Kgbenhavn, Danmark, 2013

Aggregation functions for social decision making

Vicenc Torra

torsdag den 17. oktober 2013

Institut d'Investigacié en Intel-ligencia Artificial (I11A-CSIC), Bellaterra


mailto:vtorra@iiia.csic.es

Outline

QOutline

. Introduction

. Aggregation Functions

. Non-additive measures and integrals
. Application (a paradox)

. Distorted Probabilities

. End (p. 33)

Kgbenhavn, Danmark, 2013 1 / 58



Outline

Introduction

Kgbenhavn, Danmark, 2013 2 / 58



Motivation > What Outline

Introduction

Topic: Aggregation functions

e They are used in decision problems

Vicen¢ Torra; Aggregation functions Kgbenhavn, Danmark, 2013 3 / 58



Motivation > What Outline

Introduction
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e They are used in decision problems
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Introduction

MADM/MCDM: Select the best alternative from a set of alternatives

e Usually a finite set of alternatives (otherwise MODM)
e Each alternative evaluated in terms of a set of attributes (utilities)
Attributes (points of view/criteria) are in contradiction

Example: Decision making

e Criteria to order our car preferences: price, quality, and confort
assign to each car ¢; € Cars utility values uy(c;), uqg(ci), ue(c;)
assign importances to each criteria (or subset of criteria)

(and combine values w.r.t. importances to find a global value (and order))

e Contradictory attributes: price vs. quality and confort
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Motivation > Where Outline

Introduction

Example: Decision making

e Criteria to order our car preferences: price, quality, and confort
assign to each car ¢; € Cars utility values w,(c;), ug(ci), ue(c;)
assign importances to each criteria (or subset of criteria)

(and combine values w.r.t. importances to find a global value (and order))

Example: Ford T, Peugeot 308, Audi A4

Up Ug Ue C
Ford T 0.3 0.7 0.2 C(0.3,0.7,0.2)

Peugeot 308 | 0.7 0.5 0.6 | C(0.7,0.5,0.6)
Audi A4 |06 08 05| C(0.6,0.8,0.5)
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Introduction

MADM/MCDM: Select the best alternative from a set of alternatives

e Select alternatives with large utilities
The larger the utility, the better

e However, in some cases, not possible to improve one criteria without
worsening another

e Such solutions define the Pareto set
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Topic: Aggregation functions permit to order different pareto optimal
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e Different aggregation functions lead to different orderings
e Some functions
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Motivation > What? Outline

Introduction

Topic: Aggregation functions permit to order different pareto optimal
solutions

e Different aggregation functions lead to different orderings
e Some functions

o Arithmetic mean

o Weighted mean

o Ordered Weighting Averaging Operator

o Choquet integral (integral for non-additive measures)
e Example: C
Up  Ug  Ue C

Ford T 0.3 0.7 0.2|C(0.3,0.7,0.2)
Peugeot 308 | 0.7 0.5 0.6 | C(0.7,0.5,0.6)

Audi A4 0.6 08 0.5]| C(0.6,0.8,0.5)
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Aggregation Operators > Options Outline

Aggregation Functions

Aggregation functions

e Weighting vector (dimension N): v = (vy...un) iff
c [O, 1] and Zivi =1
e Arithmetic mean (AM :RY — R): AM (aq,...,an) = (1/N) ZZ | Q;
e Weighted mean (WM: RY — R): W M,(a1, ...,aN) = Z;N:lpzaﬂ,,
(p a weighting vector of dimension V)
o Ordered Weighting Averaging operator (OWA: RY — R):

OWA CL1,... sz Ao (7))

where {o(1),...,0(NN)} is a permutation of {1,..., N} s. t.
Us(i—1) = Qo(i), and W a weighting vector.
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Aggregation Functions

Aggregation functions: Arithmetic Mean (AM)

e Level curbes for Pareto Optimal solutions
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Aggregation Functions

Aggregation functions: Weighted Mean (WM)

e Level curbes for Pareto Optimal solutions
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Aggregation Operators > Options

