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Overview >Example Outline

Overview

Basics and objectives:

e Distribution based on the Choquet integral
(for non-additive measures)

Motivation:

e [heory: Mathematical properties

e Methodology: different ways to express interactions

e Application: Decision (MCDM), classification,
statistical disclosure control (data privacy)
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Outline

1. Preliminaries
2. Choquet integral based distribution
3. Choquet-Mahalanobis based distribution

4. Summary
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Preliminaries
Aggregation operators and the Choquet
integral in Decision
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MCDM: Aggregation for
(numerical) utility functions
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Outline

Aggregation for (numerical) utility functions

e Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

Modelling=Criteria 4+ Utilities, aggregation, selection

Number of | Security | Price | Confort | trunk
seats
Ford T 0 20 0 20 0
Seat 600 60 0 100 0 50
Simca 1000 100 30 100 50 70
VW Beetle 80 50 30 70 100
Citroen Acadiane 20 40 60 40 0

83rd EWG-MCDA 2016 5 /59



QOutline

Aggregation for (numerical) utility functions

e Decision, utility functions

83rd EWG-MCDA 2016 6 / 59



Outline

Aggregation for (numerical) utility functions

e Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

83rd EWG-MCDA 2016 6 / 59



Outline

Aggregation for (numerical) utility functions

e Decision, utility functions
Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

83rd EWG-MCDA 2016 6 / 59



Outline

Aggregation for (numerical) utility functions

e Decision, utility functions
Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }
Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

83rd EWG-MCDA 2016 6 / 59



Outline

Aggregation for (numerical) utility functions

e Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

Modelling, aggregation = C, selection

Seats | Security | Price | Comfort | trunk | C = AM
Ford T 0 20 0 20 0 8
Seat 600 60 0 100 0 50 42
Simca 1000 100 30 100 50 70 70
VW 80 50 30 70 100 66
Citr. Acadiane 20 40 60 40 0 32
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e But there are occasions in which ordering is clear
when a; < b; it is clear that a < b
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Outline

Aggregation for (numerical) utility functions

e MCDM: Aggregation to deal with contradictory criteria
e But there are occasions in which ordering is clear

when a; < b; it is clear that a < b

E.g.,
Seats | Security | Price | Comfort | trunk | C = AM
Seat 600 60 0 100 0 50 42
Simca 1000 || 100 30 100 50 70 70

Aggregation operators are appropriate because they satisfy monotonicity

e Pareto dominance: Given two vectors a = (a1,...,a,) and b =
(b1,...,by), we say that b dominates a when a; < b; for all ¢ and there
Is at least one k such that a, < by.
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Aggregation for (numerical) utility functions

e Pareto set, Pareto frontier, or non dominance set:

Seats | Security | Price | Comfort | trunk | C = AM
Simca 1000 100 30 100 50 70 70
VW 80 50 30 70 100 66
Citr. Acadiane 20 40 60 40 0 32

e Each one wins at least in one criteria to another one
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Outline

Aggregation and Choquet integral in MCDM

e Pareto set, Pareto frontier, or non dominance set:
Given a set of alternatives U represented by vectors u = (uq,...,uy),
the Pareto frontier is the set «w € U such that there is no other v € U

such that v dominates w.

PF = {ulthere is no v s.t. v dominates u}

e Pareto optimal: an element u of the Pareto set
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Outline

Aggregation and Choquet integral in MCDM

e Decision making process:

Modelling, aggregation, selection=order,first

e The function of aggregation functions

o Different aggregations lead to different orders (in the PF)
o Aggregation establishes which points are equivalent
o Different aggregations, lead to different curves of points (level curves)

Criteria fo
Satisfaction on:
alt | Price Quality Comfort alt | Consensus alt | Ranking
FordT| 0.2 0.8 0.3 FordT| 0.35 206 0.72 Folzh)
1’”””‘I
206 | 0.7 07 08 206 | 072 FordT| 0.35 2 T
fla) ==t
h
f1($2) f1($1)
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Aggregation and Choquet integral in MCDM

e Aggregation functions and different level curves

o Arithmetic mean
o Geometric mean, Harmonic mean, ...

