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Outline

Overview

Basics and objectives:

• Using Choquet integral in two types of applications

decision and metric learning (reidentification)

• Distances

• and distribution

(for non-additive measures)
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Outline

Outline

1. Preliminaries

• Choquet integral: mathematical perspective

◦ Non-additive measures

◦ Now we need an integral

• Choquet integral: Application perspective

◦ Aggregation operators and CI in decision: MCDM

◦ Aggregation operators and CI in reidentification: risk assessment

◦ Zooming out

2. Distances in classification (filling the gaps)

3. Distributions
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Outline

Choquet integral: a mathematical
introduction
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Non-additive measures
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Definitions Outline

Definitions: measures

Additive measures.

• (X,A) a measurable space; then, a set function µ is an additive

measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞

(iii) for every countable sequence Ai (i ≥ 1) of A that is pairwise

disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j)

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai)
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Definitions Outline

Definitions: measures

Additive measures.

• (X,A) a measurable space; then, a set function µ is an additive

measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞

(iii) for every countable sequence Ai (i ≥ 1) of A that is pairwise

disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j)

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai)

Finite case: µ(A ∪B) = µ(A) + µ(B) for disjoint A, B

Vicenç Torra; Choquet integral in decision making and metric learning IUKM 2019 - Nara, Japan 5 / 62



Definitions Outline

Definitions: measures

Additive measures.

Example:

• Lebesgue measure. Unique measure λ s.t. λ([a, b]) = b − a for

every finite interval [a, b]
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Definitions Outline

Definitions: measures

Additive measures.

Example:

• Lebesgue measure. Unique measure λ s.t. λ([a, b]) = b − a for

every finite interval [a, b]

• Probability. When µ(X) = 1.
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Definitions Outline

Definitions: measures

Additive measures.

Example:

• Lebesgue measure. Unique measure λ s.t. λ([a, b]) = b − a for

every finite interval [a, b]

• Probability. When µ(X) = 1.

• Or just price ...

A B
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Definitions Outline

Definitions: measures

• Non-additive measures

◦ (X,A) a measurable space, a non-additive (fuzzy) measure µ on

(X,A) is a set function µ : A → [0, 1] satisfying the following

axioms:

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)
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Definitions Outline

Definitions: measures

• Non-additive measures

◦ (X,A) a measurable space, a non-additive (fuzzy) measure µ on

(X,A) is a set function µ : A → [0, 1] satisfying the following

axioms:

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)

• Naturally, additivity implies monotonicity

◦ E.g., B = A∪C (with A∩C = ∅) then µ(B) = µ(A)+µ(C) ≥ µ(A)

◦ But in non-additive measures, we allow

µ(B = A ∪ C)<µ(A) + µ(C)

µ(B = A ∪ C)>µ(A) + µ(C)

As e.g., µ(B) = 0.5 < µ(A) + µ(C) = 0.3 + 0.4 = 0.7

A way to represent interactions
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Definitions Outline

Definitions: measures

• Non-additive measures. Price

◦ When we have a discount, for disjoints A and B, we have

µ(A ∪B) < µ(A) + µ(B) but µ(A ∪B) ≥ µ(A)

• There quite a large number of families of measures
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Definitions Outline

Definitions: measures

• Non-additive measures. Distorted probabilities

◦ m : R
+ → R

+ a continuous and increasing function such that

m(0) = 0; P be a probability.

µm,P (A) = m(P (A)) (1)

◦ If m(x) = xp, then µm(A) = (λ(A))p

(a) (b) (c) (d)

◦ Used in economics: Prospect theory (Kahneman and Tversky, 1979).

Small probabilities tend to be overestimated, while large ones,

underestimated.
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Definitions Outline

Definitions: measures

• Non-additive measures. Distorted Lebesgue

◦ m : R
+ → R

+ a continuous and increasing function such that

m(0) = 0; λ be the Lebesgue measure.

µm(A) = m(λ(A)) (2)
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Definitions Outline

Definitions: measures

• Non-additive measures. Distorted Lebesgue

◦ m : R
+ → R

+ a continuous and increasing function such that

m(0) = 0; λ be the Lebesgue measure.

