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WM, OWA, and WOWA operators

e Operators

— Weighting vector (dimension N): v = (vy...vn) iff
S [O, 1] and Zivi =1
— Arithmetic mean (AM :RY — R): AM(aq,...,an) = (1/N) ZZ | @
— Weighted mean (WM: RY — R): WM, (aq, ...,aN) = Zf;i1pzaz
(p a weighting vector of dimension V)
— Ordered Weighting Averaging operator (OWA: RY — R):

OWA CL1,... sz Ao (7))

where {o(1),...,0(N)} is a permutation of {1,..., N} s. t.
Us(i—1) = Qo(;), and W a weighting vector.
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WM, OWA, and WOWA operators

e Examples

— Exam with three exercises.
Different exercises with different weights:
1st exercise 0.5, 2nd 0.25, 3rd 0.25
— situation modeled with a WM with p = (0.5, 0.25, 0.25).

— Five judges in Olympic Games.

Average of the rates of the judges disregarding extremes
— modeled with OWA with w = (0, 1/3, 1/3, 1/3, 0)
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WM, OWA, and WOWA operators

e Properties

- OWAq, o, ... 0, 1)(a,...,any) =min(aq,...,an)
- OWAQq4, o, .., 0 0la1, ..., an) = max(ay, ..., an)
— Dictatorship: W My(aq,...,an) = a;

when p; =1 and p; = 0 for all j # ¢

— OWA generalizes: order statistics (OS), median, kth minimum, kth
maximum, AM, a-trimmed, («,(3)-trimmed means, a-winsorized,
(v, B)-winsorized means
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WM, OWA, and WOWA operators

e Median (M: RY — R):

when Nis even

2

aa(%) when Nis odd.

Ag(N/2) T 0o (N/2+1)
M(ay,...,an) =

— When N is odd, M = OS(n+1)/2-

e (r,s)-trimmed mean: AM after removing lowest /highest values
(o) + -+ Go(y_s)/ (N — 1 — 5)

e (7, s)-winsorized means: AM where omitted values are replaced by the
nearest ones

T Qg(r4+1) T Qo(r+1) T " T QGg(N—s) T S To(N—s)
N
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WM, OWA, and WOWA operators

e Interpretation of weights in WM and OWA. Scenarios:

— Multicriteria Decision Making
Several criteria are used to evaluate several alternative
— Fuzzy Constraint Satisfaction Problems
Given a possible solution, constraints are evaluated in [0,1] (0: not
satisfied at all, 1: completely satisfied, (0,1): partial satisfaction)
— Robot Sensing (all data, same time instant)
Sensors measuring the distance to the same object
— Robot Sensing (all data, different time instants)
Sensors measuring the distance to the same object
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WM, OWA, and WOWA operators

e Interpretation of weights in WM and OWA (i.e., p and w)

— Multicriteria Decision Making.
p: importance of criteria,
w: degree of compensation
— Fuzzy Constraint Satisfaction Problems.
p: importance of the constraints,
w: degree of compensation
— Robot Sensing (all data, same time instant).
p: reliability of each sensor,
w: importance of small values/outliers
— Robot Sensing (all data, different time instants).
p: more importance to recent data than old one,
w: importance of small values/outliers
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WM, OWA, and WOWA operators

Example. A and B teaching a tutorial4-training course w/ constraints

e The total number of sessions is six.

e Professor A will give the tutorial, which should consist of about three
sessions; three is the optimal number of sessions; a difference in the
number of sessions greater than two is unacceptable.

e Professor B will give the training part,
consisting of about two sessions.

e Both professors should give more or less the same number of sessions.
A difference of one or two is half acceptable; a difference of three is
unacceptable.
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WM, OWA, and WOWA operators

Example. Formalization

e Variables
— x4: Number of sessions taught by Professor A
— xg: Number of sessions taught by Professor B
e Constraints
— the constraints are translated into
x C1: x4+ xp should be about 6
* (9. x4 should be about 3
x C3: xp should be about 2
x* Cy: |xa — x| should be about 0
— using fuzzy sets, the constraints are described ...
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WM, OWA, and WOWA operators

Example. Formalization

e Constraints

— if fuzzy set ug expresses “about 6,” then,
we evaluate “x 4 + zp should be about 6" by ug(za + xpB).
— given ue, (3, {2, Ko,