Aggregation Functions

Outline

Aggregation functions Interpretation of weights

Weights in WM and OWA: p and w

e Multicriteria Decision Making.
p: importance of criteria,
w: degree of compensation
e Fuzzy Constraint Satisfaction Problems.
p: importance of the constraints,
w: degree of compensation
e Robot Sensing (all data, same time instant).
p: reliability of each sensor,
w: importance of small values/outliers
e Robot Sensing (all data, different time instants).

p: more importance to recent data than old one,

w: importance of small values/outliers
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Aggregation Operators > Options Outline

Aggregation Functions

Weighted Ordered Weighted Averaging WOWA operator
(WOWA :RY — R):

WOWAp,W(afla e CLN) — Zi\il wiaa(i)
where
wi =W (X <; Po(s) — W (D j<iPos)),

with o a permutation of {1,..., N} s. t. as(;—1) = Gy(;), and
w™ a nondecreasing function that interpolates the points

{(0/N, ) j<iwji) bi=1,... .n U{(0,0)}.

w™ is required to be a straight line when the points can be interpolated
in this way.
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Aggregation Operators > Options Outline

Aggregation Functions

WOWA operator

The shape of the function w* gives importance

e (a) to large values

e (b) to medium values

e (c) to small values

e (d) equal importance to all values

@ (b) (©) (d)

Kgbenhavn, Danmark, 2013 15 / 58



Outline

Non-additive measures and integrals
(Choquet integral)
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Definitions

Additive measures: (X,.4) a measurable space; then, a set function p
Is an additive measure if it satisfies

(i) u(A) >0 forall A€ A,

(i) p(X) < oo

(iii) w(Us2,A;) =2, u(A;) for every countable sequence A; (i > 1)
of A that is pairwise disjoint (i.e,. 4; N A; =0 when i # j).
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Introduction > Definition Outline

Definitions

Additive measures: (X,.4) a measurable space; then, a set function u
Is an additive measure if it satisfies

(i) u(A) >0 forall A€ A,

(i) p(X) < oo

(iii) w(Us2,A;) =2, u(A;) for every countable sequence A; (i > 1)
of A that is pairwise disjoint (i.e,. 4; N A; =0 when i # j).

Finite case: (AU B) = u(A) + u(B) for disjoint A, B
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Introduction > Definition Outline

Definitions

Non-additive measures: (X,.A) a measurable space, a non-additive
(fuzzy) measure 1 on (X, A) is a set function u : A — |0, 1] satisfying
the following axioms:

(i) u(0) =0, u(X) =1 (boundary conditions)
(i) A C B implies u(A) < u(B) (monotonicity)
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Differences

Non-additive measures vs. additive measures:

e In additive measures: u(A) = erApa;
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Introduction > Differences

Differences

Outline

Non-additive measures vs. additive measures:

e In additive measures: u(A) = erAp:c

e In non-additive measures: additivity no longer a constraint

— three cases possible

© :LL(A) — Za:EApCU
O M(A) < erApa:
O M(A) > erApa:

Vicen¢ Torra; Aggregation functions
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Differences

Non-additive measures vs. additive measures:

e |s non-additivity useful ?
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Differences

Non-additive measures vs. additive measures:

e |s non-additivity useful ?
Yes
o \Why?
some cases represent interactions
o (A) = ) ,.ca Pz (no interaction)
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Differences

Non-additive measures vs. additive measures:

e |s non-additivity useful ?
Yes
o \Why?
some cases represent interactions

o (A) = ) ,.ca Pz (no interaction)
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Introduction > Differences

Differences

Outline

Non-additive measures vs. additive measures:

e |s non-additivity useful ?
Yes
o \Why?
some cases represent interactions
o (A) = ) ,.ca Pz (no interaction)
o (A) < ) _.ca Pz (negative interaction)
o u(A) > > 4Dz (positive interaction)

Vicen¢ Torra; Aggregation functions
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Differences

Non-additive measures vs. additive measures:

e |s non-additivity useful ?
Yes
e In our example:
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Introduction > Differences Outline

Differences

Non-additive measures vs. additive measures:

e |s non-additivity useful ?
Yes
e In our example:

o p({price}), u({quality}), p({confort})
o pu({price,quality}), u({price,confort}), u({quality,confort})
o pu({price,quality,confort})
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Number of parameters

Non-additive measures vs. additive measures:

e How to define an additive measure on X7?
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Non-additive measures vs. additive measures:

e How to define an additive measure on X7
One probability value for each element
— | X| values

e How to define a non-additive measure?
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Introduction > Number of parameters

Number of parameters

Outline

Non-additive measures vs. additive measures:

e How to define an additive measure on X7
One probability value for each element
— | X| values

e How to define a non-additive measure?
One value for each set
— 21X values
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What can we do with a measure?
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— expectation: Y p.f(x)
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Introduction > What to do?