µm(A) = m(λ(A)) (2)

◦ If m(x) = x2, then µm(A) = (λ(A))2

◦ If m(x) = xp, then µm(A) = (λ(A))p

(a) (b) (c) (d)
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Definitions Outline

Definitions: measures

• Non-additive measures. A large number of families

◦ Sugeno λ-measures: µ(A∪B) = µ(A)+µ(B)+λµ(A)µ(B) (λ > −1)

◦ For P a non empty set of probability measures, the upper and lower

probabilities

⊲ P̄ (A) = supP∈P P (A)

⊲ P (A) = infP∈P P (A)

(dual in the sense: P̄ (A) = 1− P (Ac))

• m-dimensional distorted probabilities (NT/NT, 2005, 2011, 2012, 2018)

DP

Unconstrained fuzzy measures
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Now we need an integral
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Definitions Outline

Definitions: integrals

• Additive measure: the way you add areas does not change1 results

bi

bi−1

ai

ai−1

bi

bi−1

x1 x1 x1xN xN

x {x|f(x) ≥ ai}{x|f(x) = bi}

(a) (b) (c)

• Riemann integral (a) vs Lebesgue integral (c)

◦ Riemann sum:
∑

I∈C f(x(I)) ∗ µ(I)

(C non-overlapping collection, x(I) an element of I)

◦ Lebesgue sum:
∑

ai∈Range(f)(ai − ai−1)µ(Γ(ai))

where Γ(a) := {x|f(x) ≥ a}

1Well, if it is calculable
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Definitions Outline

Definitions: integrals

• Lebesgue integral ∫
fdµ :=

∫ ∞

0

µf(r)dr

where µf(r) = µ({x|f(x) ≥ r})
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Definitions Outline

Definitions: integrals

• Choquet integral (Choquet, 1954):

◦ µ a non-additive measure, f a measurable function. The Choquet

integral of f w.r.t. µ, where µf(r) := µ({x|f(x) > r}):

(C)

∫
fdµ :=

∫ ∞

0

µf(r)dr.

IUKM 2019 - Nara, Japan 15 / 62



Definitions Outline

Definitions: integrals

• Choquet integral (Choquet, 1954):

◦ µ a non-additive measure, f a measurable function. The Choquet

integral of f w.r.t. µ, where µf(r) := µ({x|f(x) > r}):

(C)

∫
fdµ :=

∫ ∞

0

µf(r)dr.

• Properties.

◦ When the measure is additive, this is the Lebesgue integral

(standard integral)
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Definitions Outline

Definitions: integrals

Choquet integral. Discrete version

• µ a non-additive measure, f a measurable function. The Choquet

integral of f w.r.t. µ,

(C)

∫
fdµ =

N∑
i=1

[f(xs(i))− f(xs(i−1))]µ(As(i)),

where f(xs(i)) indicates that the indices have been permuted so that

0 ≤ f(xs(1)) ≤ · · · ≤ f(xs(N)) ≤ 1, and where f(xs(0)) = 0 and

As(i) = {xs(i), . . . , xs(N)}.
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Definitions Outline

Definitions: integrals

• Choquet integral. Example:

◦ Distorted probability µm(A) = m(P (A)) (with m(0) = 0, m(1) = 1)

CIµm(f): (a) → max, (b) → median, (c) → min, (d) → mean (expectation)

(a) (b) (c) (d)

◦ Upper and lower probabilities: bounds for expectations

CIP (f) ≤ infP EP (f) ≤ supP EP (f) ≤ CIP̄ (f)
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Definitions Outline

Definitions: integrals

• Choquet integral. Example:

◦ Distorted probability µm(A) = m(P (A)) (with m(0) = 0, m(1) = 1)

CIµm(f): (a) → max, (b) → median, (c) → min, (d) → mean (expectation)

(a) (b) (c) (d)

◦ Upper and lower probabilities: bounds for expectations

CIP (f) ≤ infP EP (f) ≤ supP EP (f) ≤ CIP̄ (f)

◦ (C)
∫
χAdµ = µ(A)
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Application I

Aggregation operators & Choquet integral
in Decision
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Outline

MCDM: Aggregation for
(numerical) utility functions
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Outline

Aggregation and Choquet integral in MCDM

• Decision, utility functions
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Outline

