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Introduction

Topic: Aggregation functions

• They are used in decision problems

• To help establishing preferences for different pareto optimal situations
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• Each alternative evaluated in terms of a set of attributes (utilities)
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Introduction

MADM/MCDM: Select the best alternative from a set of alternatives

• Usually a finite set of alternatives (otherwise MODM)

• Each alternative evaluated in terms of a set of attributes (utilities)

Attributes (points of view/criteria) are in contradiction

Example: Decision making

• Criteria to order our car preferences: price, quality, and confort

assign to each car ci ∈ Cars utility values up(ci), uq(ci), uc(ci)

assign importances to each criteria (or subset of criteria)

(and combine values w.r.t. importances to find a global value (and order))

• Contradictory attributes: price vs. quality and confort
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Introduction

Example: Decision making

• Criteria to order our car preferences: price, quality, and confort

assign to each car ci ∈ Cars utility values up(ci), uq(ci), uc(ci)

assign importances to each criteria (or subset of criteria)

(and combine values w.r.t. importances to find a global value (and order))

Example: Ford T, Peugeot 308, Audi A4

up uq uc C

Ford T 0.3 0.7 0.2 C(0.3, 0.7, 0.2)

Peugeot 308 0.7 0.5 0.6 C(0.7, 0.5, 0.6)

Audi A4 0.6 0.8 0.5 C(0.6, 0.8, 0.5)

Vicenç Torra; Aggregation functions København, Danmark, 2013 5 / 58



Motivation > Where Outline

Introduction

MADM/MCDM: Select the best alternative from a set of alternatives

• Select alternatives with large utilities
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Introduction

MADM/MCDM: Select the best alternative from a set of alternatives

• Select alternatives with large utilities

The larger the utility, the better

• However, in some cases, not possible to improve one criteria without

worsening another

• Such solutions define the Pareto set

x1

f1(x2) f1(x1)
f1

f2

f2(x2)

f2(x1)

x2
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• Some functions
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Introduction

Topic: Aggregation functions permit to order different pareto optimal

solutions

• Different aggregation functions lead to different orderings

• Some functions

◦ Arithmetic mean

◦ Weighted mean

◦ Ordered Weighting Averaging Operator

◦ Choquet integral (integral for non-additive measures)

• Example: C
up uq uc C

Ford T 0.3 0.7 0.2 C(0.3, 0.7, 0.2)

Peugeot 308 0.7 0.5 0.6 C(0.7, 0.5, 0.6)
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Aggregation Functions

Aggregation functions

• Weighting vector (dimension N): v = (v1...vN) iff

vi ∈ [0, 1] and
∑

i vi = 1

• Arithmetic mean (AM :RN → R): AM(a1, ..., aN) = (1/N)
∑N

i=1 ai
• Weighted mean (WM: RN → R): WMp(a1, ..., aN) =

∑N

i=1 piai
(p a weighting vector of dimension N)

• Ordered Weighting Averaging operator (OWA: RN → R):

OWAw(a1, ..., aN) =

N
∑

i=1

wiaσ(i),

where {σ(1), ..., σ(N)} is a permutation of {1, ..., N} s. t.

aσ(i−1) ≥ aσ(i), and w a weighting vector.
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Aggregation functions: Arithmetic Mean (AM)

• Level curbes for Pareto Optimal solutions
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Aggregation functions: Weighted Mean (WM)
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Aggregation Operators > Options Outline

Aggregation Functions

Aggregation functions Interpretation of weights

Weights in WM and OWA: p and w

• Multicriteria Decision Making.

p: importance of criteria,

w: degree of compensation

• Fuzzy Constraint Satisfaction Problems.

p: importance of the constraints,

w: degree of compensation

• Robot Sensing (all data, same time instant).

p: reliability of each sensor,

w: importance of small values/outliers

• Robot Sensing (all data, different time instants).

p: more importance to recent data than old one,

w: importance of small values/outliers
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Aggregation Functions

Weighted Ordered Weighted Averaging WOWA operator

(WOWA :RN → R):