o Weighted mean
o OWA, ...
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Outline

Aggregation and Choquet integral in MCDM

e Aggregation functions and different level curves

o Arithmetic mean

o Geometric mean, Harmonic mean, ...

o Weighted mean

o OWA, ...

o Choquet integral (generalization of the AM, WM, OWA)
x to represent interactions between criteria
x non-independent criteria allowed
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Aggregation and Choquet integral in MCDM

e Aggregation functions and parameters

— Arithmetic mean: no parameters

— Geometric mean, Harmonic mean, ...: : no parameters
— Weighted mean: weighting vector

— OWA, ...: weighting vector
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Outline

Aggregation and Choquet integral in MCDM

e Aggregation functions and parameters

— Choquet integral (generalization of the AM, WM, OWA): a measure
o Instead of weight(criteria): w(security)
o We consider weight(set of criteria): w(security,price,confort)
— We can, of course, use
w(security, price,confort)=w(security )+w(price )+w(confort)
— but also
o w(security,price,confort) > w(security)+w(price)+w(confort)
or
o w(security,price,confort) < w(security)+w(price)+w(confort)
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Outline

Aggregation and Choquet integral in MCDM

e Aggregation functions and parameters

— Choquet integral (generalization of the AM, WM, OWA): a measure
*x And the level curves ? decision ?

=,
S
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Preliminaries
Non-additive (fuzzy) measures and the

Choquet integral
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Definitions: measures

Additive measures.

e (X, A) a measurable space; then, a set function w is an additive
measure if it satisfies
(i) u(A) >0 forall A€ A,
(i) p(X) < oo
(iii) Finite case:
(AU B) = u(A) + p(B) for disjoint A, B
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Definitions Outline

Definitions: measures

Additive measures.

e (X, A) a measurable space; then, a set function w is an additive
measure if it satisfies
(i) u(A) >0 forall A€ A,
(i) p(X) < oo
(iii) Finite case:
(AU B) = u(A) + u(B) for disjoint A, B
e Probability and weights: pu(X) =1
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Definitions Outline

Definitions: measures

Non-additive (or fuzzy) measures.

e (X,.A) a measurable space, a non-additive measure ;. on (X, .A) is a
set function u : A — |0, 1] satisfying the following axioms:
(i) (@) =0
(i) pu(X) < o0
(iii) A C B implies ;(A) < u(B) (monotonicity)
e Weights: u(X) =1
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Definitions: measures

Non-additive measures. Examples. Distorted probabilities

e m : R™ — RT™ a continuous and increasing function such that
m(0) = 0; P be a probability.
The following set function p,, is a non-additive measure:

pm,p(A) = m(P(A)) (1)
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted probabilities

e m : R™ — RT™ a continuous and increasing function such that
m(0) = 0; P be a probability.
The following set function p,, is a non-additive measure:

pm,p(A) = m(P(A)) (1)

o If m(z) = z?, then p,,(A) = (P(A))?
o If m(x) = 2P, then p,,(A) = (P(A))P

(@) (b) (© (d)
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Definitions: measures

Non-additive measures. Examples. Distorted probabilities

e m : R™ — RT™ a continuous and increasing function such that
m(0) = 0; P be a probability.
The following set function p,, is a non-additive measure:
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted probabilities

e m : R™ — RT™ a continuous and increasing function such that
m(0) = 0; P be a probability.
The following set function p,, is a non-additive measure:

pm,p(A) = m(P(A)) (2)

Applications.

e [o represent interactions
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Definitions: integrals

Choquet integral (Choquet, 1954):

e /. a non-additive measure, g a measurable function. The Choquet
integral of g w.r.t. u, where py(r) := pu({x|g(z) > r}):