Aggregation and Choquet integral in MCDM

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

Modelling=Criteria + Utilities, aggregation, selection

Number of Security Price Confort trunk
seats

Ford T 0 20 0 20 0
Seat 600 60 0 100 0 50

Simca 1000 100 30 100 50 70
VW Beetle 80 50 30 70 100

Citroën Acadiane 20 40 60 40 0
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Outline

Aggregation and Choquet integral in MCDM

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:
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Outline

Aggregation and Choquet integral in MCDM

• Decision, utility functions

Alternatives = { Ford T, Seat 600, Simca 1000, VW, Citr.Acadiane }

Criteria = { Seats, Security, Price, Comfort, trunk}

Decision making process:

Modelling, aggregation = C, selection

Seats Security Price Comfort trunk C = AM

Ford T 0 20 0 20 0 8
Seat 600 60 0 100 0 50 42

Simca 1000 100 30 100 50 70 70
VW 80 50 30 70 100 66

Citr. Acadiane 20 40 60 40 0 32
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Outline

Aggregation and Choquet integral in MCDM

• MCDM: Aggregation to deal with contradictory criteria
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Outline

Aggregation and Choquet integral in MCDM

• MCDM: Aggregation to deal with contradictory criteria

• But there are occasions in which ordering is clear

when ai ≤ bi it is clear that a ≤ b

E.g.,
Seats Security Price Comfort trunk C = AM

Seat 600 60 0 100 0 50 42

Simca 1000 100 30 100 50 70 70
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Outline

Aggregation and Choquet integral in MCDM

• MCDM: Aggregation to deal with contradictory criteria

• But there are occasions in which ordering is clear

when ai ≤ bi it is clear that a ≤ b

E.g.,
Seats Security Price Comfort trunk C = AM

Seat 600 60 0 100 0 50 42

Simca 1000 100 30 100 50 70 70

Aggregation operators are appropriate because they satisfy monotonicity
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Outline

Aggregation and Choquet integral in MCDM

• Decision making process:
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Outline

Aggregation and Choquet integral in MCDM
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Modelling, aggregation, selection=order,first
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Outline

Aggregation and Choquet integral in MCDM

• Decision making process:

Modelling, aggregation, selection=order,first

• The function of aggregation functions

◦ Different aggregations lead to different orders (in the PF)
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Outline

Aggregation and Choquet integral in MCDM

• Decision making process:

Modelling, aggregation, selection=order,first

• The function of aggregation functions

◦ Different aggregations lead to different orders (in the PF)

◦ Aggregation establishes which points are equivalent

◦ Different aggregations, lead to different curves of points (level curves)

Rankingalt altConsensusalt

Criteria
Satisfaction on:

Price Quality Comfort

FordT

206

0.2 0.8 0.3

0.7 0.7 0.8

FordT

206 FordT
2060.35

0.72

0.72
0.35

... ... ... ... ... ...

x1

f1(x2) f1(x1)
f1

f2

f2(x2)

f2(x1)

x2
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Outline

Aggregation and Choquet integral in MCDM

• Aggregation functions and different level curves

◦ Arithmetic mean

◦ Geometric mean, Harmonic mean, ...

◦ Weighted mean

◦ OWA, ...
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Outline

Aggregation and Choquet integral in MCDM

• Aggregation functions and different level curves

◦ Arithmetic mean

◦ Geometric mean, Harmonic mean, ...

◦ Weighted mean

◦ OWA, ...

◦ Choquet integral (generalization of the AM, WM, OWA)

⊲ to represent interactions between criteria

⊲ non-independent criteria allowed
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Outline

Aggregation and Choquet integral in MCDM

• Aggregation functions and parameters

◦ Arithmetic mean: no parameters

◦ Geometric mean, Harmonic mean, ...: : no parameters

◦ Weighted mean: weighting vector

◦ OWA, ...: weighting vector

◦ Choquet integral (generalization of the AM, WM, OWA) a measure

⊲ to represent interactions between criteria

w(security,price,confort) > (or <) w(security)+w(price)+w(confort)

⊲ non-independent criteria allowed

µ({c1, c2}) 6= µ({c1}) + µ({c2})

⊲ (C)
∫
χAdµ = µ(A)
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Outline

MCDM: What fuzzy measures (and CI)
can represent?
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Outline

Aggregation and Choquet integral in MCDM

• Choquet integral can, and WM/Probability model cannot

◦ An element/criteria is added into the set, and

the preference is reversed
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Outline

Aggregation and Choquet integral in MCDM

• Choquet integral can, and WM/Probability model cannot

◦ An element/criteria is added into the set, and

the preference is reversed

◦ Example. Buying a house.

