LiU 2014

Non-additive measures and integrals

Vicenç Torra

March, 2014

* IIIA-CSIC (joint work with Yasuo Narukawa and Michio Sugeno)

Topic. Non-additive measures

- A generalization of additive measures (probabilities)
- Non-additive measures also known as
 - fuzzy measures (Sugeno, 1974),
 - capacities (Choquet, 1954),
 - monotone games (Aumann and Shapley, 1974),
 - premeasures (Šipoš, 1979)

Why are these measures studied?

- Mathematical interest
 - Properties
 - * Equalities and inequalities (e.g. Cauchy-Schwarz type inequalities)
 - * Measures and distances (e.g. entropy/Hellinger)
 - Constructions
 - * Integrals with respect to these measures (e.g. Choquet integral)

Why are these measures studied?

- Applications
 - Some problems that cannot be solved with additive measures can be solved with non-additive measures
 - \star Decision making
 - \star Subjective evaluation
 - * Data fusion (e.g. computer vision)
- \rightarrow a common theme:
 - to take into account interactions
- \rightarrow a common advantage:

more expressive power than with the additive models

1. Introduction

- 2. Some definitions
- 3. Distances (new definitions)
- 4. Properties
- 5. Applications
- 6. Summary

Some definitions

Definitions: measures

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) for every countable sequence A_i (i ≥ 1) of A that is pairwise disjoint (i.e,. A_i ∩ A_j = Ø when i ≠ j)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

Definitions: measures

Additive measures.

(X, A) a measurable space; then, a set function μ is an additive measure if it satisfies
(i) μ(A) ≥ 0 for all A ∈ A,
(ii) μ(X) ≤ ∞
(iii) for every countable sequence A_i (i ≥ 1) of A that is pairwise disjoint (i.e,. A_i ∩ A_j = Ø when i ≠ j)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

Finite case: $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, B

Definitions: measures

Additive measures.

Example:

- Unique measure λ s.t. $\lambda([a,b]) = b-a$ for every finite interval [a,b]
 - \rightarrow the Lebesgue measure

Additive measures.

Example:

- Unique measure λ s.t. $\lambda([a,b])=b-a$ for every finite interval [a,b]
 - \rightarrow the Lebesgue measure
- Probability, if $\mu(X) = 1$.

Non-additive measures.

- (X, \mathcal{A}) a measurable space, a non-additive (fuzzy) measure μ on (X, \mathcal{A}) is a set function $\mu : \mathcal{A} \to [0, 1]$ satisfying the following axioms:
- (i) $\mu(\emptyset) = 0$, $\mu(X) = 1$ (boundary conditions) (ii) $A \subseteq B$ implies $\mu(A) \le \mu(B)$ (monotonicity)

Non-additive measures. Examples. Distorted Lebesgue

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; λ be the Lebesgue measure. The following set function μ_m is a non-additive (fuzzy) measure:

$$\mu_m(A) = m(\lambda(A)) \tag{1}$$

Non-additive measures. Examples. Distorted Lebesgue

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; λ be the Lebesgue measure. The following set function μ_m is a non-additive (fuzzy) measure:

$$\mu_m(A) = m(\lambda(A)) \tag{1}$$

- If $m(x) = x^2$, then $\mu_m(A) = (\lambda(A))^2$
- If $m(x) = x^p$, then $\mu_m(A) = (\lambda(A))^p$

Non-additive measures. Examples. Distorted probabilities

• $m : \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function such that m(0) = 0; P be a probability. The following set function μ_m is a non-additive (fuzzy) measure:

$$\mu_{m,P}(A) = m(P(A)) \tag{2}$$

Unconstrained fuzzy measures

Definitions: integrals

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

Definitions: integrals

Choquet integral (Choquet, 1954):

• μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(C)\int gd\mu := \int_0^\infty \mu_g(r)dr.$$
 (3)

• When the measure is additive, this is the Lebesgue integral

Definitions: integrals

Choquet integral. Discrete version

• μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. $\mu,$

$$(C)\int fd\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})]\mu(A_{s(i)}),$$

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0 \leq f(x_{s(1)}) \leq \cdots \leq f(x_{s(N)}) \leq 1$, and where $f(x_{s(0)}) = 0$ and $A_{s(i)} = \{x_{s(i)}, \dots, x_{s(N)}\}.$

Choquet integral: Example:

• $m: \mathbb{R}^+ \to \mathbb{R}^+$ a continuous and increasing function s.t. m(0) = 0, m(1) = 1; P a probability distribution. μ_m , a non-additive (fuzzy) measure:

$$\mu_m(A) = m(P(A)) \tag{4}$$

• $CI_{\mu_m}(f)$ (a) \rightarrow max, (b) \rightarrow median, (c) \rightarrow min, (d) \rightarrow mean (expectation)

Properties: (X be a reference set)

- Comonotonicity. f and g are comonotonic if, for all $x_i, x_j \in X$, $f(x_i) < f(x_j)$ imply that $g(x_i) \le g(x_j)$
- ${\mathcal I}$ is comonotonic monotone if and only if, for comonotonic f and g,

 $f \leq g \text{ imply that } \mathcal{I}(f) \leq \mathcal{I}(g)$

• $\mathcal I$ is comonotonic additive if and only if, for comonotonic f and g, $\mathcal I(f+g) = \mathcal I(f) + \mathcal I(g)$

Choquet integral. Characterization

- Theorem (Schmeidler, 1986; Narukawa and Murofushi, 2003). Let $\mathcal{I}: [0,1]^n \to \mathbb{R}_+$ be a functional with the following properties
 - $\circ~\mathcal{I}$ is comonotonic monotone
 - $\circ~\mathcal{I}$ is comonotonic additive
 - $\circ \ \mathcal{I}(1,\ldots,1) = 1$

Then, there exists a non-additive measure μ such that $\mathcal{I}(f)$ is the Choquet integral of f with respect to μ .