WOWAp,w(a1, ..., aN) =
∑N

i=1ωiaσ(i)

where

ωi = w∗(
∑

j≤i pσ(j))− w∗(
∑

j<i pσ(j)),

with σ a permutation of {1, ..., N} s. t. aσ(i−1) ≥ aσ(i), and

w∗ a nondecreasing function that interpolates the points

{(i/N,
∑

j≤iwj)}i=1,...,N ∪ {(0, 0)}.

w∗ is required to be a straight line when the points can be interpolated

in this way.
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Aggregation Functions

WOWA operator

The shape of the function w∗ gives importance

• (a) to large values

• (b) to medium values

• (c) to small values

• (d) equal importance to all values

(a) (b) (c) (d)
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Definitions

Additive measures: (X,A) a measurable space; then, a set function µ

is an additive measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞

(iii) µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) for every countable sequence Ai (i ≥ 1)

of A that is pairwise disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j).

Vicenç Torra; Aggregation functions København, Danmark, 2013 17 / 58



Introduction > Definition Outline

Definitions

Additive measures: (X,A) a measurable space; then, a set function µ

is an additive measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞

(iii) µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) for every countable sequence Ai (i ≥ 1)

of A that is pairwise disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j).

Finite case: µ(A ∪B) = µ(A) + µ(B) for disjoint A, B
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Definitions

Non-additive measures: (X,A) a measurable space, a non-additive

(fuzzy) measure µ on (X,A) is a set function µ : A → [0, 1] satisfying

the following axioms:

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)
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Differences

Non-additive measures vs. additive measures:

• In additive measures: µ(A) =
∑

x∈A px
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Differences

Non-additive measures vs. additive measures:

• Is non-additivity useful ?

Yes

• Why?

some cases represent interactions

◦ µ(A) =
∑

x∈A px (no interaction)
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Differences

Non-additive measures vs. additive measures:

• Is non-additivity useful ?

Yes

• Why?

some cases represent interactions

◦ µ(A) =
∑

x∈A px (no interaction)

◦ µ(A) <
∑

x∈A px (negative interaction)
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Introduction > Differences Outline

Differences

Non-additive measures vs. additive measures:

• Is non-additivity useful ?

Yes

• Why?

some cases represent interactions

◦ µ(A) =
∑

x∈A px (no interaction)

◦ µ(A) <
∑

x∈A px (negative interaction)

◦ µ(A) >
∑

x∈A px (positive interaction)
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Differences

Non-additive measures vs. additive measures:

• Is non-additivity useful ?

Yes

• In our example:
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Introduction > Differences Outline

Differences

Non-additive measures vs. additive measures:

• Is non-additivity useful ?

Yes

• In our example:

◦ µ({price}), µ({quality}), µ({confort})

◦ µ({price, quality}), µ({price, confort}), µ({quality, confort})

◦ µ({price, quality, confort})

Vicenç Torra; Aggregation functions København, Danmark, 2013 21 / 58



Introduction > Number of parameters Outline

Number of parameters

Non-additive measures vs. additive measures:

• How to define an additive measure on X?
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• How to define an additive measure on X?
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Introduction > Number of parameters Outline

Number of parameters

Non-additive measures vs. additive measures:

• How to define an additive measure on X?

One probability value for each element

→ |X| values

• How to define a non-additive measure?

One value for each set

→ 2|X| values
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What can we do with a measure?
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Vicenç Torra; Aggregation functions København, Danmark, 2013 23 / 58



Introduction > What to do? Outline

What can we do with a measure?

Non-additive measures and additive measures:

• Integrate a function f with respect to a measure:

◦ Integral w.r.t. additive measure p

→ expectation:
∑

pxf(x)

−→ Lebesgue integral (continuous case:
∫

fdp)

Vicenç Torra; Aggregation functions København, Danmark, 2013 23 / 58



Introduction > What to do? Outline

What can we do with a measure?

