
Uppsala U 2023

Data privacy: From centralized learning to federated learning

Vicenç Torra
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Vicenç Torra; Data privacy: centralized / federated learning Uppsala U 2023 2 / 50



Introduction > Context

A context:

Data-driven machine learning/statistical models

Vicenç Torra; Data privacy: centralized / federated learning Uppsala U 2023 3 / 50



Introduction > Context

Prediction using (machine learning/statistical) models

• Application of a model for decision making

data ⇒ prediction/decision

Data−driven

model

prediction

(decision)

Data:

pacient record

• Example: predict the length-of-stay at admission
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Introduction > Context

Data-driven machine learning/statistical models

• From huge databases, build the “decision maker”

◦ Use (logistic) regression, deep lerning, neural networks, . . .

Machine 
Learning
Algorithm

Data

Base

(DB)

Data−driven

model

• Example: build a predictor from hospital historical data about length-

of-stay at admission
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Introduction > Privacy

Privacy for machine learning and statistics:

Data-driven machine learning/statistical models
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Introduction > Privacy

Data is sensitive

• Who/how is going to create this model (this “decision maker”)?

• Case #1. Sharing (part of the data)

?
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Introduction > Privacy

Data is sensitive

• Who/how is going to create this model (this “decision maker”)?

• Case #2. Not sharing data, only querying data

?
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Introduction > Privacy

Data is sensitive

• Case #1. Sharing (part of the data)

• Naive anonymization does not work1

?

◦ Predict length-of-stay, database with only
(year-birth, town, illness/ICD-9 codes)
1967, Ume̊a, circulatory system
1957, Ume̊a, digestive system
1964, Ume̊a, congenital anomalies
1997, Ume̊a, injury and poisoning
1986, Täfte̊a, injury and poisoning
...

However:
1984, Holmöns distrikt, xxx

1Folkmängd: 63 (https://sv.wikipedia.org/wiki/Holm%C3%B6ns_distrikt)
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Introduction > Privacy

Data is sensitive: How to make ML possible?

• Case #1. Sharing (part of the data)

• How ML is possible:

◦ Privacy models. Computational definitions of privacy

◦ Data protection mechanisms.

• Example:

◦ Group a few people with similar characteristics,

◦ provide safe summaries of these people.

• Example Sävar-Holmöns, combining Sävar, Täfte̊a and Holmöns

(or combine Väddö Björkö Arholma in Norrtälje)
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Introduction > Privacy

Model is sensitive

• Case #2. Not sharing data, only querying data, sharing the model

• Models may reveal sensitive information

?

◦ Income prediction vs. age for a town
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Introduction > Privacy

Model is sensitive

• Case #2. Not sharing data, only querying data, sharing the model

• Models may reveal sensitive information

Did they use my data (without permission)??

◦ Membership inference attacks:

We add Dona Obdúlia (who is very very rich and young)
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Introduction > Privacy

Model is sensitive: How to make ML possible?

• Case #2. Not sharing data, only querying data, sharing the model

• How ML is possible:

◦ Privacy models. Computational definitions of privacy

◦ Privacy mechanisms for building models.

• Example:

◦ The model should not depend on a single individual

?

f(X)
g(X)
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Introduction > Privacy

Privacy models

Privacy models. A computational definition for privacy. Examples

• Privacy for data publishing

◦ Reidentification privacy. Avoid finding a record in a database.

◦ k-Anonymity. A record indistinguishable with k− 1 other records.

• Privacy for queries/functions

◦ Differential privacy. The output of a query to a database should

not depend (much) on whether a record is in the database or not.

◦ Integral privacy. The model should be recurrent. Different ways

to reach to the same model.

Vicenç Torra; Data privacy: centralized / federated learning Uppsala U 2023 14 / 50



Introduction > Privacy

Privacy mechanisms: privacy for data

• Privacy for re-identification and/or k-anonymity

◦ Noise addition: Gaussian (correlated, uncorrelated), Laplacian noise

◦ PRAM (Post-randomization method) – Randomized response

◦ Microaggregation (grouping)

. MDAV, Mondrian, and variations

◦ etc.
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Introduction > Privacy

Privacy mechanisms: privacy for computations

• Differential privacy

◦ Replace query/program q by Kq(D), a randomized version of q(D)

. Given neighbouring databases D, D′: Kq(D) similar enough to

Kq(D
′)

◦ q(X) numerical: add Laplacian noise

◦ q(X) nominal: apply randomized response (PRAM)

◦ Example with f(DB) = 3300 and f(DB′) = 3450, with Laplace

distribution L(0, 50)
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Introduction > Research

Our research
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Introduction > Research

Our research

• Research questions:

◦ How to protect data?

◦ How to evaluate risk? (for models and data)

◦ How to evaluate utility?