When public transport is available, the preference changes2

⊲ If there is no bus I prefer a public library than a restaurant,

but if there is a bus then I instead prefer the restaurant near.

⊲ Mathematically, with B=Bus, R=Restaurant, L=Library we have

µ({R}) ≤ µ({L}) but µ({R,B}) ≥ µ({L,B})

2Ellesberg’s paradox.
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Outline

MCDM: Learn/identify the parameters
(e.g. the measures)
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Outline

Aggregation and Choquet integral in MCDM

• Available information?

◦ Find measures from outcome: column vector with outcome
Seats Security Price Comfort trunk C = CIµ

Seat 600 60 0 100 0 50 42

Simca 1000 100 30 100 50 70 70

. . .

◦ Find measures from preferences – (partial) order <: S = {(ri, ti)}i
Seats Security Price Comfort trunk C = CIµ

Seat 600 60 0 100 0 50 4th

Simca 1000 100 30 100 50 70 1st

. . .
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Outline

Aggregation and Choquet integral in MCDM

• Available information?

◦ Measures from outcome: a column vector ⇒ min
∑

(CP (ar)− or)
2

◦ Measures from preferences – (partial) order <: S = {(ri, ti)}i

⊲ Formulation: Find µ such that, for all (r, t) ∈ S, it follows that
CP (evaluation-car r) > CP (evaluation-car t)

or, with ar and as for rows r and s,
CP (ar1, . . . , arn) > CP (at1, . . . , atn)

Unfortunately, often, no solution: minimize failures y(r,t) ≥ 0
CP (ar1, . . . , arn)− CP (rt1, . . . , atn) + y(r,t) > 0.
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Outline

Aggregation and Choquet integral in MCDM

• Available information?

◦ Measures from outcome: a column vector ⇒ min
∑

(CP (ar)− or)
2

◦ Measures from preferences – (partial) order <: S = {(ri, ti)}i

⊲ Formulation: Find µ such that, for all (r, t) ∈ S, it follows that

Minimize
∑

(r,t)∈S y(r,t)
Subject to

CP (ar1, . . . , arn)− CP (at1, . . . , atn)+ y(r,t) > 0
y(r,t) ≥ 0

logical constraints on P
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Outline

Aggregation and Choquet integral in MCDM

• Aggregation and selection

◦ Selection of the one with maximum value of C = CI with µ

(maximum distance to nadir – worst combination)

d((a1, . . . , an), (0, . . . , 0))

◦ Selection of the one with minimum distance to ideal

d((a1, . . . , an), (100, . . . , 100))

where d is computed as an aggregation

x1

f1(x2) f1(x1)
f1

f2

f2(x2)

f2(x1)

x2
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Application II
The Choquet integral in metric learning:

reidentification
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Outline

Aggregation operators and CI in reidentification

• Re-identification. Record linkage for databases, supervised approach

◦ ML/Optimization for distance-based RL (A and B aligned).

⊲ Goal: as many correct reidentifications as possible:

for each record i, we need d(ai, bj) ≥ d(ai, bi) for all j

ai = (ai1, . . . , ain) and bi = (bi1, . . . , bin)
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Outline

Aggregation operators and CI in reidentification

• Re-identification. Record linking for databases. Supervised approach

◦ ML/Optimization for distance-based approach. (A and B aligned)

⊲ Goal: as many correct reidentifications as possible. But,

if error for ai: Ki = 1 and d(ai, bj)+CKi ≥ d(ai, bi) for all j

⊲ or, expanding d,
Cp(diff1(ai1, bj1), . . . , diffn(ain, bjn)+CKi ≥ Cp(diff1(ai1, bi1), . . . , diffn(ain, bin))

◦ Formalization:

