue integral. Interactions.
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Footnote: Mahalanobis / CI
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Disclosure Risk > Distances Outline

Experiments and distances

Machine Learning for distance-based record linkage

• Data sets considered (from CENSUS dataset)

◦ M4-33 : 4 attributes microaggregated in groups of 2 with k = 3.

◦ M4-28 : 4 attributes,2 attributes with k = 2, and 2 with k = 8.

◦ M4-82 : 4 attributes, 2 attributes with k = 8, and 2 with k = 2.

◦ M5-38 : 5 attributes, 3 attributes with k = 3, and 2 with k = 8.

◦ M6-385 : 6 attributes, 2 attributes with k = 3, 2 attributes with

k = 8, and 2 with k = 5.

◦ M6-853 : 6 attributes, 2 attributes with k = 8, 2 attributes with

k = 5, and 2 with k = 3.
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Disclosure Risk > Distances Outline

Experiments and distances

Machine Learning for distance-based record linkage

• Percentage of the number of correct re-identifications.
M4-33 M4-28 M4-82 M5-38 M6-385 M6-853

d2AM 84.00 68.50 71.00 39.75 78.00 84.75

d2MD 94.00 90.00 92.75 88.25 98.50 98.00

d2WM 95.50 93.00 94.25 90.50 99.25 98.75

d2WMm 95.50 93.00 94.25 90.50 99.25 98.75

d2CI 95.75 93.75 94.25 91.25 99.75 99.25

d2CIm 95.75 93.75 94.25 90.50 99.50 98.75

d2SBNC 96.75 94.5 95.25 92.25 99.75 99.50

d2SB 96.75 94.5 95.25 92.25 99.75 99.50

d2SBPD − − − − − 99.25
dm: distance; dNC: positive; dPD: positive-definite matrix
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Disclosure Risk > Distances Outline

Experiments and distances

Machine Learning for distance-based record linkage

• Computation time comparison (in seconds).
M4-33 M4-28 M4-82 M5-38 M6-385 M6-853

d2WM 29.83 41.37 24.33 718.43 11.81 17.77

d2WMm 3.43 6.26 2.26 190.75 4.34 6.72

d2CI 280.24 427.75 242.86 42, 731.22 24.17 87.43

d2CIm 155.07 441.99 294.98 4, 017.16 79.43 829.81

d2SBNC 32.04 2, 793.81 150.66 10, 592.99 13.65 14.11

d2SB 13.67 3, 479.06 139.59 169, 049.55 13.93 13.70
1h=3600; 1d = 86400s

• Constraints specific to weighted mean and Choquet integral for distances

N : number of records; n: number of attributes
d2WMm d2CIm

Additional
∑n

i=1 pi = 1 µ(∅) = 0

Constraints pi > 0 µ(V ) = 1

µ(A) ≤ µ(B) when A ⊆ B

µ(A) + µ(B) ≥ µ(A ∪ B) + µ(A ∩ B)

Total Constr. N(N − 1) + N + 1 + n N(N − 1) + N + 2 + (
∑n

k=2

(

n

k

)

k) +
(

n

2

)
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Disclosure Risk > Distances Outline

Experiments and distances

Machine Learning for distance-based record linkage

• A summary of the experiments
AM MD WM OWA SB CI

Computation Very fast Very fast Fast regular Hard Hard
Results Worse Good Good Bad Very Good Very Good

Information No No Few Few Large Large
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Transparency

Transparency
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Transparency > Definition Outline

Transparency

Transparency: Definition
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Transparency Outline

Transparency

Transparency.

• “the release of information about processes and even parameters used

to alter data” (Karr, 2009).

Effect.

• Information Loss. Positive effect, less loss/improve inference

E.g., noise addition ρ(X) = X + ǫ where ǫ s.t.

E(ǫ) = 0 and V ar(ǫ) = kV ar(X)

V ar(X ′) = V ar(X) + kV ar(X) = (1 + k)V ar(X).
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Transparency Outline

Transparency

Transparency.

• “the release of information about processes and even parameters used

to alter data” (Karr, 2009).

Effect.

• Disclosure Risk. Negative effect, larger risk

◦ Attack to single-ranking microaggregation (Winkler, 2002)

◦ Formalization of the transparency attack (Nin, Herranz, Torra, 2008)

◦ Attacks to microaggregation and rank swapping (Nin, Herranz, Torra,

2008)
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Transparency Outline

Transparency

Transparency.

• “the release of information about processes and even parameters used

to alter data” (Karr, 2009).

Effect.