(€) / gdp == /O ) pg(r)dr. (3)
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Definitions

Outline

Definitions: integrals

Choquet integral (Choquet, 1954):

e /i a non-additive measure, g a measurable function. The Choquet
integral of g w.r.t. u, where u,(r) := p({x|g(z) > r}):

(€) / gdp == /O ) pg(r)dr. (3)

e When the measure is additive, this is the Lebesgue integral

(a)

(b)

()

€

{z[f(2) = ai}
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Definitions: integrals

Choquet integral. Discrete version

e /1, a non-additive measure, f a measurable function. The Choquet
integral of f w.r.t. u,

N

(C) / fdp = Z[f(fl?s(z‘)) - f(xs(z’—l))]:u(As(z’))a

1=1

where f(x4(;)) indicates that the indices have been permuted so that
0 < f(xs(l)) < - < f(xs(N)) < 1, and where f(xs(O)) = 0 and
Astiy = ATs(iys - Ts(N) -
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Definitions: measures

Choquet integral: Properties:

e When 1 is additive, C'I corresponds to the weighted mean
e ('] can represent min, max, mean, order statistics, ...
e When i is pt,, p(A) = m(P(A)) with m(x) = 2P,

Cly (1)
(@) — max, (b) — median, (c¢) — min, (d) — mean

(@) (b) (© (d)

Vicen¢ Torra; Choquet integral: distributions and decisions 83rd EWG-MCDA 2016 22 / 59



Outline

- Preliminaries
Classification and shapes of distributions
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Classification

Motivation: Another motivation: classification

e Two classes defined in terms of normal distributions (obtained from
real data or directly from the parameters of the distribution N (u, 32)).
e An element z in R?
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Classification Outline

Classification

Motivation: Another motivation: classification

e Two classes defined in terms of normal distributions (obtained from
real data or directly from the parameters of the distribution N (u, 32)).
e An element z in R?
— where to classify z7

Two classes

table[,2]

table[,1]
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Classification Outline

Classification

Classification problems: Classification of = into 2

e = in a n-dimensional space (i.e., x € R")
e Set of k classes Q2 = {w1,...,wi}

Formalization:

e Bayes' maximum-a-posteriori (MAP) classification decision rule:
assigns = to the class w; s.t. the probability P(w;|x) is maximized.
l.e., (Bayes condition):

P(z|w;) P(w;)

P(wi|x) = Pz}

or, as P(x) is constant for all classes,

di(x) = P(x|w;)P(w;)

B/ od results into the same classification as for d (e.g. f = In)

Vicen¢ Torra; Choquet integral: distributions and decisions 83rd EWG-MCDA 2016 25 / 59
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Classification

Classification

Classification problems: Classes w; generated from

e covariance matrices >;

® means I;
— class-conditional probability-density function (Gaussian distribution)

1 ~Ma—z) TS (a—zy)

(27T)m/2|2¢‘1/26

P(z|w;) =

Two classes with different correlations

table[,2]
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Classification Outline

Classification

Proposition:

e Bayes' maximum-a-posteriori (MAP) classification decision rule, when
>; =2, and P(w;) = P(wj), is (Mahalanobis distance)

di(z) = —(z — 7)) 57 (z — 7))
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Classification Outline

Classification

Proposition. Bayes' maximum-a-posteriori (MAP) classification

o If 33; =1 for all 7 (the identity function)
di(z) = —(x — )T (x — 7;) = —||x — 7|7

— Euclidean distance
e If 3; is diagonal (not necessarily equal to I)

di(x) = =) (05) " (z; — zi)°

m
j=1

— Weighted Euclidean distance
2

(with weights equal to the inverse of the variances: p; = (03)~")
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Shape of distributions

The class-conditional probability-density functions established above
define level curves with the shape of an ellipse
— circumference when variables are independent
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Shape of Distributions

Shape of distributions

The class-conditional probability-density functions established above

define level curves with the shape of an ellipse
— circumference when variables are independent

Two classes with different correlations

table[,2]

0 5 10

table[,1]
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Shape of Distributions

Shape of distributions

Outline

The class-conditional probability-density functions established above

define level curves with the shape of an ellipse
— circumference when variables are independent

10

table[,2]

What about another shape / another distance ?