Minimize
N∑
i=1

Ki

Subject to:Cp(diff1(ai1, bj1), . . . , diffn(ain, bjn))−

− Cp(diff1(ai1, bi1), . . . , diffn(ai1, bi1)) + CKi > 0

Ki ∈ {0, 1}

Additional constraints according to C
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Outline

Aggregation operators and CI in reidentification

• Re-identification. Record linking for databases. Supervised approach

◦ ML/Optimization for distance-based approach. (A and B aligned)
◦ Formalization for CI

Minimize
N∑
i=1

Ki

Subject to:CIµ(diff1(ai1, bj1), . . . , diffn(ain, bjn))−

− CIµ(diff1(ai1, bi1), . . . , diffn(ai1, bi1)) + CKi > 0

Ki ∈ {0, 1}

Additional constraints for µ
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Outline

Aggregation operators and CI in reidentification

• Re-identification. Record linking for databases. Supervised approach

◦ ML/Optimization for distance-based approach. (A and B aligned)
◦ Formalization for CI

Minimize
N∑
i=1

Ki

Subject to:CIµ(diff1(ai1, bj1), . . . , diffn(ain, bjn))−

− CIµ(diff1(ai1, bi1), . . . , diffn(ai1, bi1)) + CKi > 0

Ki ∈ {0, 1}

Additional constraints for µ

(but also WM, OWA, and Bilinear distance)
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Outline

Zooming out: trying to understand

Aggregation, distances, and independence
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Outline

Aggregation, distance and independence

• Aggregation and distance.

◦ Arithmetic mean (AM): Euclidean distance

◦ Weighted mean (WM): Weighted euclidean

◦ Choquet integral (CI): Choquet integral-based distance

◦ —— : Bilinear/Mahalanobis distance

• In a single picture: Mahalanobis and Choquet distance

Mahalanobis
Distance

Choquet 
Integral

Fuzzy measure

Covariance 

Matrix

Weighted

Choquet integral

Weighted mean
Additive measure
Diagonal Matrix

Euclidean

Euclidean
Arithmetic

mean
Uniform 1/n
1/n diag.
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Outline

Aggregation, distance and independence

• Aggregation, distance and independence.

◦ Only with Choquet integral and Mahalanobis distances

⊲ Mahalanobis: covariance matrix

⊲ Choquet integral: fuzzy measure

◦ In a single framework: Mahalanobis and Choquet distance

Mahalanobis
Distance

Choquet 
Integral

Fuzzy measure

Covariance 

Matrix

Weighted

Choquet integral

Weighted mean
Additive measure
Diagonal Matrix

Euclidean

Euclidean
Arithmetic

mean
Uniform 1/n
1/n diag.
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Outline

Filling gaps:

Aggregation, distances, and independence
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Outline

Aggregation, distance and independence

• Mahalanobis distance.

◦ between x ∈ R
d and a vector m ∈ R

d

with respect to the covariance matrix Σ

(x−m)Σ−1(x−m))
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Outline

Aggregation, distance and independence

• Choquet integral distance.

◦ between x ∈ R
d and a vector m ∈ R

d

with respect to a non-additive measure µ

CIµ((x−m) ◦ (x−m))

v ◦w is the Hadamard or Schur (elementwise) product of v and w

(i.e., (v ◦w) = (v1w1 . . . vnwn)).
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Outline

Aggregation, distance and independence

• Choquet-Mahalanobis integral distance.

◦ between x ∈ R
d and a vector m ∈ R

d

with respect to µ and a positive-definite matrix Q

CMI(m, µ,Q) = CIµ(v ◦w)

where

⊲ LLT = Q is the Cholesky decomposition of the matrix Q,

⊲ v = (x−m)TL,

⊲ w = LT (x−m), and where

⊲ v ◦w is the Hadamard (elementwise) product of v and w.
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CMI distribution Outline

Choquet integral based distribution: generalized

distance

Well defined when Σ is a covariance matrix.

• When Σ−1 is a definite-positive matrix, the Cholesky descomposition is unique.

This is the case when Σ is a covariance matrix valid for generating a probability-

density function.

Proper generalization:

• Generalization of both the Mahalanobis and the Choquet integral
based distance.
◦ The definition with Σ equal to the identity results into the Choquet integral of
(x− x̄)⊗ (x− x̄) with respect to µ.