• for different types of data sets (centralized databases)

◦ standard databases

◦ graph and network data

◦ electric grid data and time series

• Considering now federated learning

Vicenç Torra; Data privacy: centralized / federated learning Uppsala U 2023 18 / 50



Graphs

Privacy for graphs
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Graphs > Definitions

Problem
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Graphs > Definitions

Graphs

Graph: Representation of a large number of problems

Representation:

• G(V,E)

with V vertices / nodes

with E edges E ⊆ V × V
E represented by the adjacency matrix
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010100000
101000000
010100000
101010100
000101011
000010101
000101001
000010001
000011110




(1)
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Graphs > Definitions

Problem

Data protection for graphs:

• Given a graph G, produce a protected graph G′

• G′ ressembles G

• and avoids disclosure (e.g., do not find you)
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Vicenç Torra; Data privacy: centralized / federated learning Uppsala U 2023 22 / 50



Graphs > Definitions

Problem

Data protection for graphs: Avoids disclosure (definition)

• An intruder with some information I on node v of the graph

• is not able to identify the node.

Example of information I

• The degree of a node (i.e., |N(v)|)
• The subgraph of neighbours (i.e., G̃ from v and N(v))

(subgraph isomorphism problem // subgraph matching)
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Graphs > Definitions

Problem

Data protection for graphs: How to ?

• Adhoc protection: change structure

◦ Random addition and deletion of nodes

◦ Random addition and deletion of edges

◦ Check how much addition / deletion is needed with some attacks
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Graphs > G⊕ g

Graph addition
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Graphs > G⊕ g

Noise addition (for numerical data)

Our proposal:

• Inspired in noise addition for numerical data

• Add noise to hide e.g. age and salary

Noise addition: Data protection via noise addition

X ′ = X + ε

with ε ∼ N(0, kV ar)

• This definition permits to deduce properties for X ′

(e.g., mean of X ′ = mean of X, variance of X ′, etc.)

Related definitions with correlated noise in multivariate X
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Graphs > G⊕ g

Noise addition for graphs

Noise addition for graphs: Similar idea but with graphs

G′ = G⊕ g

• G⊕ g for G = (V,E) and g = (Vg, Eg) as follows

◦ align nodes of both graphs
◦ edges in terms of exclusive-or of edges, or symmetric difference.

E1∆E2 := (E1 \ E2) ∪ (E2 \ E1)

{e|e ∈ E1 ∧ e /∈ E2} ∪ {e|e /∈ E1 ∧ e ∈ E2}

→ G′ = (V ′, E′) with E′ = E∆Eg
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Graphs > G⊕ g

Noise addition for graphs: Example

Noise addition for graphs: Similar idea but with graphs

G′ = G⊕ g

• Example:
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Graphs > G⊕ g

Noise addition: random graphs

Noise addition for graphs: Similar idea but with graphs

G′ = G⊕ g

• g is a random graph2

2VT, JS, Graph Perturbation as Noise Graph Addition: A New Perspective for Graph Anonymization.

Proc. DPM 2019; JS, VT, Differentially Private Graph Publishing and Randomized Response for

Collaborative Filtering. Proc. SECRYPT 2020
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Graphs > G⊕ g

Noise addition: Graphs to add

Graphs. Examples of random graphs

• Gilbert model G(n, p)

◦ n: number of nodes

◦ p: each edge is chosen with probability p

• That is, E = {eij}ij, eij ∈ {0, 1} and eij = 1 with probability p
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Graphs > G⊕ g

Noise addition: Graphs to add

Graphs. For bipartite graphs

• Gilbert model G(n,m, p)

◦ n,m: number of nodes each part U , V

◦ p: each edge (U – V ) is chosen with probability p

Preferences/likes: travellers vs. countries; customers vs. products

1 11 1

1 1

1
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Graphs > G⊕ g

Differential privacy

Definition. For 0 < p < 1/2, we define the noise-graph protection

mechanism as:

An,p(G) = E(G⊕ g)

with g ∈ G(n, p) (Gilbert model)

Theorem. This mechanism provides ln((1− p)/p)-differential privacy

• This is for edge-differential privacy: Presence/absence of an edge

does not make a difference: hiding individual edges
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Graphs > G⊕ g

Differential privacy

Example. Facebook likes data (after trimming, min 50 likes, 150 users/like)

(19,724 users, 8,523 likes, 3,817,840 user-like pairs)

• Analysis:
p ε |E(g)| |E(G⊕ g)|
0.005 5.29 840,162 4,619,770
0.05 2.94 8,408,449 11,844,981
0.1 2.19 16,824,538 19,878,770
0.2 1.38 33,657,261 35,949,261
0.4 0.40 67,302,556 68,070,070

• Prediction accuracy for gender, age, political views, ...
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Graphs > G⊕ g

Analysis of communities

Analysis of communities3

• Community detection using singular value decomposition + clustering

Approach:

• Use signless Laplacian matrix

|L| = D +A

where D: diagonal matrix with node degrees, A: adjacency matrix

• Matrix factorization of |L| using SVD. Nodes as vectors in terms of

orthogonal bases and singular values.