• Disclosure Risk. Formalization

◦ X and X ′ original and masked files, V = (V1, . . . , Vs) attributes

◦ Bj(x) set of masked records associated to x w.r.t. jth variable.

◦ Then, for record x, the masked record xℓ corresponding to x is in

the intersection of Bj(x).

xℓ ∈ ∩jBj(x).

• Worst case scenario in record linkage: upper bound of risk
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Transparency > Attacks Outline

Transparency

Attacking Rank Swapping
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Transparency > Rank swapping and transparency Outline

Transparency

Rank swapping

• For ordinal/numerical attributes

• Applied attribute-wise

Data: (a1, . . . , an) : original data; p: percentage of records

Order (a1, . . . , an) in increasing order (i.e., ai ≤ ai+1) ;

Mark ai as unswapped for all i ;

for i = 1 to n do

if ai is unswapped then
Select ℓ randomly and uniformly chosen from the limited

range [i+ 1,min(n, i+ p ∗ |X|/100)] ;

Swap ai with aℓ ;

Undo the sorting step ;
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Transparency > Rank swapping and transparency Outline

Transparency

Rank swapping.

• Marginal distributions not modified.

• Correlations between the attributes are modified

• Good trade-off between information loss and disclosure risk
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Transparency

Under the transparency principle we publish

• X ′ (protected data set)
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Transparency

Under the transparency principle we publish

• X ′ (protected data set)

• masking method: rank swapping

• parameter of the method: p (proportion of |X|)

Then, the intruder can use (method, parameter) to attack
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Transparency > Rank swapping and transparency Outline

Transparency

Under the transparency principle we publish

• X ′ (protected data set)

• masking method: rank swapping

• parameter of the method: p (proportion of |X|)

Then, the intruder can use (method, parameter) to attack

→ (method, parameter) = (rank swapping, p)
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Transparency

Intruder perspective.

• Intruder data are available
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder perspective.

• Intruder data are available

• All protected values are available.

I.e.,

All data in the original data set are also available

Intruder’s attack for a single attribute

• Given a value a, we can define the set of possible swaps for ai
Proceed as rank swapping does: a1, . . . , an ordered values If ai = a,

it can only be swapped with aℓ in the range

ℓ ∈ [i+ 1,min(n, i+ p ∗ |X|/100)]

Vicenç Torra; Data privacy Uppsala 2016 51 / 69
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Transparency

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a
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Transparency

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a

No uncertainty on Bj(a)

x′
ℓ ∈ Bj(a)
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Transparency
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No uncertainty on Bj(a)
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Transparency

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a

No uncertainty on Bj(a)

x′
ℓ ∈ Bj(a)

Intruder’s attack for all available attributes

• Define Bj(aj) for all available Vj

• Intersection attack:

x′
ℓ ∈ ∩1≤j≤cBj(xi).
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder’s attack for a single attribute attribute Vj

• Define Bj(a)

the set of masked records that can be the masked version of a

No uncertainty on Bj(a)

x′
ℓ ∈ Bj(a)

Intruder’s attack for all available attributes

• Define Bj(aj) for all available Vj

• Intersection attack:

x′
ℓ ∈ ∩1≤j≤cBj(xi).

No uncertainty!
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder’s attack for all available attributes

• Intersection attack:

x′
ℓ ∈ ∩1≤j≤cBj(xi).

• When | ∩1≤j≤c Bj(xi)| = 1, we have a true match

• Otherwise, we can apply record linkage within this set
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder’s attack. Example.

• Intruder’s record: x2 = (6, 7, 10, 2), p = 2. First attribute: x21 = 6

• B1(a = 6) = {(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)}

Original file Masked file B(x2j)

a1 a2 a3 a4 a′1 a′2 a′3 a′4 B(x21)

8 9 1 3 10 10 3 5

6 7 10 2 5 5 8 1 X

10 3 4 1 8 4 2 2 X

7 1 2 6 9 2 4 4

9 4 6 4 7 3 5 6 X

2 2 8 8 4 1 10 10 X

1 10 3 9 3 9 1 7

4 8 7 10 2 6 9 8

5 5 5 5 6 7 6 3 X

3 6 9 7 1 8 7 9
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder’s attack. Example.

• Intruder’s record:x2 = (6, 7, 10, 2), p = 2. Second attribute:x22 = 7

• B2(a = 7) = {(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)}

Original file Masked file B(x2j)

a1 a2 a3 a4 a′1 a′2 a′3 a′4 B(x21) B(x22)

8 9 1 3 10 10 3 5

6 7 10 2 5 5 8 1 X X

10 3 4 1 8 4 2 2 X

7 1 2 6 9 2 4 4

9 4 6 4 7 3 5 6 X

2 2 8 8 4 1 10 10 X

1 10 3 9 3 9 1 7 X

4 8 7 10 2 6 9 8 X

5 5 5 5 6 7 6 3 X X

3 6 9 7 1 8 7 9 X
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder’s attack. Example.