◦ The definition with µ corresponding to an additive probability µ(A) = 1/|A|
results into 1/n of the Mahalanobis distance with respect to Σ.
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Outline

Aggregation, distance and independence

• Aggregation and distance.

◦ Arithmetic mean (AM): Euclidean distance
◦ Weighted mean (WM): Weighted euclidean
◦ Choquet integral (CI): Choquet integral-based distance
◦ —— : Bilinear/Mahalanobis distance
◦ Choquet-Mahalanobis integral: CMI-distance

Mahalanobis
Distance

Choquet 
Integral

Fuzzy measure

Covariance 

Matrix

Weighted

Choquet integral

Weighted mean
Additive measure
Diagonal Matrix

Euclidean

Euclidean
Arithmetic

mean
Uniform 1/n
1/n diag.

Choquet−Mahalanobis distance

Semi−definite positive matrix Fuzzy measure
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Outline

A natural construction:

Distributions
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Outline

Distributions

• E.g. in Classification data drawn from normal Gaussian distributions.

◦ Parameters N(µ,Σ) determined from real data or known

◦ Set of k classes Ω = {ω1, . . . , ωk}

◦ covariance matrices Σi

◦ means x̄i

class-conditional probability-density function Gaussian distribution

P (x|ωi) =
1

(2π)m/2|Σi|
1/2e

−1
2(x−x̄i)

TΣ−1
i (x−x̄i)

−2 0 2 4 6 8

−
2
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2
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8

Two classes

table[,1]

ta
b
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[,
2

]
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0
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0

Two classes with different correlations
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ta
b
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[,
2

]
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Outline

Distributions

• Define distributions based on the Choquet integral. Why?

◦ Non-additive measures on a set X permit us to represent interactions

between objects in X !!

... similar to covariances but different types of interactions !!
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Outline

Distributions

Definition:

• Y = {Y1, . . . , Yn} random variables; µ : 2Y → [0, 1] a non-additive

measure and m a vector in R
n.

• The exponential family of Choquet integral based class-conditional

probability-density functions is defined by:

PCm,µ(x) =
1

K
e−

1
2CIµ((x−m)◦(x−m))

where K is a constant that is defined so that the function is

a probability, and where v ◦ w denotes the Hadamard or Schur

(elementwise) product of vectors v and w (i.e., (v ◦ w) =

(v1w1 . . . vnwn)).

Notation:

• We denote it by C(m, µ).
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Outline

Distributions

• Shapes (level curves)
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(a) µA({x}) = 0.1 and µA({y}) = 0.1, (b) µB({x}) = 0.9 and µB({y}) = 0.9,

(c) µC({x}) = 0.2 and µC({y}) = 0.8, and (d) µD({x}) = 0.4 and µD({y}) = 0.9.
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Outline

Distributions

Property:

• The family of distributions N(m,Σ) in R
n with a diagonal matrix Σ

of rank n, and the family of distributions C(m, µ) with an additive

measure µ with all µ({xi}) 6= 0 are equivalent.

(µ(X) is not necessarily here 1)

Follows from additivity in µ = probability = diagonal Σ
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Outline

Distributions

Property:

• The family of distributions N(m,Σ) in R
n with a diagonal matrix Σ

of rank n, and the family of distributions C(m, µ) with an additive

measure µ with all µ({xi}) 6= 0 are equivalent.

(µ(X) is not necessarily here 1)

Follows from additivity in µ = probability = diagonal Σ

Corollary:

• The distribution N(0, I) corresponds to C(0, µ1) where µ1 is the

additive measure defined as µ1(A) = |A| for all A ⊆ X.
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Outline

Distributions

Properties:

• In general, the two families of distributions N(m,Σ) and C(m, µ)

are different.

• C(m, µ) always symmetric w.r.t. Y1 and Y2 axis.
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Outline

Distributions

Properties:

• In general, the two families of distributions N(m,Σ) and C(m, µ)

are different.

• C(m, µ) always symmetric w.r.t. Y1 and Y2 axis.
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• Using the CMI distance, we consider both types of interactions

◦ Mahalanobis: Σ

◦ Choquet (measure): µ
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Outline

Distributions

Definition:

• Y = {Y1, . . . , Yn} random variables, µ : 2Y → [0, 1] a measure, m a

vector in R
n, and Q a positive-definite matrix.