Two classes with different correlations

table[,1]

Vicen¢ Torra; Choquet integral: distributions and decisions
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Shape of Distributions

Shape of distributions

Outline

The class-conditional probability-density functions established above

define level curves with the shape of an ellipse
— circumference when variables are independent

10

table[,2]

What about another shape / another distance ?

What about using the Choquet integral here 7

Two classes with different correlations

table[,1]

Vicen¢ Torra; Choquet integral: distributions and decisions
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Shape of distributions

Why Choquet integral?:

e Non-additive measures on a set X permit us to represent interactions
between objects in X !
. similar to covariances !
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Shape of distributions
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e Non-additive measures on a set X permit us to represent interactions
between objects in X !
. similar to covariances !!
e Choquet integral integrates a function with respect to a non-additive
measure
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Shape of Distributions Outline

Shape of distributions

Why Choquet integral?:

e Non-additive measures on a set X permit us to represent interactions
between objects in X !
. similar to covariances !!
e Choquet integral integrates a function with respect to a non-additive

measure
— can it be used to compute a distance / to define a distribution 7
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Shape of Distributions Outline

Shape of distributions

Why Choquet integral?:

e Non-additive measures on a set X permit us to represent interactions
between objects in X !
. similar to covariances !!
e Choquet integral integrates a function with respect to a non-additive
measure
— can it be used to compute a distance / to define a distribution 7
— if so, what is the shape of the distribution 7

Vicen¢ Torra; Choquet integral: distributions and decisions 83rd EWG-MCDA 2016 30 / 59
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Choquet integral based distribution
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Choquet integral based distribution: Definition

Definition:

oY ={Yy,...,Y,} random variables; p : 2¥ — [0,1] a non-additive
measure and m a vector in R"™.

e The exponential family of Choquet integral based class-conditional
probability-density functions is defined by:

1
PCp () = ?6—%C’Iu((x—m)o(x—m))

where K is a constant that is defined so that the function is
a probability, and where v o w denotes the Hadamard or Schur
(elementwise) product of vectors v and w (ie, (vow) =

(v1w1 ce vnwn))

Notation:

e We denote it by C'(m, p).

83rd EWG-MCDA 2016 32 /59



Cl distribution

Chogquet integral based distribution: Examples

Outline

e Shapes (level curves)

7\

.-’/ /"\\\\‘s

H Y
7 LY
L Voo
i vl

S
o

)

i r——
.. )
T —

, 15,
1

(-15.0,-15.0) (-15.0,-15.0

15.0 15.0

O

(a) pa(fa}) = 0.1 and pa({y}) = 0.1, (b) pa(fr}) = 0.9 and pa({y}) = 0.9,

, 15,
1
(-15.0,-15.0) (-15.0,-15.0

(c) pe(fe}) = 0.2 and pe({y}) = 0.8, and (d) pp({a}) = 04 and pp({y}) = 0.9,
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Choquet integral based distribution: Properties

Proposition. Distribution and distance (Choquet distance):

o If P(w;) = P(w;) holds for all i # j, the decision rule is (max):
—Cl,((x —7;) ® (x — ;))

Proposition: Distribution/distance and level curves:

e The level curves of the Choquet integral in two variables X = {x,y}
corresponds to an ellipse when p({z}) =1— u({y}).
— A natural result: we have an ellipse when p({z}) + un({y}) =1
— 1.e., when 1 is a probability.
This follows from the fact that the Choquet integral with a measure
that is a probability is equivalent to a weighted mean. Then, similar
results are obtained for larger dimensions.