What can we do with a measure?

Non-additive measures and additive measures:

e Integrate a function f with respect to a measure:
o Integral w.r.t. additive measure p

— expectation: Y p.f(x)

— Lebesgue integral (continuous case: [ fdp)
o Integral w.r.t. non-additive measure p
— expectation like

— Choquet integral (continuous case: (C) [ fdu)

The Choquet integral is a Lebesgue integral when the measure is additive
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Introduction > What to do? Outline

Choquet integrals

Integral: [ fdu = (for additive measures)

(6.5) erx flz)p({x})

(6.6) >°.° 1 bip({z|f(r) = b})

(6.7) Z (a; —ai—1)p({z|f(z) > ai})

(6.8) Zz (a; —ai—1) (1 — p({z|f(z) < ai—1}))

(a) (b) ()

a; — -
Q-1
TN I x1

) Glf@) =b) (@) = 0}

X

Among (6.5), (6.6) and (6.7), only (6.7) satisfies internality.
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Introduction > What to do? Outline

Choquet integrals

Aggregation functions: Choquet integral (Cl)

e Level curbes for Pareto Optimal solutions
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Applications > Decision Making

Example

Decision making:

Ellsberg paradox (Ellsberg, 1961), an urn, 90 balls ...

Color of balls Red | Black | Yellow
Number of balls | 30 60
fr $ 100 0 0
/B $0 |$100 0
fryY $ 100 0 $ 100
By $0 [$100| %100

e Usual (most people’s) preferences

o fB<[fr
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Applications > Decision Making Outline

Example

Decision making:
Ellsberg paradox (Ellsberg, 1961), an urn, 90 balls ...

Color of balls Red | Black | Yellow
Number of balls | 30 60
fr $ 100 0 0
/B $0 | %100 0
fry $ 100 0 $ 100
fBY $0 |$100| $ 100
e Usual (most people’s) preferences
o B = fr
o fRy < IBY

e No solution exist with additive measures,
but can be solved with non-additive ones
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Distorted Probabilities
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Distorted Probabilities: introduction

An open question:
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Distorted Probabilities: introduction

An open question:

Non-additive measures vs. additive measures:
How to define a non-additive measure?

One value for each set

— 21X1 values

A possible solution:

Distorted Probabilities.

e Compact representation of non-additive measures:
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Distorted Probabilities > Introduction Outline

Distorted Probabilities: introduction

An open question:

Non-additive measures vs. additive measures:
How to define a non-additive measure?

One value for each set

— 21X1 values

A possible solution:

Distorted Probabilities.

e Compact representation of non-additive measures:
o Only | X| values (a probability) and a function (distorting function)

Vicen¢ Torra; Aggregation functions Kgbenhavn, Danmark, 2013 29 / 58



Distorted Probabilities > Definition Outline

Distorted Probabilities: Definition

e Representation of a fuzzy measure:

o f and P represent a fuzzy measure u, iff
w(A) = f(P(A)) for all A € 2

f a real-valued function, P a probability measure on (X, 2%)

o f is strictly increasing w.r.t. a probability measure P iff P(A) <
P(B) implies f(P(4)) < f(P(B))

o f is nondecreasing w.r.t. a probability measure P iff P(A) < P(B)
implies f(P(4)) < f(P(B))
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Distorted Probabilities > Definition Outline