— Then, given a solution pair (x4, zg), the degrees of satisfaction:
* pe(Ta + TB)
* p3(za)
* p2(ZB)

(

* o |fEA - $B|)
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WM, OWA, and WOWA operators

Example. Formalization

e Membership functions for constraints
M2

Ho
M3

e
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WM, OWA, and WOWA operators

Example. Application

alternative | Satisfaction degrees Satisfaction degrees
(QC‘A, CUB) (M6(CBA + JUB), M3(CCA), Ci | Co | C3| (4
p2(zB), po(|ra —5|))
(2,2) (H6(4), p13(2), 12(2), 1o(0)) 0 (05 1 | 1
(2,3) (k6(5), 113(2), p2(3), po(1)) 0.510.510.5] 0.5
(2,4) (16(6), ps(2), p2(4), po(2)) 1 105 0|05
(3.5,2.5) | (ue(6), p3(3.5), pu2(2.5), po(1)) | 1 10.5]0.5| 0.5
(3,2) (16(5), p3(3), p2(2), po(1)) 05 1 | 1105
(3,3) (16(6), p3(3), 12(3), po(0)) 1| 1]05] 1
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WM, OWA, and WOWA operators

Example. Application

e Let us consider the following situation:
— Professor A is more important than Professor B
— The number of sessions equal to six is the most important constraint
(not a crisp requirement)
— The difference in the number of sessions taught by the two
professors is the least important constraint

WM with p = (p1, p2, p3,p4) = (0.5,0.3,0.15,0.05).
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WM, OWA, and WOWA operators

Example. Application
e WM with p = (p1, p2, p3,p4) = (0.5,0.3,0.15,0.05).

alternative | Aggregation of the Satisfaction degrees | WM
(ZCA,.CCB) WM (C1,02,03,04)

(2,2) M,(0,0.5,1,1) 0.35
(2,3) M,(0.5,0.5,0.5,0.5) 0.5

(2,4) M,(1,0.5,0,0.5) 0.675
(3.5,2.5) M,(1,0.5,0.5,0.5) 0.75
(3,2) M,(0.5,1,1,0.5) 0.725
(3,3) M,(1,1,0.5,1) 0.925

Vicenc Torra, Yasuo Narukawa; From WM to FI




WM, OWA, and WOWA operators

Example. Application

e Compensation: how many values can have a bad evaluation
e One bad value does not matter: OWA with w = (1/3,1/3,1/3,0)
(lowest value discarded)

alternative | Aggregation of the Satisfaction degrees | OWA
(CCA,ZCB) OWA (01,02,03,04)

(2,2) OW Aw(0,0.5,1,1) 0.8333
(2,3) OW Aw(0.5,0.5,0.5,0.5) 0.5
(2,4) OW Aw(1,0.5,0,0.5) 0.6666
(3.5,2.5) | OW Aw(1,0.5,0.5,0.5) 0.6666
(3,2) OW Aw(0.5,1,1,0.5) 0.8333
(3,3) OW Aw(1,1,0.5,1) 1.0
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WM, OWA, and WOWA operators

e Weighted Ordered Weighted Averaging WOWA operator
(WOWA :RY — R):

WOW Ap w(ai,...,an) = Zi\il Willo (4)
where

wi = W (2 j<iPo(i) = W (2j<iPo(h));

with o a permutation of {1,..., N} s. t. as(;—1) = Gy(;), and
w™* a nondecreasing function that interpolates the points

{(6/N, > i<iwj)ti=1,..,n U{(0,0)}.

w™ is required to be a straight line when the points can be interpolated
In this way.
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WM, OWA, and WOWA operators

e Construction of the w* quantifier

(a) (b) (c)

w1

W1

(0%

Po(l)

0
I/N 1/N .. 1/N Po()
Poy P Poeny Po(1) Poq)

e Rationale for new weights (w;, for each value a;) in terms of p and w.

