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Outline

Overview

Basics and objectives:

e Using Choquet integral in two types of applications
decision and metric learning (reidentification)

e Distances

e and distribution
(for non-additive measures)

Viceng Torra; Choquet integral in decision making and metric learning IUKM 2019 - Nara, Japan 1/ 62



QOutline

Outline

. Preliminaries

e Choquet integral: mathematical perspective
o Non-additive measures
o Now we need an integral
e Choquet integral: Application perspective
o Aggregation operators and Cl in decision: MCDM
o Aggregation operators and Cl in reidentification: risk assessment
o Zooming out

. Distances in classification (filling the gaps)

. Distributions
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Outline

Choquet integral: a mathematical
introduction
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Non-additive measures
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Definitions Outline

Definitions: measures

Additive measures.

e (X, A) a measurable space; then, a set function w is an additive
measure If it satisfies

(i) u(A) >0 forall A e A,

(i) p(X) < oo

(iii) for every countable sequence A; (i > 1) of A that is pairwise
disjoint (i.e,. A; N A; = () when i # j)

M(U A;) = ZM(Ai)
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Definitions Outline

Definitions: measures

Additive measures.

e (X, A) a measurable space; then, a set function w is an additive
measure If it satisfies

(i) u(A) >0 forall A e A,

(i) p(X) < oo

(iii) for every countable sequence A; (i > 1) of A that is pairwise
disjoint (i.e,. A; N A; = () when i # j)

M(U A;) = ZM(Ai)

Finite case: (AU B) = u(A) + u(B) for disjoint A, B
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Definitions Outline

Definitions: measures

Additive measures.

Example:
e Lebesgue measure. Unique measure A s.t. A(|a,b]) = b — a for
every finite interval |a, b]
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Definitions Outline

Definitions: measures

Additive measures.

Example:

e Lebesgue measure. Unique measure A s.t. A(|a,b]) = b — a for
every finite interval |a, b]

e Probability. When u(X) = 1.
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Definitions Outline

Definitions: measures

Additive measures.

Example:
e Lebesgue measure. Unique measure A s.t. A(|a,b]) = b — a for
every finite interval |a, b]

e Probability. When u(X) = 1.
e Or just price ...

\

L
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Definitions Outline

Definitions: measures

¢ Non-additive measures

o (X, A) a measurable space, a non-additive (fuzzy) measure p on
(X, A) is a set function pu : A — |[0,1] satisfying the following
axioms:

(i) (D) =0, u(X) =1 (boundary conditions)

(i) A C B implies u(A) < u(B) (monotonicity)
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Definitions Outline

Definitions: measures

o Non-additive measures

o (X, A) a measurable space, a non-additive (fuzzy) measure p on
(X, A) is a set function pu : A — |[0,1] satisfying the following
axioms:

(i) () =0, u(X) =1 (boundary conditions)

(i) A C B implies u(A) < u(B) (monotonicity)

e Naturally, additivity implies monotonicity

o E.g., B=AUC (with ANC = 0) then u(B) = u(A)+u(C) > pu(A)
o But in non-additive measures, we allow
pu(B=AUC)<p(A) + p(C)
u(B =AUC)>u(A) + p(C)
Aseg., u(B)=0.5 < u(A)+ u(C)=0.3+0.4=0.7
A way to represent interactions
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Definitions Outline

Definitions: measures

e Non-additive measures. Price

o When we have a discount, for disjoints A and B, we have

p(AUB) < p(A) + p(B) but p(AUB) > p(A)

Y=
§

—s

N

e There quite a large number of families of measures
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Definitions Outline

Definitions: measures

e Non-additive measures. Distorted probabilities

om : R — RT a continuous and increasing function such that
m(0) = 0; P be a probability.

pm,p(A) = m(P(A)) (1)

o If m(x) = 2P, then p,,(A)

-

(@) (b) () (d)
o Used in economics: Prospect theory (Kahneman and Tversky, 1979).