Distorted Probabilities: Definition

e Representation of a fuzzy measure: distorted probability

o f and P represent a fuzzy measure u, iff
w(A) = f(P(A)) for all A € 2

f a real-valued function, P a probability measure on (X, 2%)

o f is strictly increasing w.r.t. a probability measure P iff P(A) <
P(B) implies f(P(4)) < f(P(B))

o f is nondecreasing w.r.t. a probability measure P iff P(A) < P(B)
implies f(P(4)) < f(P(B))

o 1 is a distorted probability if u is represented by a probability
distribution P and a function f nondecreasing w.r.t. a probability P.
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Distorted Probabilities > Definition Outline

Distorted Probabilities: Definition

e Representation of a fuzzy measure: distorted probability
o 1 is a distorted probability if u is represented by a probability
distribution P and a function f nondecreasing w.r.t. a probability P.
e 50, for a given reference set X we need:

o Probability distribution on X: p(x) for all x € X
o Distortion function f on the probability measure: f(P(A))
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The End
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m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?
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m-Dimensional Distorted Probabilities > Definition

Outline

m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?

e The number of distorted probabilities.

Observe the following

o For X ={1,2,3}, 2/8 of distorted probabilities.

o For larger sets X ...

... the proportion of distorted probabilities decreases rapidly

o For pu({1}) < u({2}) < ...

Distorted Probabilities

| X| Number of possible orderings for  Number of possible orderings for

Fuzzy Measures

1
1
2
14
546
215470

SO OB~ WD

1
1
8
70016
O(10%2)
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m-Dimensional Distorted Probabilities > Definition Outline

m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?
The number of distorted probabilities.

Goal:

e [o cover a larger region of the space of fuzzy measures
Unconstrained fuzzy measures
/ )

— (similar to the property of k-additive fuzzy measures)

DPl,X C DPQ)X C DP;),,X-" C DP|X|7X
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m-Dimensional Distorted Probabilities

e In distorted probabilities:

o One probability distribution

o One function f to distort the probabilities
e Extension to:

o m probability distributions
o One function f to distort/combine the probabilities
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m-Dimensional Distorted Probabilities > Definition Outline

m-Dimensional Distorted Probabilities

e In distorted probabilities:

o One probability distribution
o One function f to distort the probabilities

e Extension to:

o m probability distributions P,

*x Each P; defined on X

x Each X is a partition element of X (a dimension)
o One function f to distort/combine the probabilities
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m-Dimensional Distorted Probabilities > Definition Outline

m-Dimensional Distorted Probabilities: Example

e Running example:

o A fuzzy measure that is not a distorted probability:

u(@) =0 p({M, L}) = 0.9
p({M}) =045 p({P,L})=0.9
W({PY) =045 pu({M,P}) =05

p({Ly) =03  p(iM,P L}) =1

o Partition on X:
* X1 ={L} (Literary subjects)

x Xo ={M, P} (Scientific Subjects)
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m-Dimensional Distorted Probabilities > Definition Outline

m-Dimensional Distorted Probabilities: Definition

e m-dimensional distorted probabilities.

o 1 is an at most m dimensional distorted probability if

wA) = f(PL(AN X1), B(AN X3), -+, P(AN X))

where,

{X1, Xs, -+, X,,} is a partition of X,

P; are probabilities on (X, 2%),

f is a function on R™ strictly increasing with respect to the i-th
axis forallt=1,2,...,m.

e /1 is an m-dimensional distorted probability if it is an at most m
dimensional distorted probability but it is not an at most m — 1
dimensional.
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m-Dimensional Distorted Probabilities > Definition Outline

m-Dimensional Distorted Probabilities: Example

e Running example: a two dimensional distorted probability
u(A) = f(PLANAL}), P2(AN{M, P}))

o with partition on X ={M, L, P}
1. Literary subject {L}
2. Science subjects {M, P},
o probabilities
1. PL{L}) =1
2. B,({M}) = P,({P}) =0.5,
o and distortion function f defined by

1|{L} |03 0.9 1.0

0| 0 0 0.45 0.5

sets | 0 {M}, {P} {M,P}
0 0.5 1
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Distorted Probabilities and Multisets

an approach to define (simple) fuzzy measures on
multisets
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Distorted Probabilities and Multisets