Non-additive measures and additive measures:

• Integrate a function f with respect to a measure:
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→ expectation:
∑
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−→ Lebesgue integral (continuous case:
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◦ Integral w.r.t. non-additive measure µ
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N
∑

i=1
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Introduction > What to do? Outline

What can we do with a measure?

Non-additive measures and additive measures:

• Integrate a function f with respect to a measure:

◦ Integral w.r.t. additive measure p

→ expectation:
∑

pxf(x)

−→ Lebesgue integral (continuous case:
∫

fdp)
◦ Integral w.r.t. non-additive measure µ
→ expectation like

N
∑

i=1

f(xσ(i))[µ(Aσ(i))− µ(Aσ(i−1))]

−→ Choquet integral (continuous case: (C)
∫

fdµ)

The Choquet integral is a Lebesgue integral when the measure is additive
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Choquet integrals

Integral:
∫

fdµ = (for additive measures)

(6.5)
∑

x∈X f(x)µ({x})

(6.6)
∑R

i=1 biµ({x|f(x) = bi})

(6.7)
∑N

i=1(ai − ai−1)µ({x|f(x) ≥ ai})

(6.8)
∑N

i=1(ai − ai−1)
(

1− µ({x|f(x) ≤ ai−1})
)

bi

bi−1

ai

ai−1

bi

bi−1

x1 x1 x1xN xN

x {x|f(x) ≥ ai}{x|f(x) = bi}

(a) (b) (c)

Among (6.5), (6.6) and (6.7), only (6.7) satisfies internality.
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Choquet integrals

Aggregation functions: Choquet integral (CI)

• Level curbes for Pareto Optimal solutions
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Example

Decision making:

Ellsberg paradox (Ellsberg, 1961), an urn, 90 balls ...

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100

• Usual (most people’s) preferences

◦ fB ≺ fR
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Applications > Decision Making Outline

Example

Decision making:

Ellsberg paradox (Ellsberg, 1961), an urn, 90 balls ...

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100

• Usual (most people’s) preferences

◦ fB ≺ fR
◦ fRY ≺ fBY

• No solution exist with additive measures,

but can be solved with non-additive ones
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Distorted Probabilities: introduction

An open question:
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Distorted Probabilities: introduction

An open question:

Non-additive measures vs. additive measures:

How to define a non-additive measure?

One value for each set

→ 2|X| values

A possible solution:

Distorted Probabilities.

• Compact representation of non-additive measures:
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Distorted Probabilities > Introduction Outline

Distorted Probabilities: introduction

An open question:

Non-additive measures vs. additive measures:

How to define a non-additive measure?

One value for each set

→ 2|X| values

A possible solution:

Distorted Probabilities.

• Compact representation of non-additive measures:

◦ Only |X| values (a probability) and a function (distorting function)

Vicenç Torra; Aggregation functions København, Danmark, 2013 29 / 58



Distorted Probabilities > Definition Outline

Distorted Probabilities: Definition

• Representation of a fuzzy measure:

◦ f and P represent a fuzzy measure µ, iff

µ(A) = f(P (A)) for all A ∈ 2X

f a real-valued function, P a probability measure on (X, 2X)

◦ f is strictly increasing w.r.t. a probability measure P iff P (A) <

P (B) implies f(P (A)) < f(P (B))

◦ f is nondecreasing w.r.t. a probability measure P iff P (A) < P (B)

implies f(P (A)) ≤ f(P (B))

Vicenç Torra; Aggregation functions København, Danmark, 2013 30 / 58



Distorted Probabilities > Definition Outline

Distorted Probabilities: Definition

• Representation of a fuzzy measure: distorted probability

◦ f and P represent a fuzzy measure µ, iff

µ(A) = f(P (A)) for all A ∈ 2X

f a real-valued function, P a probability measure on (X, 2X)

◦ f is strictly increasing w.r.t. a probability measure P iff P (A) <

P (B) implies f(P (A)) < f(P (B))

◦ f is nondecreasing w.r.t. a probability measure P iff P (A) < P (B)

implies f(P (A)) ≤ f(P (B))

◦ µ is a distorted probability if µ is represented by a probability

distribution P and a function f nondecreasing w.r.t. a probability P .
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Distorted Probabilities: Definition

• Representation of a fuzzy measure: distorted probability

◦ µ is a distorted probability if µ is represented by a probability

distribution P and a function f nondecreasing w.r.t. a probability P .