— If a; is small, and small values have more importance than larger
ones, increase p; for a; (i.e., w; > Py (i)
(the same holds if the value a; is large and importance is given to large values)

— It a; is small, and importance is for large values, w; < ps(;)

(the same holds if a; is large and importance is given to small values).
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WM, OWA, and WOWA operators

e The shape of the function w* gives importance

— (a) to large values

— (b) to medium values

— (c) to small values

— (d) equal importance to all values

() (b) ©) (d)
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WM, OWA, and WOWA operators

Example. Application

e Importance for constraints as given above: p = (0.5,0.3,0.15,0.05)

e Compensation as given above: w = (1/3,1/3,1/3,0) (lowest value
discarded)
— WOWA with p and w.

alternative | Aggregation of the Satisfaction degrees | WOWA
(QZA,QZB) WOWAP w(01702703704)

(2,2) WOW A, w(0,0.5,1,1) 0.4666
(2,3) WOW A, (0.5,0.5,0.5,0.5) 0.5
(2,4) WOW A, w(1,0.5,0,0.5) 0.8333
(3.5,2.5) | WOW A, w(1,0.5,0.5,0.5) 0.8333
(3,2) WOWAP W(O 5,1,1,0.5) 0.8
(3,3) WOW A, w(1,1,0.5,1) 1.0
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WM, OWA, and WOWA operators

e Properties

— The WOWA operator generalizes the WM and the OWA operator.
o When p=(1/N ... 1/N), OWA

WOW A, w(aq, ...,an) = OW Ay(aq, ...,an) for all w and a;.
o When w = (1/N ... 1/N), WM
WOW A, w(ay,...,an) = WMy(aq,...,an) for all p and a;.
o When w =p = (1/N ... 1/N), AM

WOW A, w(ay,...,an) = AM(aq, ...,an)
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Choquet integrals

e In WM, we combine a; w.r.t. weights p;.
— a; Is the value supplied by information source z;.
Formally

— X ={x1,...,xn} is the set of information sources
— f: X — RT the values supplied by the sources
— then a; = f([l?z)

Thus,

N N
WMp(ai,...,an) = ZPM@ — sz'f(mz') = WMy(f(z1), ...
= =1l

Vicenc Torra, Yasuo Narukawa; From WM to FI

20



Choquet integrals

e In WM, a single weight for each element.
That is, p; = p(x;) (where, x; is the source supplying a;)
— when we consider a set A C X, weight of A?77

... fuzzy measures u(A)

Formally,

— Fuzzy measure (v : p(X) — |0,1]), a set function satisfying
(i) () =0, u(X) =1 (boundary conditions)
(i) A C B implies u(A) < u(B) (monotonicity)
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Choquet integrals

e Choquet integral of f w.r.t. u (alternative notation, CI,(a1,...,an)/CIL.(f))

/fdﬂ f(@s)) — f(@s—1))e(Ass)),

where s in f(zg)) is a permutation so that f(zsi_1)) < f(wsu)) for @ > 1,
f(z50)) =0, and A,y = {z50j)|7 > k} and Ay vy = 0.

e Alternative expressions (Proposition 6.18):

/fdﬂ Zf To(i)) [1(As ) — 1(Asii—1))];

/ = Zm(z (Asiiy) — 1l Asirn)]:

where o is a permutatlon of {L,....N} st. f(zo3-1)) = f(Zo@)),
where Aa(k) — {ZEa(j)’j <k} for k> 1 and AJ(O) — ()
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Choquet integrals

e Different equations point out different aspects of the CI

(6.1) (O) [ fdu =31 [f(@s(i) — F@aion)](Asa)s

0 CTs(l) 6?5(2) CTs(?») C?s(ﬁl) %8(5)
| | | | | |

T T 1(As(2))
(Asy) = {zsq), > Ts(v) } (Asry) = {Ts@), -+, Tsv) }

(6'2) ffd,LL Zz 1 f( Lo(3) )[ (Aa(z)) - M(Aa(i—l))]a
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Choquet integrals

o [ fdu= (for additive measures)

(6.5) 2 pex f@)nliz})

(6.6) >, i1 bip(12]f(2) = bi})

(6.7) Z (@i = ai—)p({z|f(z) 2> aif)

(6.8) Sy (a; — a;-1) (1 — u({alf(2) < ai1}))

(a) (b) ()

a; 1 -
Qj—1
T J— TN T I

. @ =51} @i @) > o)

e Among (6.5), (6.6) and (6.7), only (6.7) satisfies internality.
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Choquet integrals

e Properties of Cl

— Horizontal additive because CI,(f) = CL,(f ANc)+ CL,(fF)
(f = (f ANc)+ [ is a horizontal additive decomposition of f)
where, f is defined by (for ¢ € [0, 1])

0 if f(z) <c
fj_{ f(x) —c if f(z) > c.