Multisets: elements can appear more than once

e Defined in terms of county; : X — {0} UN
e.g. when X ={a,b,c,d} and M = {a,a,b,b,c,c,c},
countyr(a) = 2, county(b) = 3, countys(c) = 3, county(d) = 0.
e A and B multisets on X, then
o A C B if and only if count s(x) < countp(x) for all z in X
(used to define submultiset).
o AU B:
count aup(x) = max(count 4(x), countp(x)) for all z in X.
o AN B:
count anp(x) = min(count 4(x), countp(x)) for all z in X.
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Distorted Probabilities and Multisets

Fuzzy measure on multiset: X a reference set, M a multiset on X s.t.
M # (); then, the function u from (M,P(M)) to [0,1] is a fuzzy
measure if the following holds:

e () =0and u(M) =1
o (A) < u(B) when AC Band B C M.
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Distorted Probabilities and Multisets

Fuzzy measure on multiset: X a reference set, M a multiset on X s.t.
M # (); then, the function u from (M,P(M)) to [0,1] is a fuzzy
measure if the following holds:

e () =0and u(M) =1
o (A) < u(B) when AC Band B C M.

How to define fuzzy measures?:

e Even more parameters | [ .y count () !!

We present two alternative (but related) approaches
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Distorted Probabilities and Multisets

1st approach: Definition based on a pseudoadditive integral:
Nondecreasing function-based fuzzy measures

e X a reference set, M a multiset on X and p a d-decomposable fuzzy measure
on X. Let f:[0,00) — [0,00) be a non-decreasing function with f(0) = 0 and
f(m(M)) = 1. Then, we define a fuzzy measure v on P(M) by

where m is the multiset function m : P(M) — [0, 00) defined by

m(A) = (D)/countAd,u.
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Distorted Probabilities and Multisets

1st approach: Definition based on a pseudoadditive integral:
Nondecreasing function-based fuzzy measures

e X a reference set, M a multiset on X and p a d-decomposable fuzzy measure
on X. Let f:[0,00) — [0,00) be a non-decreasing function with f(0) = 0 and
f(m(M)) = 1. Then, we define a fuzzy measure v on P(M) by

where m is the multiset function m : P(M) — [0, 00) defined by

m(A) = (D)/countAd,u.

e Rationale of the definition: (C) [ xadu = p(A)
e Properties:
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if A C B by the monotonicity of the integral m(A) < m(B)
— monotonicity condition of the fuzzy measure fulfilled
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Distorted Probabilities and Multisets

2nd approach: Definition based on prime numbers':

H QS countA(:U)

reX
where ¢ is an injective function from X to the prime numbers, and let h be a
non-decreasing function from N to [0, 1] satisfying h(1) = 0 and h(n(M)) = 1.
We define the prime number-based fuzzy measure

e Define

ve.n(A) = h(n(A)).

and using the unique factorization of integers into prime numbers
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2nd approach: Definition based on prime numbers':

H QS countA(:U)

reX
where ¢ is an injective function from X to the prime numbers, and let h be a
non-decreasing function from N to [0, 1] satisfying h(1) = 0 and h(n(M)) = 1.
We define the prime number-based fuzzy measure

e Define

ve.n(A) = h(n(A)).

Properties:
if A # B by the unique factorization n(A) # n(B)

if A C B by the factorization n(A) < n(B)
— monotonicity condition of the fuzzy measure fulfilled

and using the unique factorization of integers into prime numbers
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Distorted Probabilities and Multisets

Properties:

e Fuzzy measures based on prime-number are a particular case of the
1st approach
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Distorted Probabilities and Multisets

Properties:

e Fuzzy measures based on prime-number are a particular case of the
1st approach

e Neither the 1st nor the 2nd approach represent all possible fuzzy
measures

e |t seems that there is some parallelism between prime-number based
fuzzy measures and distorted probabilities
o f and the distortion
o ¢ and the probability distribution
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Distorted Probabilities and Multisets

Properties:

e Fuzzy measures based on prime-number are a particular case of the
1st approach

e Neither the 1st nor the 2nd approach represent all possible fuzzy
measures

e |t seems that there is some parallelism between prime-number based
fuzzy measures and distorted probabilities
o f and the distortion
o ¢ and the probability distribution

e Can we establish a relationship??
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Results

Properties:

e v a fuzzy measure according to Approach 1 on a proper finite set
(M,P(M)) = (X,2%). Then v is a distorted probability on (X, 2%).