• Reduced dimensional approximation |L|′
• Similarity between pairs of vertices using dot products of vectors

• Clustering of vertices

(fuzzy clustering to permit multiple memberships to communities)

3VT, Graph addition: properties for its use for graph protection, ILAS 2020 (hold in Galway 2022 :) )
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Graphs > G⊕ g

Analysis of communities

Example.

• Two communities. Gilbert model G ∼ G(n,m, pn, pm, pnm)

• Community detection for graph addition

Gp = G⊕ gp

with gp ∼ G(n+m, p) and

p ∈ {0, 0.005, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
• Membership correlation between G and Gp
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Graphs > Dynamic graphs

Extension to dynamic graphs
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Graphs > Dynamic graphs

Analysis of communities

• Graph evolves with time. Snapshots of graphs.

• Edge-local differential privacy for dynamic graphs

◦ A satisfies ε-edge local DP if for all nodes u, v, times stamps t and

edge values i, j, k:

Pr[A(u, v, t; i) = k] ≤ eεPr[A(u, v, t; j) = k], (1)

• Parallel protection mechanism: A||p0,p1(G)

◦ G = G0, G1, . . . , GT a dynamic graph, Ap0,p1 a noise-graph

mechanism, produce

G̃ = G̃0, G̃1, . . . , G̃T

with G̃i = Ap0,p1(Gi) for i = 0, . . . , T .
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Smart grid

Smart grid
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Smart grid >

Temporal data: smart grid

• Smart grid: electric grid data

◦ Data from households

• Sensitive data:

◦ consumer habits,

◦ Non-intrusive load monitoring (NILM): deduce types of appliances

from aggregated energy consumption.
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Smart grid >

Temporal data: smart grid

• Our approach:

◦ Data is centralized by the service provider

◦ Data needs to be shared without disclosure

• Protection through microaggregation and DFT
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Smart grid >

Temporal data: smart grid

• Data utility based on data mining tasks4:

◦ clustering: k-means

◦ classification (type of consumer): kNN

◦ forecasting: mean hourly load forecasting using SARIMAX model

(seasonal ARIMA)

• Adversarial model:

◦ Re-identification (based on record linkage)

◦ Interval disclosure (is the masked value too similar?)

◦ Non-intrusive load monitoring (NILM) detection.

4K. Adewole, V. Torra, DGTMicroagg: a dual-level anonymization algorithm for smart grid data, Int.

J. of Inf. Systems 2022; K. Adewole, V. Torra, On the application of microaggregation and discrete

Fourier transform for energy disaggregation risk reduction, submitted.
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Federated Learning

Federated Learning
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Federated Learning >

Federated learning

• FL models

◦ initial research on trying to reduce membership inference, model

reconstruction and backdoor attacks.

• Symbolic models (decision trees, gradient boosting decision trees)

◦ Local vs. global privacy: k-anonymity vs differential privacy.

◦ Some work uses LSH to find similar instances from different devices.

Data reconstruction attacks.
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Federated Learning >

Federated learning

• PSO + FL = PAASO: Privacy-aware agent swarm optimization

α=vote(mm(vi))

pG (pG=pG+velocity(v))
v=dpv(α1,...,αs)

Global
privacy

Local privacy

(xi,vi,pi) (f(xi),f(pi))
g (best global position)

PSO

DP solution DP+masking (PAASO
α=vote(vi)
v=dpv(a1,...,as)

pG (pG=pG+velocity(v))

PSO À LA FL
vi=pi − pG
pG (pG=pG+mean(vi))

only directions
global position
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Federated Learning >

Federated learning

• General comments PAASO5

◦ In general, privacy mechanisms do not avoid convergence.

It is slower. (this can be a concern, of course, rounds=information)

◦ In terms of convergence, PSO and FL are best.

◦ Local protection (PRAM) does not have strong effect.

• On the parameters

◦ Number of options in voting, low effect

◦ Number of agents, key factor

◦ Particular parameters depend on the problem + privacy strategy

5VT, EG, GN, PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware

agent swarm optimization. Int. J. Inf. Sec. (2022)
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Federated Learning >

Federated learning

• An example:

◦ Mean objective function for 20 executions for FL, aDRD, and bDRD.

Function f4, number of voting alternatives kα = 8, 50 agents,

φp = φg = 2.00. pc = 1.0.

◦ (left) ω = 4.00, ωG = 0.005; (right) ω = 0.005, ωG = 0.01

◦ Generalized Rosenbrock’s function (x1, x2 ∈ [−2.0, 2.0]):

f4(x1, x2) = 100 ∗ (x2 − x1 ∗ x1)2 + (x1 − 1)2
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Summary
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>

Summary

• Graphs

• Smart grid

• Federated learning
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Thank you
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Ads
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