• So, for a given reference set X we need:

◦ Probability distribution on X: p(x) for all x ∈ X

◦ Distortion function f on the probability measure: f(P (A))
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The End
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m-dimensional Distorted Probabilities
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m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?

København, Danmark, 2013 35 / 58



m-Dimensional Distorted Probabilities > Definition Outline

m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?

• The number of distorted probabilities.

København, Danmark, 2013 35 / 58
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m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?

• The number of distorted probabilities.

Observe the following

◦ For X = {1, 2, 3}, 2/8 of distorted probabilities.

◦ For larger sets X ...

... the proportion of distorted probabilities decreases rapidly
◦ For µ({1}) ≤ µ({2}) ≤ . . .

|X | Number of possible orderings for Number of possible orderings for
Distorted Probabilities Fuzzy Measures

1 1 1
2 1 1
3 2 8
4 14 70016
5 546 O(1012)
6 215470 –
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m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?

The number of distorted probabilities.

Goal:

• To cover a larger region of the space of fuzzy measures

DP

Unconstrained fuzzy measures

→ (similar to the property of k-additive fuzzy measures)

DP1,X ⊂ DP2,X ⊂ DP3,X · · · ⊂ DP|X|,X
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m-Dimensional Distorted Probabilities

• In distorted probabilities:

◦ One probability distribution

◦ One function f to distort the probabilities

• Extension to:

◦ m probability distributions

◦ One function f to distort/combine the probabilities
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m-Dimensional Distorted Probabilities

• In distorted probabilities:

◦ One probability distribution

◦ One function f to distort the probabilities

• Extension to:

◦ m probability distributions Pi

⋆ Each Pi defined on Xi

⋆ Each Xi is a partition element of X (a dimension)

◦ One function f to distort/combine the probabilities
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m-Dimensional Distorted Probabilities: Example

• Running example:

◦ A fuzzy measure that is not a distorted probability:
µ(∅) = 0 µ({M,L}) = 0.9
µ({M}) = 0.45 µ({P,L}) = 0.9
µ({P}) = 0.45 µ({M,P}) = 0.5
µ({L}) = 0.3 µ({M,P,L}) = 1

◦ Partition on X:

⋆ X1 = {L} (Literary subjects)

⋆ X2 = {M,P} (Scientific Subjects)
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m-Dimensional Distorted Probabilities: Definition

• m-dimensional distorted probabilities.

◦ µ is an at most m dimensional distorted probability if

µ(A) = f(P1(A ∩X1), P2(A ∩X2), · · · , Pm(A ∩Xm))

where,

{X1,X2, · · · ,Xm} is a partition of X,

Pi are probabilities on (Xi, 2
Xi),

f is a function on R
m strictly increasing with respect to the i-th

axis for all i = 1, 2, . . . ,m.

• µ is an m-dimensional distorted probability if it is an at most m

dimensional distorted probability but it is not an at most m − 1

dimensional.
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m-Dimensional Distorted Probabilities: Example

• Running example: a two dimensional distorted probability

µ(A) = f(P1(A ∩ {L}), P2(A ∩ {M,P}))

◦ with partition on X = {M,L, P}
1. Literary subject {L}
2. Science subjects {M,P},

◦ probabilities
1. P1({L}) = 1
2. P2({M}) = P2({P}) = 0.5,

◦ and distortion function f defined by

1 {L} 0.3 0.9 1.0

0 ∅ 0 0.45 0.5

sets ∅ {M}, {P} {M,P}
f ∅ 0.5 1

København, Danmark, 2013 41 / 58



Outline

Distorted Probabilities and Multisets

an approach to define (simple) fuzzy measures on
multisets
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Distorted Probabilities and Multisets

Multisets: elements can appear more than once

• Defined in terms of countM : X → {0} ∪ N

e.g. when X = {a, b, c, d} and M = {a, a, b, b, c, c, c},

countM(a) = 2, countM(b) = 3, countM(c) = 3, countM(d) = 0.