Small probabilities tend to be overestimated, while large ones,
underestimated.

|
>
2
=
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Definitions Outline

Definitions: measures

e Non-additive measures. Distorted Lebesgue

om : R — RT a continuous and increasing function such that
m(0) = 0; X be the Lebesgue measure.

pm(A) = m(A(A4)) (2)
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Definitions Outline

Definitions: measures

e Non-additive measures. Distorted Lebesgue

om : R — RT a continuous and increasing function such that
m(0) = 0; X be the Lebesgue measure.

pm(A) = m(A(A4)) (2)

o If m(x) = 2?, then p,,(A) = (A(A))?
o If m(x) = 2P, then p,,(A) = (A(A))P

(a) (b) (©) (d)
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Definitions Outline

Definitions: measures

e Non-additive measures. A large number of families

o Sugeno A\-measures: (AUB) = pu(A)+u(B)+Au(A)u(B) (A > —1)
o For P a non empty set of probability measures, the upper and lower
probabilities
> P(A) =suppep P(A)
> B(A) S infpep P(A)
(dual in the sense: P(A) =1 — P(A°))

e m-dimensional distorted probabilities (NT /NT, 2005, 2011, 2012, 2018)

Unconstrained fuzzy measure:

4 N\
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Now we need an integral
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Definitions Outline

Definitions: integrals

e Additive measure: the way you add areas does not change' results

() (b) ()

[0 73 T

bi —1— bi S R

T J— TN T

. (elf @) = b} {2/ (2) > ar)

e Riemann integral (a) vs Lebesgue integral (c)

o Riemann sum: >, . f(z(I)) * u(I)
(C non-overlapping collection, x(I) an element of I)

o Lebesgue sum: ZaiGRange(f)(ai —a;—1)(I(a;))
where I'(a) := {z|f(z) > a}

1We||, if it is calculable
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Definitions Outline

Definitions: integrals

e Lebesgue integral

/fdu —/ pg(r)dr

where p¢(r) = p({z|f(x) > r})
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Definitions Outline

Definitions: integrals

e Choquet integral (Choquet, 1954):

o 1 a non-additive measure, f a measurable function. The Choquet
integral of f w.r.t. u, where ps(r) ;== p({x|f(z) > r}):

©) [ fdni= [~ ustrrar
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Definitions Outline

Definitions: integrals

e Choquet integral (Choquet, 1954):

o 1 a non-additive measure, f a measurable function. The Choquet
integral of f w.r.t. u, where ps(r) ;== p({x|f(z) > r}):

©) [ fdni= [~ ustrrar

e Properties.

o When the measure is additive, this is the Lebesgue integral
(standard integral)
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Definitions Outline

Definitions: integrals

Choquet integral. Discrete version

e /1, a non-additive measure, f a measurable function. The Choquet
integral of f w.r.t. u,

N

(C) / fdp = Z[f(fl?s(z‘)) - f(xs(z’—l))]:u(As(z’))a

1=1

where f(x4(;)) indicates that the indices have been permuted so that
0 < f(xs(l)) < - < f(xs(N)) < 1, and where f(xs(O)) = 0 and
Astiy = ATs(iys - Ts(N) -
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Definitions Outline

Definitions: integrals

e Choquet integral. Example:

o Distorted probability ji,,(A) = m(P(A)) (with m(0) =0, m(1) = 1)

Cl, (f): (a) = max, (b) — median, (c) — min, (d) — mean (expectation)

-

(a) (b) () (d)

o Upper and lower probabilities: bounds for expectations
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Definitions Outline

Definitions: integrals

e Choquet integral. Example:

o Distorted probability ji,,(A) = m(P(A)) (with m(0) =0, m(1) = 1)

Cl, (f): (a) = max, (b) — median, (c) — min, (d) — mean (expectation)

-

(a) (b) () (d)

o Upper and lower probabilities: bounds for expectations

o (C) [ xadp = pu(A)
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Application |

Aggregation operators & Choquet integral
in Decision
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Outline