83rd EWG-MCDA 2016 34 / 59



Cl distribution Outline

Choquet integral based distribution: Properties

Property:

e The family of distributions N (m, 3J) in R™ with a diagonal matrix
of rank n, and the family of distributions C'(m, 1) with an additive
measure p with all u({x;}) # 0 are equivalent.

(14(X) is not necessarily here 1)
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Cl distribution Outline

Choquet integral based distribution: Properties

Property:

e The family of distributions N (m, 3J) in R™ with a diagonal matrix
of rank n, and the family of distributions C'(m, 1) with an additive
measure p with all u({x;}) # 0 are equivalent.

(14(X) is not necessarily here 1)

Corollary:

e The distribution N(0,1) corresponds to C'(0, ') where p' is the
additive measure defined as ;' (A) = |A| for all A C X.
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Cl distribution

Outline

Choquet integral based distribution: N vs. C

Properties:

e In general, the two families of distributions N(m, ) and C'(m, )

are different.

e C'(m, 1) always symmetric w.r.t. Y7 and Y5

axis.
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Cl distribution Outline

Choquet integral based distribution: N vs. C

Properties:

e In general, the two families of distributions N(m, ) and C'(m, )
are different.
e C'(m, 1) always symmetric w.r.t. Y7 and Y5 axis.

e A generalization of both: Choquet-Mahalanobis based distribution.
— Mahalanobis: > represents some interactions
— Choquet (measure): 1 represents some interactions
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Outline

Choquet-Mahalanobis based distribution
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CMI distribution Outline

Choquet integral based distribution: generalized
distance

Definition:

e ¥ be a matrix, 7! = LL* be the Cholesky decomposition of its

Inverse.
e The Choquet-Mahalanobis integral is defined by

CMI, 5(z,%) = CL,(v®w) (4)

where v and w are the vectors defined by:
v=(r—z)'L and w = L*(z — ),

where v ® w denotes the elementwise product of vectors v and w
(i,e., (v®@w) = (vjwy...v,wy)).
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CMI distribution Outline

Choquet integral based distribution: generalized
distance

On the definition:

e \Well defined when X is a covariance matrix
When 7! is a definite-positive matrix, the Cholesky descomposition is unique.
This is the case when X is a covariance matrix valid for generating a probability-

density function.
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CMI distribution Outline

Choquet integral based distribution: generalized
distance

On the definition:

e \Well defined when X is a covariance matrix
When 7! is a definite-positive matrix, the Cholesky descomposition is unique.
This is the case when X is a covariance matrix valid for generating a probability-

density function.

Proper generalization:

e Generalization of both the Mahalanobis and the Choquet integral
based distance.
— The definition with X equal to the identity results into the Choquet integral of
(x — ) ® (x — &) with respect to pu.
— The definition with p corresponding to an additive probability u(A) = 1/|A|
results into 1/n of the Mahalanobis distance with respect to X.
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CMI distribution Outline

Choquet integral based distribution: Definition

Definition:

e Y ={Yi,...,Y,} random variables, i : 2¥ — [0, 1] a measure, m a
vector in R"”, and () a positive-definite matrix.

e The exponential family of Choquet-Mahalanobis integral based class-
conditional probability-density functions is defined by:

1
PCMiq(z) = —e 4000w

where K is a constant that is defined so that the function is a
probability, where LL? = Q is the Cholesky decomposition of the
matrix Q, v = (x — m)'L, w = L (x — m), and where vow
denotes the elementwise product of vectors v and w.