• A and B multisets on X, then

◦ A ⊆ B if and only if countA(x) ≤ countB(x) for all x in X

(used to define submultiset).

◦ A ∪B:

countA∪B(x) = max(countA(x), countB(x)) for all x in X.

◦ A ∩B:

countA∩B(x) = min(countA(x), countB(x)) for all x in X.
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Distorted Probabilities and Multisets

Fuzzy measure on multiset: X a reference set, M a multiset on X s.t.

M 6= ∅; then, the function µ from (M,P(M)) to [0, 1] is a fuzzy

measure if the following holds:

• µ(∅) = 0 and µ(M) = 1

• µ(A) ≤ µ(B) when A ⊆ B and B ⊆ M .
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measure if the following holds:
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Distorted Probabilities and Multisets

Fuzzy measure on multiset: X a reference set, M a multiset on X s.t.

M 6= ∅; then, the function µ from (M,P(M)) to [0, 1] is a fuzzy

measure if the following holds:

• µ(∅) = 0 and µ(M) = 1

• µ(A) ≤ µ(B) when A ⊆ B and B ⊆ M .

How to define fuzzy measures?:

• Even more parameters
∏

x∈X countM(x) !!

We present two alternative (but related) approaches
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Distorted Probabilities and Multisets

1st approach: Definition based on a pseudoadditive integral:
Nondecreasing function-based fuzzy measures

• X a reference set, M a multiset on X and µ a ⊕-decomposable fuzzy measure
on X . Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0 and
f(m(M)) = 1. Then, we define a fuzzy measure ν on P(M) by

νf(A) = f(m(A))

where m is the multiset function m : P(M) → [0,∞) defined by

m(A) = (D)

∫

countAdµ.
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Distorted Probabilities and Multisets

1st approach: Definition based on a pseudoadditive integral:
Nondecreasing function-based fuzzy measures

• X a reference set, M a multiset on X and µ a ⊕-decomposable fuzzy measure
on X . Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0 and
f(m(M)) = 1. Then, we define a fuzzy measure ν on P(M) by

νf(A) = f(m(A))

where m is the multiset function m : P(M) → [0,∞) defined by

m(A) = (D)

∫

countAdµ.

• Rationale of the definition: (C)
∫

χAdµ = µ(A)

• Properties:
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if A ⊆ B by the monotonicity of the integral m(A) ≤ m(B)

→ monotonicity condition of the fuzzy measure fulfilled
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Distorted Probabilities and Multisets

2nd approach: Definition based on prime numbers1:

• Define
n(A) :=

∏

x∈X

φ(x)countA(x),

where φ is an injective function from X to the prime numbers, and let h be a
non-decreasing function from N to [0, 1] satisfying h(1) = 0 and h(n(M)) = 1.
We define the prime number-based fuzzy measure

νφ,h(A) = h(n(A)).

1and using the unique factorization of integers into prime numbers
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Distorted Probabilities and Multisets

2nd approach: Definition based on prime numbers1:

• Define
n(A) :=

∏

x∈X

φ(x)countA(x),

where φ is an injective function from X to the prime numbers, and let h be a
non-decreasing function from N to [0, 1] satisfying h(1) = 0 and h(n(M)) = 1.
We define the prime number-based fuzzy measure

νφ,h(A) = h(n(A)).