MCDM: Aggregation for
(numerical) utility functions
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Aggregation and Choquet integral in MCDM

e Decision, utility functions
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Aggregation and Choquet integral in MCDM

e Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }
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Outline

Aggregation and Choquet integral in MCDM

e Decision, utility functions
Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }
Criteria = { Seats, Security, Price, Comfort, trunk}
Decision making process:

Modelling=Criteria 4+ Utilities, aggregation, selection

Number of | Security | Price | Confort | trunk
seats
Ford T 0 20 0 20 0
Seat 600 60 0 100 0 50
Simca 1000 100 30 100 50 70
VW Beetle 80 50 30 70 100
Citroen Acadiane 20 40 60 40 0
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Aggregation and Choquet integral in MCDM

e Decision, utility functions
Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }
Criteria = { Seats, Security, Price, Comfort, trunk}
Decision making process:

IUKM 2019 - Nara, Japan 21 / 62



Outline

Aggregation and Choquet integral in MCDM

Decision, utility functions
Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }
Criteria = { Seats, Security, Price, Comfort, trunk}
Decision making process:

Modelling, aggregation = C, selection

Seats | Security | Price | Comfort | trunk | C = AM
Ford T 0 20 0 20 0 8
Seat 600 60 0 100 0 50 42
Simca 1000 100 30 100 50 70 70
VW 80 50 30 70 100 66
Citr. Acadiane 20 40 60 40 0 32
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Aggregation and Choquet integral in MCDM

e MCDM: Aggregation to deal with contradictory criteria
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Outline

Aggregation and Choquet integral in MCDM

e MCDM: Aggregation to deal with contradictory criteria

e But there are occasions in which ordering is clear

when a; < b; it 1s clear that a < b

E.g.,
Seats | Security | Price | Comfort | trunk | C = AM
Seat 600 60 0 100 0 50 42
Simca 1000 | 100 30 100 50 70 70
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Outline

Aggregation and Choquet integral in MCDM

e MCDM: Aggregation to deal with contradictory criteria
e But there are occasions in which ordering is clear

when a; < b; it 1s clear that a < b

E.g.,
Seats | Security | Price | Comfort | trunk | C = AM
Seat 600 60 0 100 0 50 42
Simca 1000 | 100 30 100 50 70 70

Aggregation operators are appropriate because they satisfy monotonicity
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Outline

Aggregation and Choquet integral in MCDM

e Decision making process:
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Aggregation and Choquet integral in MCDM
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Modelling, aggregation, selection=order, first
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Outline

Aggregation and Choquet integral in MCDM

e Decision making process:

Modelling, aggregation, selection=order, first

e The function of aggregation functions

o Different aggregations lead to different orders (in the PF)
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Outline

Aggregation and Choquet integral in MCDM

e Decision making process:

Modelling, aggregation, selection=order,first

e The function of aggregation functions

o Different aggregations lead to different orders (in the PF)
o Aggregation establishes which points are equivalent
o Different aggregations, lead to different curves of points (level curves)

Criteria fo
Satisfaction on:
alt | Price Quality Comfort alt | Consensus alt | Ranking
FordT| 0.2 0.8 0.3 FordT| 0.35 206 0.72 Folzh)
1’”””‘I
206 | 0.7 07 08 206 | 072 FordT| 0.35 2 T
fla) ==t
h
f1($2) f1($1)
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Outline

Aggregation and Choquet integral in MCDM

e Aggregation functions and different level curves

o Arithmetic mean
o Geometric mean, Harmonic mean, ...

o Weighted mean
o OWA, ...
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Outline

Aggregation and Choquet integral in MCDM

e Aggregation functions and different level curves

o Arithmetic mean

o Geometric mean, Harmonic mean, ...

o Weighted mean

o OWA, ...

o Choquet integral (generalization of the AM, WM, OWA)
> to represent interactions between criteria
> non-independent criteria allowed
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QOutline

