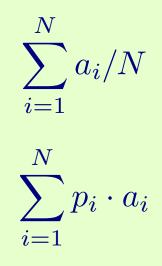
Chapter 1 Information Fusion and Aggregation Operators Introduction


Vicenç Torra

April 25, 2007

Vicenç Torra, Yasuo Narukawa (2007) Modeling Decisions: Information Fusion and Aggregation Operators, Springer. http://www.springer.com/3-540-68789-0; http://www.mdai.cat/ifao

- Information Fusion and Aggregation Operators
 - To produce the most comprehensive and specific datum about an entity from data supplied by several information sources.

• Examples,

- Information fusion studies all aspects related to the combination of information
 - \rightarrow it studies information fusion techniques
 - the properties of these techniques, and
 - how to build techniques from properties
- In short,
 - systematize and formalize the fusion process
 - characterize the existing methods
 - \rightarrow with the goal of applying old (and new) methods to new problems

• Economics

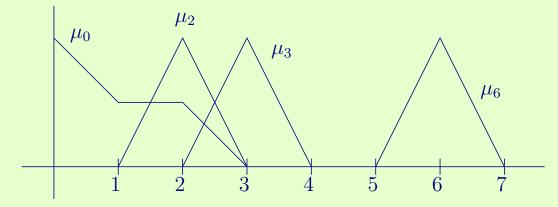
- Indices to summarize economic information.
 - E.g., Retail Price Index, Human Development Index (HDI).
- Biology
 - Fusion of DNA and RNA sequences
 - Combination of taxonomies. E.g. dendrograms, partitions
- Education
 - Assessment of students
 - Evaluation of educational institutions and researchers.
- Computer Science
 - Hardware and software evaluation

- Robotics
 - Fusion of data from sensors
- Vision
 - Fusion of images
- Knowledge based systems
 - Integration of different kinds of knowledge, verification of correctness (computation of a golden standard), defuzzification (fuzzy KBS), evaluation of solutions (considering different criteria)
- Data mining / machine learning
 - Ensemble methods

Example. A and B teaching a tutorial+training course w/ constraints

- The total number of sessions is six.
- Professor A will give the tutorial, which should consist of about three sessions; three is the optimal number of sessions; a difference in the number of sessions greater than two is unacceptable.
- Professor *B* will give the training part, consisting of about two sessions.
- Both professors should give more or less the same number of sessions.
 A difference of one or two is half acceptable; a difference of three is unacceptable.

Example. Formalization


- Variables
 - x_A : Number of sessions taught by Professor A
 - x_B : Number of sessions taught by Professor B
- Constraints
 - the constraints are translated into
 - * C_1 : $x_A + x_B$ should be about 6
 - * C_2 : x_A should be about 3
 - * C_3 : x_B should be about 2
 - * C_4 : $|x_A x_B|$ should be about 0
 - using fuzzy sets, the constraints are described ...

Example. Formalization

- Constraints
 - if fuzzy set μ_6 expresses "about 6," then, we evaluate " $x_A + x_B$ should be about 6" by $\mu_6(x_A + x_B)$. \rightarrow given μ_6 , μ_3 , μ_2 , μ_0 ,
 - Then, given a solution pair (x_A, x_B) , the degrees of satisfaction: * $\mu_6(x_A + x_B)$ * $\mu_3(x_A)$ * $\mu_2(x_B)$
 - $* \mu_0(|x_A x_B|)$

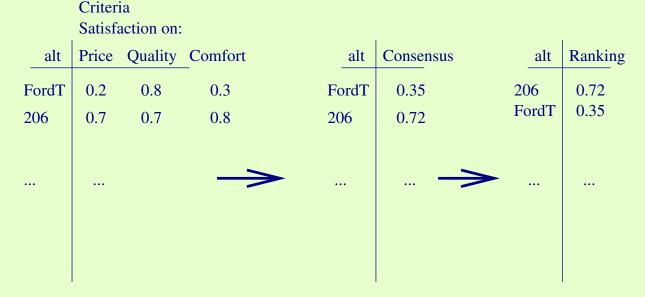
Example. Formalization

• Membership functions for constraints

Applications

Example. Application

alternative	Satisfaction degrees	Satisfaction degrees			
(x_A, x_B)	$(\mu_6(x_A + x_B), \ \mu_3(x_A),$	C_1	C_2	C_3	C_4
	$\mu_2(x_B)$, $\mu_0(x_A-x_B)$)				
(2,2)	$(\mu_6(4), \mu_3(2), \mu_2(2), \mu_0(0))$	0	0.5	1	1
(2,3)	$(\mu_6(5),\ \mu_3(2),\ \mu_2(3),\ \mu_0(1))$	0.5	0.5	0.5	0.5
(2,4)	($\mu_6(6)$, $\mu_3(2)$, $\mu_2(4)$, $\mu_0(2)$)	1	0.5	0	0.5
(3.5, 2.5)	($\mu_6(6)$, $\mu_3(3.5)$, $\mu_2(2.5)$, $\mu_0(1)$)	1	0.5	0.5	0.5
(3,2)	$(\mu_6(5),\ \mu_3(3),\ \mu_2(2),\ \mu_0(1))$	0.5	1	1	0.5
$\left \begin{array}{c} (3,3) \end{array} \right.$	($\mu_6(6)$, $\mu_3(3)$, $\mu_2(3)$, $\mu_0(0)$)	1	1	0.5	1