Properties:

if A 6= B by the unique factorization n(A) 6= n(B)

if A ⊆ B by the factorization n(A) < n(B)

→ monotonicity condition of the fuzzy measure fulfilled
1and using the unique factorization of integers into prime numbers
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Distorted Probabilities and Multisets

Properties:

• Fuzzy measures based on prime-number are a particular case of the

1st approach
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Distorted Probabilities and Multisets

Properties:

• Fuzzy measures based on prime-number are a particular case of the

1st approach
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fuzzy measures and distorted probabilities
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Distorted Probabilities and Multisets

Properties:

• Fuzzy measures based on prime-number are a particular case of the

1st approach

• Neither the 1st nor the 2nd approach represent all possible fuzzy

measures

• It seems that there is some parallelism between prime-number based

fuzzy measures and distorted probabilities

◦ f and the distortion

◦ φ and the probability distribution

• Can we establish a relationship??
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Results

Properties:

• ν a fuzzy measure according to Approach 1 on a proper finite set

(M,P(M)) = (X, 2X). Then ν is a distorted probability on (X, 2X).
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Results

Properties:

• ν a fuzzy measure according to Approach 1 on a proper finite set

(M,P(M)) = (X, 2X). Then ν is a distorted probability on (X, 2X).

• Same for Approach 2 (primer-number definition)

• This is easy to prove (consists on defining the probability distribution)

• So, Approach 1 and Approach 2 equal to or more general than

distorted probabilities
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Results

Properties:

• Can we prove something else? much more general? almost the same?

exactly the same?
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Results

Properties:

• Can we prove something else? much more general? almost the same?

exactly the same?

Not so surprising theorem: Fuzzy measures based on prime

numbers on proper sets are equivalent to distorted probabilities

→ probabilities and prime numbers play the same role

→
∑

x∈A px and
∏

x∈A φ(x) play the same role

Much more surprising theorem: Fuzzy measures based on

Approach 1 on proper sets are equivalent to distorted probabilities

Surprising corollary: Approach 1 and approach 2 are equivalent.

Proof based on some results on number theory about the existence

of k prime numbers in certain intervals (Bertrand’s postulate).
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Results

An example to satisfy curiosity:

• µ distorted probability p = (0.05, 0.1, 0.2, 0.3, 0.35), g(x) = x2.
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Results

An example to satisfy curiosity:

• µ distorted probability p = (0.05, 0.1, 0.2, 0.3, 0.35), g(x) = x2.

• Representation with prime numbers and appropriate function

φ(x1) = 17 ∈ [16.0, 32.0001]

φ(x2) = 367 ∈ [362.041, 724.081]

φ(x3) = 185369 ∈ [185366.0, 370732.0]

φ(x4) = 94907801 ∈ [9.49078× 107, 1.89816 × 108]

φ(x5) = 2147524151 ∈ [2.14752× 109, 4.29505 × 109]
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m-Dimensional DP for multisets

How to solve the problem that not all fuzzy measures for multisets are

distorted probabilities ?

• Same approach as before: m-dimensional prime number-based fuzzy

measure

DP

Unconstrained fuzzy measures
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m-Dimensional DP for multisets

m-dimensional prime number-based fuzzy measure

• µ is an at most m-dimensional prime number-based fuzzy measure if

µ(A) = f(n1(A ∩X1), . . . , nm(A ∩Xm))

where,

{X1,X2, · · · ,Xm} is a partition of X,

ni(A) =
∏

x∈Xi
φ(x)countA(x) with φi injective functions from Xi

to the prime numbers

f is a strictly increasing function with respect to the i-th axis for all

i = 1, 2, . . . ,m.

µ is an m-dimensional prime number-based fuzzy measure if it is an at

most m dimensional distorted probability but it is not an at most m−1

dimensional.
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m-Dimensional DP for multisets

Properties:

• All fuzzy measures are at most |X|-dimensional prime number-based

fuzzy measures.
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Integral
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Integral

Definition

• Boundary measures:

◦ µ+(A) = A ·M for all A ⊆ X

◦ µ−(A) = A ∩M for all A ⊆ X

• They satisfy:

µ−(A) ≤ µ+(A)

and, therefore,

(C)

∫

fdµ− < (C)

∫

fdµ+
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Summary

Summary:

• Brief justification of the use of non-additive (fuzzy) measures

• Introduction to distorted probabilities

• Extensions

◦ m-dimensional distorted probabilities

◦ Fuzzy measures for multisets

Vicenç Torra; Aggregation functions København, Danmark, 2013 58 / 58