Aggregation and Choquet integral in MCDM

e Aggregation functions and parameters

o Arithmetic mean: no parameters
o Geometric mean, Harmonic mean, ...: : no parameters
o Weighted mean: weighting vector
o OWA, ...: weighting vector
o Choquet integral (generalization of the AM, WM, OWA) a measure
> to represent interactions between criteria
w(security,price,confort) > (or <) w(security)+w(price)+w(confort)
> non-independent criteria allowed

n({ci,ca}) # p({er}) + u({ca})
> (C) [ xadp = pu(A)
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Outline

MCDM: What fuzzy measures (and Cl)
can represent?
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Outline

Aggregation and Choquet integral in MCDM

e Choquet integral can, and WM /Probability model cannot

o An element/criteria is added into the set, and
the preference is reversed
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QOutline

Aggregation and Choquet integral in MCDM

e Choquet integral can, and WM /Probability model cannot

o An element/criteria is added into the set, and
the preference is reversed
o Example. Buying a house.
When public transport is available, the preference changes’
> If there is no bus | prefer a public library than a restaurant,
but if there is a bus then | instead prefer the restaurant near.
> Mathematically, with B=Bus, R=Restaurant, L=Library we have

p({R}) < p({L}) but p({R, B}) > p({L, B})

“Ellesberg’s paradox.
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Outline

MCDM: Learn/identify the parameters
(e.g. the measures)
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Outline

Aggregation and Choquet integral in MCDM

e Available information?

o Find measures from outcome:

column vector with outcome

Seats ‘ Security | Price | Comfort | trunk ‘ C=7C1,
Seat 600 60 0 100 0 50 42
Simca 1000 | 100 30 100 50 70 70

o Find measures from preferences — (partial) order <: S = {(r;,t;)};

Seats | Security | Price | Comfort | trunk | C = C1,
Seat 600 60 0 100 0 50 4th
Simca 1000 | 100 30 100 50 70 1st
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Outline

Aggregation and Choquet integral in MCDM

e Available information?

o Measures from outcome: a column vector = min Y (Cp(a,) — 0,)?

o Measures from preferences — (partial) order <: S = {(r;,t;) }:

> Formulation: Find p such that, for all (r,t) € S, it follows that
Cp(evaluation-car r) > Cp(evaluation-car t)
or, with a, and a, for rows r and s,

CP(arla © o 7a7“n) > CP(atla c o 7atn)
Unfortunately, often, no solution: minimize failures Yert) = 0

(CP(G’T17 O 7af7“n) — (CP(rtla IR 7aftn) + Y(r,t) > 0.
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QOutline

Aggregation and Choquet integral in MCDM

e Available information?

o Measures from outcome: a column vector = min Y (Cp(a,) — 0,)?

o Measures from preferences — (partial) order <: S = {(r;,t;) }:

> Formulation: Find p such that, for all (r,t) € S, it follows that

Minimize Z(m)és Y(r.t)
Subject to
CP(arla SR 7af7“n) — CP(atla SRR atn)_i_ y(?“,t) > 0

Y(rt) >0
logical constraints on P
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Outline

Aggregation and Choquet integral in MCDM

e Aggregation and selection

o Selection of the one with maximum value of C = CI with pu
(maximum distance to nadir — worst combination)

d((ai,...,a,),(0,...,0))
o Selection of the one with minimum distance to ideal

d((ai,...,a,),(100,...,100))
where d is computed as an aggregation

f2

fa(wg) == 5

f2(x1j7777%777777777x1
| | fl
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Application li
The Choquet integral in metric learning:
reidentification
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Aggregation operators and Cl in reidentification

e Re-identification. Record linkage for databases, supervised approach

o ML/Optimization for distance-based RL (A and B aligned).
> Goal: as many correct reidentifications as possible:
for each record 4, we need d(a;, b;) > d(a;,b;) for all j

. %05
o '/l 5577
d. Minimum . ._
| .’1, | Distance . ] t bz l
‘ aN_1 | \ | bN— 1 l
.~ an | | ON |
Original file X Masked file Y

a; = (az-l, . ,am) and bz — (bi17 c e 7bzn)
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Outline