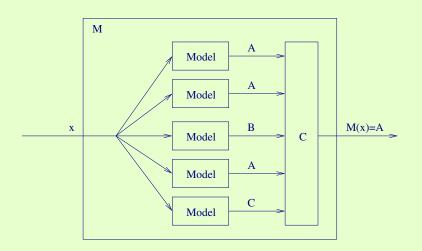

- Two ultimate goals for information fusion applications
- (i) To make decisions
- (ii) To have a better understanding of the application domain

Applications: To Make Decisions

(i) Decision making:

- Alternative selection:
 - different alternatives / different criteria \rightarrow select an alternative
 - \rightarrow multicriteria decision making (MCDM) problem

several criteria (or utility functions) or a single multivalued pref.


- Solved:

(i) Aggregate degrees of satisfaction of all criteria(ii) Rank the alternatives w.r.t. the global satisfaction degree

Applications: To Make Decisions

(i) Decision making:

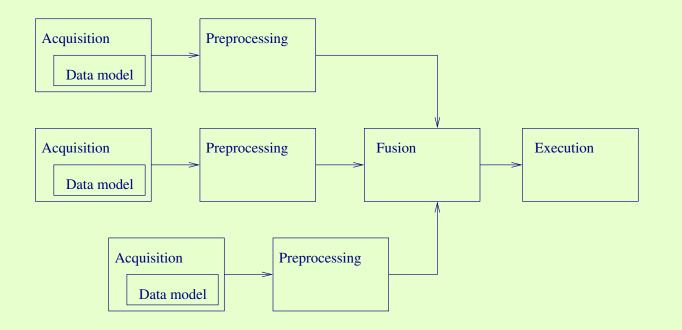
- Alternative construction (from a set of them):
 - Several alternatives \rightarrow a new one reliability and constraints of the alternatives
 - Examples
 - * Plan merging
 - \rightarrow preconditions and effects as constraints
 - * Ensemble methods

Introduction

Applications: Improving Understanding of the Domain

(ii) Improve understanding of the application domain

- Single source: inconveniences caused by insufficient data quality
 - lack of accuracy (errors by the source / in transmission)
 - lack of reliability
 - too narrow information
 - \rightarrow multiple sources


Fusion, integration and aggregation

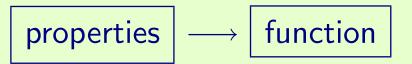
• Terms

- Information integration
- Information fusion: particular functions, methods, procedures, algorithms
- Aggregation operators: $\mathbb{C}: D^N \to D$ (\mathbb{C} from *Consensus*) \to and \mathbb{C} with parameters (background knowledge): \mathbb{C}_P
- Aggregation:
 - Unanimity (idempotency): $\mathbb{C}(a, \ldots, a) = a$ for all a
 - Monotonicity: $\mathbb{C}(a_1, \ldots, a_N) \ge \mathbb{C}(a'_1, \ldots, a'_N)$ when $a_i \ge a'_i$
 - Symmetry: for any π permutation on $\{1, \ldots, N\}$, $\mathbb{C}(a_1, \ldots, a_N) = \mathbb{C}(a_{\pi(1)}, \ldots, a_{\pi(N)})$
 - Unanimity + monotonicity \rightarrow internality: $\min_i a_i \leq \mathbb{C}(a_1, \dots, a_N) \leq \max_i a_i$

An Architecture for Information Integration

• Architecture:

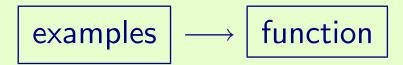
- Stages:
 - Acquisition
 - Preprocessing
 - Fusion
 - Execution


Information Fusion Methods

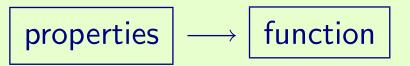
- Perspectives:
 - Type of information:* redundant vs. complementary
 - Type of data representation:
 - * numerical, ordinal, fuzzy sets, preference relations, dendrograms, partitions, ...
 - Level of abstraction:
 - * low level vs. high level


Introduction

Function Construction


• Definition from properties

• Heuristic definition


• Definition from examples

Introduction

Function Construction

• Definition from properties

• Examples

a) Using functional equations

b) Aggregation of $a_1, a_2, \ldots, a_N \in D$, as the c located at the minimum distance of the a_i :

$$\mathbb{C}(a_1, a_2, \dots, a_N) = argmin_c \{\sum_{a_i} d(c, a_i)\},\$$

d is a distance over D.

Goals of Information Fusion

- There are two main goals:
 - Formalization of aggregation processes
 - Study of existing methods

- There are two main goals:
 - Formalization of aggregation processes
 - * Function definition
 - * Function selection
 - * Parameter determination
 - Study of existing methods
 - * Function characterization
 - * Determination of function's modeling capabilities
 - * Relationship between operators and parameters