Notation:

e We denote it by CM I (m, 11, Q).
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CMI distribution Outline

Choquet integral based distribution: Properties

Property:

e The distribution CMI(m, 1, Q) generalizes the multivariate normal
distributions and the Choquet integral based distribution. In addition
— A CMI(m,u, Q) with 4 = u! corresponds to multivariate normal

distributions,
— ACMI(m, pu, Q) with @ =1 corresponds to a CI(m, ).
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CMI distribution Outline

Choquet integral based distribution: Properties

Graphically:

e Choquet integral (Cl distribution), Mahalobis distance (multivariate
normal distribution), generalization (CMI distribution)

Choquet—Mahalanobis

Mahalanobis
—
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CMI distribution

Chogquet integral based distribution: Examples

Outline

1st Example: Interactions only expressed in terms of a measure.

e No correlation exists between the variables.
o CMI with o1 =1, 09 =1, p12 = 0.0, u, = 0.01, My = 0.01.

I RGL device 1 [Focus] 1O x| Il RGL device 1 [Focus]

=0l ]

1.0

03

3ot
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CMI distribution Outline

Chogquet integral based distribution: Examples

2nd Example: Interactions only in terms of a covariance matrix.

e CMl with 09y =1, 02 =1, p12 =0.9, p; = 0.10, p,, = 0.90.

Il RGL device 1 [Focus] _l— _ID il
Il RGL device 1 [Focus]
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CMI distribution Outline

Chogquet integral based distribution: Examples

3rd Example: Interactions both: covariance matrix and measure.

o CMI with o1 =1, 09 =1, p12 = 0.9, u, = 0.01, My = 0.01.
Sl oo

420_2_4
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Choquet integral based distribution: Properties

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,I) and N(m, )
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Choquet integral based distribution: Properties

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,I) and N(m, )
e Neither CMI(m, 11, Q) C / D spherical / elliptical distributions.
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Choquet integral based distribution: Properties

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,I) and N(m, )
e Neither CMI(m, 11, Q) C / D spherical / elliptical distributions.

Example:

e Non-additive u: C'MI(m, i, Q) not repr. spherical/elliptical
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CMI distribution Outline

Choquet integral based distribution: Properties

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,1) and N(m, )
e Neither CMI(m, i, Q) C / O spherical / elliptical distributions.

Example:

e Non-additive u: C'MI(m, i, Q) not repr. spherical/elliptical
e No CMI for the following spherical distribution:  Spherical
distribution with density

F(r) = (1K) )

where rg is a radius over which the density is maximum, o is a
variance, and K is the normalization constant.
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CMI distribution Outline

Choquet integral based distribution: Properties

More properties: (symmetry)

e P(x)a C(m,pu) ie, mean m = (myq,...,m,) and a fuzzy measure
p. Then, for all x € R™ and all : € {1,...,n}

P(th.. . 7£L’Z'_17£L‘Z'—|—mz',£€i_|_1,. .. ,.CL‘n) — P(.CU17. .. 7£L’Z'_17—337;—|—mz'7£[)i_|_17.. . 7£L’n).

e Plx) a CMI(m,u, Q) ie., with mean m = (mq,...,my), a
positive-definite diagonal matrix Q, and a fuzzy measure p. Then,
for all z € R™ and all 7 € {1,...,n}

P(th.. . 7£L’Z'_17£L‘Z'—|—mz',£€i_|_1,. .. ,.CL‘n) — P(.CU17. .. 7£L’Z'_17—337;—|—mz'7£[)i_|_17.. . 7£L’n).
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Choquet integral based distribution: Properties

More properties:

e P(x) a C(m,pu) i.e., with mean m = (mq,...,my). Then, for any
fuzzy measure L,
o the mean vector X = [F[X], F[X5],..., E[X,]] is m and
o ¥ = |Cov|X;, X,|]|fori=1,...,nand j =1,...,n is zero for all
1 # 7 and, thus, diagonal.
e Plx) a CMI(m,pu,Q) ie, with mean m = (mq,...,my). Then,
for any fuzzy measure 1 and any diagonal matrix (),
o the mean vector X = [E[X], B[X,],..., E[X,]] is m and
o ¥ = |Cov|X;, X,|]|fori=1,...,nand j =1,...,n is zero for all
1 # 7 and thus, diagonal.
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Choquet integral based distribution: Properties