Aggregation operators and Cl in reidentification

e Re-identification. Record linking for databases. Supervised approach

o ML/Optimization for distance-based approach. (A and B aligned)
> Goal: as many correct reidentifications as possible. But,
if error for a;: K; =1 and d(a;,b;)+CK; > d(a;,b;) for all j
> :
Cp(diffi(ai1, bj1), ..., diff,,(ain, bjn) +CK; > Cp(diff;(as1, bin), - . -, diffy,(@in, bin))
o Formalization:

N
Minimize ) K;
1=1
Subject tOZ(Cp(diﬁl (Cl,il, bjl), c e dzﬁn(am, bjn))—
— Cp(diffy(ain, bir), - - -, diff,, (air, b)) + CK; >0
Ki S {07 1}

Additional constraints according to C
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Outline

Aggregation operators and Cl in reidentification

e Re-identification. Record linking for databases. Supervised approach

o ML/Optimization for distance-based approach. (A and B aligned)
o Formalization for Cl

N
Minimize ) K;
i=1
Subject to:C1,(diff;(ai1,b1), ..., diff,(@in, bjn))—
— ClL(diffy(ai1, bir), - - -, diff, (a1, bi1)) + CK; > 0
K, € {O, 1}

Additional constraints for p
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Outline

Aggregation operators and Cl in reidentification

e Re-identification. Record linking for databases. Supervised approach

o ML/Optimization for distance-based approach. (A and B aligned)
o Formalization for Cl

N
Minimize ) K;
i=1
Subject to:C1,(diff;(ai1,b1), ..., diff,(@in, bjn))—
— ClL(diffy(ai1, bir), - - -, diff, (a1, bi1)) + CK; > 0
K, € {O, 1}

Additional constraints for p

(but also WM, OWA, and Bilinear distance)
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Zooming out: trying to understand

Aggregation, distances, and independence
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Outline

Aggregation, distance and independence

e Aggregation and distance.

o Arithmetic mean (AM): Euclidean distance

o Weighted mean (WM): Weighted euclidean

o Choquet integral (Cl): Choquet integral-based distance
o — . Bilinear/Mahalanobis distance

e In a single picture: Mahalanobis and Choquet distance

Mahalanobis
Distance

eighted
Euclidean

Choquet
Integral
Choquet integral

Covariance
Matrix

Fuzzy measure
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Outline

Aggregation, distance and independence

e Aggregation, distance and independence.

o Only with Choquet integral and Mahalanobis distances
> Mahalanobis: covariance matrix

> Choquet integral: fuzzy measure
o In a single framework: Mahalanobis and Choquet distance

Mahalanobis
Distance

eighted
Euclidean

Choquet
Integral
Choquet integral

/Additive measure

Covariance Diagonal Matrix

Matrix

Fuzzy measure

Arithmetic

. mea
Uniform 1/p
1/n diag,/
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Outline

Filling gaps:

Aggregation, distances, and independence
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QOutline

Aggregation, distance and independence

¢ Mahalanobis distance.

o between x € R? and a vector m € R
with respect to the covariance matrix X

(x —m)X " (x —m))
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QOutline

Aggregation, distance and independence

e Choquet integral distance.

o between x € R? and a vector m € R
with respect to a non-additive measure p

CI((x —m) o (x — m))

v o w is the Hadamard or Schur (elementwise) product of v and w
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Outline

Aggregation, distance and independence

e Choquet-Mahalanobis integral distance.

o between x € R? and a vector m € R
with respect to 1 and a positive-definite matrix ()

CMI(m,u,Q)=CIl,(vow)

where

> LL? = Q is the Cholesky decomposition of the matrix Q,
> v =(x—m)!L,

> w = LY (x — m), and where

> v ow is the Hadamard (elementwise) product of v and w.