m f fAc m fE

VAN
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Choquet integrals

e Definitions (X a reference set, f, g functions f,g: X — [0,1])

— f < g when, for all z;,
fas) < g(w;)
— [ and g are comonotonic if, for all z;,z; € X,
f(zi) < f(z;) imply that g(z;) < g(z;)
— (C is comonotonic monotone if and only if, for comonotonic f and g,
f < g imply that C(f) < C(g)
— C is comonotonic additive if and only if, for comonotonic f and g,

C(f +g)=C(f) +C(g)

e Characterization. Let C satisfy the following properties

— C 1s comonotonic monotone
— C 1s comonotonic additive

- C(1,...,1)=1
Then, there exists i s.t. C(f) is the Cl of f w.r.t. pu.
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Choquet integrals

e Properties

— WM, OWA and WOWA are particular cases of Cl.
+ WM with weighting vector p is a Cl w.r.t. pp(B) =), cgpi

+* OWA with weighting vector w is a Cl w.r.t. uw(B) = ZLEH w;
«+ WOWA with w.v. p and wis a Cl w.rt. upw(B) =w*(}_,.c5Pi)
— Any symmetric Cl is an OWA operator.
— Any Cl with a distorted probability is a WOWA operator.
— Let A be a crisp subset of X; then, the Choquet integral of A with
respect to u is u(A).
Here, the integral of A corresponds to the integral of its characteristic function,
or, in other words, to the integral of the function f4 defined as fa(x) =1 if and
only if x € A.
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Weighted Minimum and Weighted Maximum

e Possibilistic weighting vector (dimension N): v = (v1...vy) iff
v; € 10,1] and max; v; = 1.

o Weighted minimum (WMin: [0,1]Y — [0, 1]):
W Miny(aq, ...,an) = min; max(neg(u;), a;)

(alternative definition can be given with v = (v1,...,vxN) where v; = neg(u;))

o Weighted maximum (WMax: [0,1]Y — [0, 1]):
WMazy(as, ...,an) = max; min(u;, a;)
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Weighted Minimum and Weighted Maximum

Example 6.34. Application of WMin and WMax to the tutorial example
— possibilistic weights are given

Example 6.35. In a fuzzy inference
R;: IF xis A, THEN vy is B,.

e with disjunctive rules, the (fuzzy) output for a particular gy is a WMax

B(yo) = VX1 (Bi(yo) A Ai(z0)).

e with conjunctive rules, and Kleene-Dienes implication (Z(z,y) = max(1 — z,y))
the (fuzzy) output of the system for a particular ¥y is a WMin

B(yo) = NiL1(Z(Ai(wo), Bi(yo))) = AILy max(1 — A;(zo), Bi(yo))-

that with u = (A1(x), ..., An (o))

~

B(yo) — WMmu(Bl(yo), “osy BN(yO))
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Weighted Minimum and Weighted Maximum

e Only operators in ordinal scales (max, min, neg) are used in W Max
and W Min.

e neg is completely determined in an ordinal scale

e Properties. Foru=(1,...,1)

— WMIN, = min
— WMAX, = max
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Sugeno integral

e Sugeno integral of f w.r.t. p (alternative notation, ST,(a1,...,an)/SL.(f))

() / Fdp = max min(f(zse), 1(Ago)).

i=1,N

where s in f(x5(;)) is a permutation so that f(z;_1)) < f(xs@)) for
1 > 2, and As(k) — {xs(j)\j > k}

e Alternative expression (Proposition 6.38):

max min(f(xa(i))a M(Aa(z)))a

1

where o is a permutation of {1,..., N} s.t. f(2,u-1)) = f(Zo())
where A, 1) = {Z,(j)|7 < k) for k> 1
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Sugeno integyral

e Graphical interpretation of Sugeno integrals

(a) (b)

f s(z f(.’l?

p(Asy) O(xé )
XX X

X @)ffdu

o] ¥ o

X
B (9] X

[ X

f(@s))

p(Aseiy)

A

Y
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Sugeno integral

e Properties

— WMin and WMax are particular cases of Sl

x WMax with weighting vector u is a S| w.r.t.

wmax

pEmMAT(A) = maXy, A Uj-

* WMin with weighting vector u is a S| w.r.t.