• Intruder’s record: x2 = (6, 7, 10, 2), p = 2.

◦ B1(x21 = 6) = {(4, 1, 10, 10), (5, 5, 8, 1), (6, 7, 6, 3), (7, 3, 5, 6), (8, 4, 2, 2)}

◦ B2(x22 = 7) = {(5, 5, 8, 1), (2, 6, 9, 8), (6, 7, 6, 3), (1, 8, 7, 9), (3, 9, 1, 7)}

◦ B3(x23 = 10) = {(5, 5, 8, 1), (2, 6, 9, 8), (4, 1, 10, 10)}

◦ B4(x24 = 2) = {(5, 5, 8, 1), (8, 4, 2, 2), (6, 7, 6, 3), (9, 2, 4, 4)}

• The intersection is a single record

(5, 5, 8, 1)
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder’s attack. Application.

• Data:

◦ Census (1080 records, 13 attributes)

◦ EIA (4092 records, 10 attributes)

• Rank swaping parameter:

◦ p = 2, . . . , 20
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Transparency > Rank swapping and transparency Outline

Transparency

Intruder’s attack. Result

Census EIA

RSLD DLD PLD RSLD DLD PLD

rs 2 77.73 73.52 71.28 43.27 21.71 16.85

rs 4 66.65 58.40 42.92 12.54 10.61 4.79

rs 6 54.65 43.76 22.49 7.69 7.40 2.03

rs 8 41.28 32.13 11.74 6.12 5.98 1.12

rs 10 29.21 23.64 6.03 5.60 5.19 0.69

rs 12 19.87 18.96 3.46 5.39 4.87 0.51

rs 14 16.14 15.63 2.06 5.28 4.55 0.32

rs 16 13.81 13.59 1.29 5.19 4.54 0.23

rs 18 12.21 11.50 0.83 5.20 4.54 0.22

rs 20 10.88 10.87 0.59 5.15 4.36 0.18
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Transparency

Intruder’s attack. Summary

• When | ∩Bj| = 1, this is a match.

25% of reidentifications in this way 6= 25% in distance-based or

probabilistic record linkage.

• Approach applicable when the intruder knows a single record

• The more attributes the intruder has, the better is the reidentification.

Intersection never increases when the number of attributes increases.

• When p is not known, an upper bound can help

If the upper bound is too high, some | ∩Bj| can be zero
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Transparency

Avoiding Transparency Attack in Rank
Swapping
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Transparency > Avoiding Attacks RS Outline

Transparency

Avoiding transparency attack in rank swapping.

• Enlarge the Bj set to encompass the whole file.
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Transparency > Avoiding Attacks RS Outline

Transparency

Avoiding transparency attack in rank swapping.

• Enlarge the Bj set to encompass the whole file.

• Then,

∩Bj = X
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Transparency > Avoiding Attacks RS Outline

Transparency

Approaches to avoid transparency attack in rank swapping.

• Rank swapping p-buckets. Select bucket Bs using

Pr[Bs is choosen |Br] =
1

K

1

2s−r+1
.

• Rank swapping p-distribution. Swap ai with aℓ where ℓ = i+ r and

r according to a N(0.5p, 0.5p).
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Privacy and Graphs

Privacy and Graphs
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Privacy and Graphs

Approaches. As for databases owner privacy (vs. user privacy)

• Perturbative. X ′ = X + ǫ

• Nonperturbative. X’=generalization(X)

• Synthetic data. M = Model(X). Draw X’ from M

Disclosure risk. Attacks (knowledge)

• degree of a node,

• neighborhood of a node (links and non-links),

• subgraph
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Privacy and Graphs

Approaches. Synthetic spatial graphs

• Degree sequence

• Nodes on a map according to a density

• Edges according to nearness

Algorithm.

• Heuristic approach for edge assignment which leads to multigraphs

• Correction of multiple edges

n1

n2

n3

n4

n5

n6

n1

n2

n3

n4

n5

n6
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Summary

Summary
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Disclosure Risk > Distances Outline

Experiments and distances

• Quantitative measures of risk

• Worst-case scenario for disclosure risk

◦ Parametric distances

◦ Distance/metric learning

• Transparency and disclosure risk

◦ Masking method and parameters published

◦ Disclosure risk revisited

◦ New masking methods resistant to transparency
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Thank you
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