• The exponential family of Choquet-Mahalanobis integral based class-

conditional probability-density functions is defined by:

PCMm,µ,Q(x) =
1

K
e−

1
2CIµ(v◦w)

where K is a constant that is defined so that the function is a

probability, where LLT = Q is the Cholesky decomposition of the

matrix Q, v = (x − m)TL, w = LT (x − m), and where v ◦ w

denotes the elementwise product of vectors v and w.

Notation:

• We denote it by CMI(m, µ,Q).
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Outline

Distributions

Property:

• The distribution CMI(m, µ,Q) generalizes the multivariate normal

distributions and the Choquet integral based distribution. In addition

◦ A CMI(m, µ,Q) with µ = µ1 corresponds to multivariate normal

distributions,

◦ A CMI(m, µ,Q) with Q = I corresponds to a CI(m, µ).

Vicenç Torra; Choquet integral in decision making and metric learning IUKM 2019 - Nara, Japan 54 / 62



Outline

Distributions

Graphically:

• Choquet integral (CI distribution), Mahalobis distance (multivariate

normal distribution), generalization (CMI distribution)

Mahalanobis
Distance

Choquet 
Integral

Fuzzy measure

Covariance 

Matrix

Weighted

Choquet integral

Weighted mean
Additive measure
Diagonal Matrix

Euclidean

Euclidean
Arithmetic

mean
Uniform 1/n
1/n diag.

Choquet−Mahalanobis distance

Semi−definite positive matrix Fuzzy measure
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Outline

Distributions

1st Example: Interactions only expressed in terms of a measure.

• No correlation exists between the variables.

• CMI with σ1 = 1, σ2 = 1, ρ12 = 0.0, µx = 0.01, µy = 0.01.
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Outline

Distributions

2nd Example: Interactions only in terms of a covariance matrix.

• CMI with σ1 = 1, σ2 = 1, ρ12 = 0.9, µx = 0.10, µy = 0.90.
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Outline

Distributions

3rd Example: Interactions both: covariance matrix and measure.

• CMI with σ1 = 1, σ2 = 1, ρ12 = 0.9, µx = 0.01, µy = 0.01.
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Outline

Distributions

More properties: Data not always acc. normality assumption

◦ spherical, elliptical distributions

◦ They generalize, respectively, N(0, I) and N(m,Σ)
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Distributions

More properties: Data not always acc. normality assumption

◦ spherical, elliptical distributions

◦ They generalize, respectively, N(0, I) and N(m,Σ)

• Neither CMI(m, µ,Q) ⊆ / ⊇ spherical / elliptical distributions.
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Distributions

More properties: Data not always acc. normality assumption

◦ spherical, elliptical distributions

◦ They generalize, respectively, N(0, I) and N(m,Σ)

• Neither CMI(m, µ,Q) ⊆ / ⊇ spherical / elliptical distributions.

Example:

• Non-additive µ: CMI(m, µ,Q) not repr. spherical/elliptical
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Outline

Distributions

More properties: Data not always acc. normality assumption

◦ spherical, elliptical distributions

◦ They generalize, respectively, N(0, I) and N(m,Σ)

• Neither CMI(m, µ,Q) ⊆ / ⊇ spherical / elliptical distributions.

Example:

• Non-additive µ: CMI(m, µ,Q) not repr. spherical/elliptical
• No CMI for the following spherical distribution: Spherical
distribution with density

f(r) = (1/K)e
−
(

r−r0
σ

)2

,

where r0 is a radius over which the density is maximum, σ is a

variance, and K is the normalization constant.

Vicenç Torra; Choquet integral in decision making and metric learning IUKM 2019 - Nara, Japan 59 / 62
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Summary

IUKM 2019 - Nara, Japan 60 / 62



Summary Outline

Summary

Summary:

• Choquet integral and non-additive measures for decision and

reidentification

• Definition of distances based on the Choquet integral

• Comparison with the Mahalanobis distance

• Construction of distributions

• Relationship with multivariate normal and spherical distributions
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Thank you
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