WMIN

p™ "M (A) = 1 — max, ¢4 u;.
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Fuzzy integrals

e Fuzzy integrals that generalize Choquet and Sugeno integrals

— The fuzzy t-conorm integral
— The twofold integral
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Fuzzy integrals

e The fuzzy t-conorm integral

— The space of values of integrands (F’): The domain is denoted by D = [0, 1],
and the function to integrate is such that f : X — D. The corresponding t-conorm
is denoted by A. So, F' = (D, A).

— The space of values of measures (M ): The domain is denoted by T = [0, 1],
thus, v : p(X) — T. The corresponding t-conorm is L. Therefore, M = (T, L).

— The space of values of integrals (I): The domain is denoted by T' = [0, 1],
and the corresponding t-conorm is L. Thus, I = (T, L).

Z (as@) = as(i-1)) p(Asi)) Z (as@) = as(i-1)) p(Asi))

i=1,N b 7 i=1,N pal M

I I*
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Fuzzy integrals

e The fuzzy t-conorm integral

- F=(A,1,1,®) is a t-conorm system for integration iff
1. A, 1, and L, are continuous t-conorms that are the maximum or

Archimedean.

2. ®:([0,1],A) x ([0,1], L) — (]0,1],L) is a product-like operation
fulfilling

(a) ® is continuous on (0, 1]

(b) a®@x=0if and onlyif a=0o0r z =0

(c) when zly <1, a® (xly) = (a®x)L(a®y) for all a € [0, 1]
)

(d) when aAb < 1, (aAb) @ x = (a ® x)L(b® x) for all x € [0, 1].
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Fuzzy integrals

e The fuzzy t-conorm integral

— Given a t-conorm L, the substraction operator —  (Definition 2.51)

is defined by:
r—,y:=inf{zlylz > z}.
Example
(i) If L is an Archimedean t-conorm with generator g, then

r—1y=9""g(x) —g(y))

(ii) If L is equal to the maximum, then

. | x>y
max J =9 it x <.

Vicenc Torra, Yasuo Narukawa; From WM to FI

37



Fuzzy integrals

e Fuzzy t-conorm integral of f based on (A, 1,1, ®) w.r.t. u
) [ £ @ du= L (0 s @) © (A

where a; — f(xs(z)) with f(.CIZS(Z)) < f(ajs(i+1)) and ag = f(:ljs(g)) = 0,
and As(k) — {xs(j)\j > k}

e Properties

— When the t-conorm system is (+!,4,4,-), we have Cl.
— When the t-conorm system is (max, max, max, min), we have a Sl.

'+ denotes the bounded sum (Example 2.48)
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Fuzzy integrals

e [wofold integral of f w.r.t. two fuzzy measures ¢ and ug

— g has a “fuzzy flavor”, corresponds to the fuzzy measure of the SI
— e has a “probabilistic flavor”, corresponds to the one of the CI
N i
Thigue(f) = D ((V F@a)As(Aai) (e (Asn) —ne(Asin)) )
i=1  j=1
where s in f(x4(;)) is a permutation so that f(z;_1)) < f(xs@)) for
i > 1, and Agk) = {x5()ld = Kk} and Agny1) = 0.
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Fuzzy integrals

e Properties

— When puec = p*, the Tl reduces to the SI:

Tl uo(a1,...,a,) =S, .(ai,...,an)
— When pug = p*, the Tl reduces to the ClI:
TIMS,MC(al, oo c ,an) — C’IMC(al, 5o o ,CLn)

— When puo = pus = p*, the Tl reduces to the maximum:

Tl pe(a1,...,an) = V(ai,. .., ap)

40
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Fuzzy integrals

e Properties and graphical interpretation

- T
- T

usc(f) < Clug(f)
MSMC(f) S Sl,us(f)

= Tl e (f) = Cluc (£ N SLug(1))

()

f (s

(Asi)) O< o(])>
X % % ;

X © (S) [ fdu

[o] & =

X
8 [O] X

[O] X
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Hierarchical Models for Aggregation

e Hierarchical model

1
\

1
\
’_I

e Properties. The following conditions hold

(i) Every multistep Choquet integral is a monotone increasing, positively
homogeneous, piecewise linear function.

(ii) Every monotone increasing, positively homogeneous, piecewise linear function on
a full-dimensional convex set in RY is representable as a two-step Choquet integral
such that the fuzzy measures of the first step are additive and the fuzzy measure
of the second step is a 0-1 fuzzy measure.
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