IUKM 2019 - Nara, Japan 43/ 62



CMI distribution Outline

Choquet integral based distribution: generalized
distance

Well defined when X is a covariance matrix.

® When X! is a definite-positive matrix, the Cholesky descomposition is unique.
This is the case when X is a covariance matrix valid for generating a probability-

density function.

Proper generalization:

e Generalization of both the Mahalanobis and the Choquet integral
based distance.
o The definition with X equal to the identity results into the Choquet integral of
(x — ) ® (x — &) with respect to pu.
o The definition with u corresponding to an additive probability u(A) = 1/|A|
results into 1/n of the Mahalanobis distance with respect to X.
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QOutline

Aggregation, distance and independence

e Aggregation and distance.

o Arithmetic mean (AM): Euclidean distance

o Weighted mean (WM): Weighted euclidean

o Choquet integral (Cl): Choquet integral-based distance
o S— . Bilinear/Mahalanobis distance

o Choquet-Mahalanobis integral: CMI-distance

Choquet—Mahalanobis distance
Fuzzy measure  Semi—definite positive matrix

Mahalanobis
Distance

eighted
Euclidean

Choquet
Integral
Choquet integral

Covariance
Matrix

Fuzzy measure
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Outline

A natural construction:

Distributions

IUKM 2019 - Nara, Japan 46 / 62



Outline

Distributions

e E.g. in Classification data drawn from normal Gaussian distributions.

Parameters N (u, ) determined from real data or known

Set of k classes 2 = {wq,...,w}
covariance matrices >,

O O O O

means x;

class-conditional probability-density function Gaussian distribution

1 —Lz—z)Ts (-7,
P(z|wi) = Gomrgyose 2T e

Two classes Two classes with different correlations

10

table[,2]
table[,2]

table[,1] table[,1]
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Outline

Distributions

e Define distributions based on the Choquet integral. Why?

o Non-additive measures on a set X permit us to represent interactions
between objects in X !
. similar to covariances but different types of interactions !!

Viceng Torra; Choquet integral in decision making and metric learning IUKM 2019 - Nara, Japan 48 / 62



Outline

Distributions

Definition:

oY = {Yi,...,Y,} random variables; p : 2¥ — [0,1] a non-additive
measure and m a vector in R™.

e The exponential family of Choquet integral based class-conditional
probability-density functions is defined by:

1
PCo () = Lo ACLx-mintem)

where K i1s a constant that is defined so that the function is
a probability, and where v o w denotes the Hadamard or Schur
(elementwise) product of vectors v and w (ie, (vow) =

(v1wy ... v Wy)).

Notation:

e We denote it by C'(m, p).

Viceng Torra; Choquet integral in decision making and metric learning IUKM 2019 - Nara, Japan 49 / 62



Distributions

Outline

e Shapes (level curves)

)

i ———
<rw<;'—_:>
o, -

O

(a) pa(fa}) = 0.1 and pa({y}) = 0.1, (b) pa(fr}) = 0.9 and pa({y}) = 0.9,

15,
1
(-15.0,-15.0) (-15.0,-15.0

(c) pe(fe}) = 0.2 and pe({y}) = 0.8, and (d) pp({a}) = 04 and pp({y}) = 0.9,

Vicen¢ Torra; Choquet integral in decision making and metric learning
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Outline

Distributions

Property:

e The family of distributions N (m, 3J) in R™ with a diagonal matrix 3
of rank n, and the family of distributions C'(m, 1) with an additive
measure p with all u({x;}) # 0 are equivalent.

(14(X) is not necessarily here 1)

Follows from additivity in © = probability = diagonal X
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Outline

Distributions

Property:

e The family of distributions N (m, 3J) in R™ with a diagonal matrix 3
of rank n, and the family of distributions C'(m, 1) with an additive
measure p with all u({x;}) # 0 are equivalent.