Kgbenhavn, Danmark, 2013 49 / 58



DP and Multisets > Fuzzy Measure Outline

Results

Properties:

e v a fuzzy measure according to Approach 1 on a proper finite set
(M,P(M)) = (X,2%). Then v is a distorted probability on (X, 2%).
e Same for Approach 2 (primer-number definition)

Kgbenhavn, Danmark, 2013 49 / 58



DP and Multisets > Fuzzy Measure Outline

Results

Properties:

e v a fuzzy measure according to Approach 1 on a proper finite set
(M,P(M)) = (X,2%). Then v is a distorted probability on (X, 2%).

e Same for Approach 2 (primer-number definition)

e This is easy to prove (consists on defining the probability distribution)

Kgbenhavn, Danmark, 2013 49 / 58



DP and Multisets > Fuzzy Measure Outline

Results

Properties:

e v a fuzzy measure according to Approach 1 on a proper finite set
(M,P(M)) = (X,2%). Then v is a distorted probability on (X, 2%).

e Same for Approach 2 (primer-number definition)

e This is easy to prove (consists on defining the probability distribution)

e 50, Approach 1 and Approach 2 equal to or more general than
distorted probabilities
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Results

Properties:

e Can we prove something else? much more general? almost the same?
exactly the same?
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Results

Properties:

e Can we prove something else? much more general? almost the same?
exactly the same?
Not so surprising theorem: Fuzzy measures based on prime
numbers on proper sets are equivalent to distorted probabilities
— probabilities and prime numbers play the same role
— D peaPz and J] ., &(x) play the same role
Much more surprising theorem: Fuzzy = measures based on
Approach 1 on proper sets are equivalent to distorted probabilities
Surprising corollary: Approach 1 and approach 2 are equivalent.

Proof based on some results on number theory about the existence
of k prime numbers in certain intervals (Bertrand’s postulate).
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Results

An example to satisfy curiosity:

e 1 distorted probability p = (0.05,0.1,0.2,0.3,0.35), g(x) = z°.
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Results

An example to satisfy curiosity:

e 1 distorted probability p = (0.05,0.1,0.2,0.3,0.35), g(x) = z°.
e Representation with prime numbers and appropriate function

P(x1) =17 € [16.0,32.0001]

(r2) = 367 € [362.041,724.081]

(x3) = 185369 € [185366.0,370732.0]

(r4) = 94907801 € [9.49078 x 107,1.89816 x 10°]
(x5) = 2147524151 € [2.14752 x 10%,4.29505 x 107]
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m-Dimensional DP for multisets

How to solve the problem that not all fuzzy measures for multisets are
distorted probabilities 7

e Same approach as before: m-dimensional prime number-based fuzzy

Measure
Unconstrained fuzzy measures

4 N
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m-Dimensional DP for multisets

Outline

m-~dimensional prime number-based fuzzy measure

e /i is an at most m-dimensional prime number-based fuzzy measure if
/L(A) — f(nl(A M Xl)a s 7nm(A M X’m))

where,

{X1, Xs, -+, X,,} is a partition of X,

ni(A) = Hwexigb(x)countfl(x) with ¢; injective functions from X;
to the prime numbers

f is a strictly increasing function with respect to the i-th axis for all
1=1,2,...,m.

1t is an m-dimensional prime number-based fuzzy measure if it is an at
most m dimensional distorted probability but it is not an at most m — 1
dimensional.
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m-Dimensional DP for multisets

Properties:

e All fuzzy measures are at most | X |-dimensional prime number-based
fuzzy measures.
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Integral
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Integral

Definition
e Boundary measures:
o ut(A)=A-M forall AC X
opu_(A)=ANM forall AC X
e They satisfy:
p-(A) < p™(A
and, therefore,
)

)
(C)/fdﬂ < (C /fdu+
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Summary

Summary:

e Brief justification of the use of non-additive (fuzzy) measures
e Introduction to distorted probabilities
e Extensions

o m-dimensional distorted probabilities

o Fuzzy measures for multisets

Vicen¢ Torra; Aggregation functions Kgbenhavn, Danmark, 2013 58 / 58