More properties:

e When Q is not diagonal, we may have
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Choquet integral based distribution: Properties

More properties: If this type of data distinguishable from Normal 7
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CMI distribution Outline

Choquet integral based distribution: Properties

More properties: If this type of data distinguishable from Normal 7

Study:

e Case of X = {561,5132}
o CMI(0, ) with pu({z}) =i/10 and p({y}) =i/10 fori =1,2,...,9
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CMI distribution Outline

Choquet integral based distribution: Properties

More properties: If this type of data distinguishable from Normal 7

Study:

e Case of X = {x1,25}
o CMI(0, ) with pu({z}) =i/10 and p({y}) =i/10 fori =1,2,...,9
e Test: Normality test for Cl-based distribution

o Normality of the marginals

o Normality of the multidimensional distribution
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Choquet integral based distribution: Properties

More properties: Normality test for Cl-based distribution

e Normality of the marginals: Shapiro-Wilk test
Marginal computed numerically integrate, uniroot function in R.
Almost always the test is passed for samples of n = 100 data
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Choquet integral based distribution: Properties

More properties: Normality test for Cl-based distribution

e Normality of the marginals: Shapiro-Wilk test
Marginal computed numerically integrate, uniroot function in R.
Almost always the test is passed for samples of n = 100 data

e Marginals (left) of the bivariate C'1(0, 1+), and the normal distribution
(right) with the same variance. p({z1}) = 0.1 and pu({x2}) = 0.1
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CMI distribution

Choquet integral based distribution: Properties

Outline

More properties: Normality test for Cl-based distribution

e Normality of the marginals: Shapiro-Wilk test
e Marginals (left) of C'I(0,u), and (right) N same variance. (i)
p({z1}) = 0.1 and p({x2}) = 0.1; (i) p({z1}) = 0.1 and p({z2}) =

0.2; (iii) u({z1}) = 0.2 and p({z2}) = 0.1; (iv) u({z1}) = 0.9 and
p({z2)) = 0.9
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CMI distribution Outline

Choquet integral based distribution: Properties

More properties: Normality test for Cl-based distribution

e Normality of the distribution:
Mardia's test based on skewness and kurtosis
— Skewness test is passed.
— Almost all distributions (in R?) pass kurtosis test in experiments:
o C'I(0,p) distributions with u({x}) = /10 and u({y}) = /10 for
i=1,2,....9.
o Test only fails in
(i) p({z}) = 0.1 and p({y}) = 0.1,
(ii) p({z}) = 0.2 and p({y}) = 0.1.
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Summary
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Summary

Summary:

e Definition of distributions based on the Choquet integral
Integral for non-additive measures
e Relationship with multivariate normal and spherical distributions
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Summary Outline

Summary

Summary:

e Definition of distributions based on the Choquet integral
Integral for non-additive measures
e Relationship with multivariate normal and spherical distributions

Future work:

e Study of the properties
e Parameters determination from data (i, Q)
e Statistical tests
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Summary Outline

Summary

e Level-dependent capacity (non-additive, fuzzy measure)
Defined by S. Greco, B. Matarazzo, S. Giove (FSS, 2011)

o Level-dependent-based distribution (generalizes Cl-based)

—LoI1C, ((z—z r—2x
P(z) = Le AT e(@-no6-2)

o Example. Two perspectives of same level dependent Cl. Defined by the same fuzzy
measures u! and p? with intervals (0, 3) for pt, and (3,100) for u2.

-loix o]

I yTot - I ®Tot
pt({z}) = 0.05 and pt({y}) = 0.95, and p?({x}) = 0.95 and p*({y}) = 0.05
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Thank you
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Slides at:
http://www.mdai.cat/ifao/
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