(14(X) is not necessarily here 1)

Follows from additivity in © = probability = diagonal X

Corollary:

e The distribution N (0,1) corresponds to C'(0, ') where p' is the
additive measure defined as ;' (A) = |A| for all A C X.
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Outline

Distributions

Properties:

e In general, the two families of distributions N(m, ) and C'(m, )
are different.
e C'(m, 1) always symmetric w.r.t. Y7 and Y5 axis.

15.0

(-15.0,-15.0)
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Outline

Distributions

Properties:

e In general, the two families of distributions N(m, ) and C'(m, )
are different.
e C'(m, 1) always symmetric w.r.t. Y7 and Y5 axis.

e Using the CMI distance, we consider both types of interactions
o Mahalanobis: X
o Choquet (measure): 1
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Outline

Distributions

Definition:

e Y ={Yy,...,Y,} random variables, i : 2* — [0, 1] a measure, m a
vector in R™, and () a positive-definite matrix.

e The exponential family of Choquet-Mahalanobis integral based class-
conditional probability-density functions is defined by:

1
PCMiq(z) = we 40w

where K is a constant that is defined so that the function is a
probability, where LL? = Q is the Cholesky decomposition of the
matrix Q, v = (x — m)!L, w = L¥(x — m), and where vow
denotes the elementwise product of vectors v and w.

Notation:

e We denote it by CMI(m, 11, Q).
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Outline

Distributions

Property:

e The distribution CMI(m, 1, Q) generalizes the multivariate normal
distributions and the Choquet integral based distribution. In addition
o A CMI(m,u, Q) with u = u' corresponds to multivariate normal

distributions,
o A CMI(m,u, Q) with @ =T corresponds to a CI(m, ).
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Outline

Distributions

Graphically:

e Choquet integral (Cl distribution), Mahalobis distance (multivariate
normal distribution), generalization (CMI distribution)

Choquet—-Mahalanobis distance
Fuzzy measure  Semi-definite positive matrix

Mahalanobis
Distance

eighted
Euclidean

Choquet
Integral
Choquet integral

/Additive measure
Diagonal Matrix

Covariance
Matrix

Fuzzy measure
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Distributions

1st Example: Interactions only expressed in terms of a measure.

e No correlation exists between the variables.
o CMI with o1 =1, 09 =1, p12 = 0.0, u, = 0.01, My = 0.01.

I RGL device 1 [Focus] o ] 4| I RGL device 1 [Focus] 1O x|
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QOutline

Distributions

2nd Example: Interactions only in terms of a covariance matrix.

o CMlI with 094 =1, 02 =1, p12 =0.9, pp = 0.10, p,, = 0.90.

Il RGL device 1 [Focus] _l— _ID il
Il RGL device 1 [Focus]
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QOutline

Distributions

3rd Example: Interactions both: covariance matrix and measure.

o CMIwith o1 =1, 09 =1, p12 = 0.9, u, = 0.01, My = 0.01.
Bl oo
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Outline

Distributions

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,I) and N(m, )
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Distributions

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,1) and N(m, )
e Neither CMI(m, 1, Q) € / O spherical / elliptical distributions.
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Outline

Distributions

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,1) and N(m, )
e Neither CMI(m, 1, Q) € / O spherical / elliptical distributions.

Example:

e Non-additive u: C'MI(m, i, Q) not repr. spherical/elliptical
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Outline

Distributions

More properties: Data not always acc. normality assumption

o spherical, elliptical distributions
o They generalize, respectively, N(0,I) and N(m, )
e Neither CMI(m, 11, Q) C / D spherical / elliptical distributions.

Example:

e Non-additive u: CMI(m, i, Q) not repr. spherical/elliptical
e No C'MI for the following spherical distribution: Spherical
distribution with density

F(r) = (1K) )

where rg is a radius over which the density is maximum, o is a
variance, and K is the normalization constant.
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Summary
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Summary Outline

Summary

Summary:

e Choquet integral and non-additive measures for decision and
reidentification

e Definition of distances based on the Choquet integral

e Comparison with the Mahalanobis distance

e Construction of distributions

e Relationship with multivariate normal and spherical distributions
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Thank you
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