It is also true that a Choquet integral satisfies the conditions above.

Definitions: properties

Choquet integral. Properties

• Proposition 1. If μ is submodular, then

$$(C)\int (f+g)d\mu \leq (C)\int fd\mu + (C)\int gd\mu.$$

• Proposition 2. If μ is supermodular, then

$$(C)\int (f+g)d\mu \ge (C)\int fd\mu + (C)\int gd\mu.$$

where

 \circ submodular $\mu(A)+\mu(B)\geq \mu(A\cup B)+\mu(A\cap B)$

When adding an element, the smaller the set, the larger the increase

 \circ supermodular $\mu(A) + \mu(B) \leq \mu(A \cup B) + \mu(A \cap B)$

Definitions: properties

Choquet integral. Properties

 \bullet Cauchy-Schwarz inequality: If μ is a submodular non-additive measure; then

$$((C)\int fgd\mu)^2 \le (C)\int f^2d\mu(C)\int g^2d\mu$$

• Another inequality: If μ is a submodular non-additive measure; then

$$((C)\int (f+g)^2d\mu)^{\frac{1}{2}} \le ((C)\int f^2d)^{\frac{1}{2}} + ((C)\int g^2d\mu)^{\frac{1}{2}}$$

Radon-Nikodym derivative: (additive measures)

- Concept: ν absolutely continuous w.r.t. μ (if $\mu(A) = 0$ then $\nu(A) = 0$)
- Theorem. μ and ν two additive measures on (Ω, \mathcal{F}) and μ be σ -finite. If $\nu \ll \mu$, then there exists a nonnegative measurable function f on Ω such that

$$\nu(A) = \int_A f d\mu$$

Radon-Nikodym derivative: (additive measures)

- Concept: ν absolutely continuous w.r.t. μ (if $\mu(A) = 0$ then $\nu(A) = 0$)
- Theorem. μ and ν two additive measures on (Ω, \mathcal{F}) and μ be σ -finite. If $\nu \ll \mu$, then there exists a nonnegative measurable function f on Ω such that

$$\nu(A) = \int_A f d\mu$$

 \rightarrow this permits to define the Radon-Nikodym derivative:

Radon-Nikodym derivative: (additive measures)

- Concept: ν absolutely continuous w.r.t. μ (if $\mu(A) = 0$ then $\nu(A) = 0$)
- Theorem. μ and ν two additive measures on (Ω, \mathcal{F}) and μ be σ -finite. If $\nu \ll \mu$, then there exists a nonnegative measurable function f on Ω such that

$$\nu(A) = \int_A f d\mu$$

 \rightarrow this permits to define the Radon-Nikodym derivative:

 \rightarrow The function f is called the Radon-Nikodym derivative of ν w.r.t. μ , denoted

$$f = \frac{d\nu}{d\mu}.$$

Radon-Nikodym derivative: (additive measures)

- Concept: ν absolutely continuous w.r.t. μ (if $\mu(A) = 0$ then $\nu(A) = 0$)
- Theorem. μ and ν two additive measures on (Ω, \mathcal{F}) and μ be σ -finite. If $\nu << \mu$, then there exists a nonnegative measurable function f on Ω such that

$$\nu(A) = \int_A f d\mu$$

- \rightarrow this permits to define the Radon-Nikodym derivative:
- \rightarrow The function f is called the Radon-Nikodym derivative of ν w.r.t. μ , denoted

$$f = \frac{d\nu}{d\mu}$$

• f may not be unique, but if f_0 and f_1 are both Radon-Nikodym derivatives of ν , then $f_0 = f_1$ almost everywhere μ

Derivative (Choquet integral): (non-additive measures)

• (Ω, \mathcal{F}) a measurable space, $\nu, \mu : \mathcal{F} \to \mathbb{R}^+$ non-additive measures. $\to \nu$ is a Choquet integral of μ if there exists a measurable function $g: \Omega \to \mathbb{R}^+$ s.t. for all $A \in \mathcal{F}$

$$\nu(A) = (C) \int_{A} g d\mu \tag{5}$$

Derivative (Choquet integral): (non-additive measures)

• (Ω, \mathcal{F}) a measurable space, $\nu, \mu : \mathcal{F} \to \mathbb{R}^+$ non-additive measures. $\to \nu$ is a Choquet integral of μ if there exists a measurable function $g: \Omega \to \mathbb{R}^+$ s.t. for all $A \in \mathcal{F}$

$$\nu(A) = (C) \int_{A} g d\mu \tag{5}$$

• μ , ν two non-additive measures. If μ is a Choquet integral of ν , and g is a function such that Equation 5 is satisfied, then

$$d\nu/d\mu = g,$$

 $\rightarrow g$ is a derivative of ν with respect to $\mu.$

 \rightarrow Graf and Sugeno studied conditions of when this derivative exists.

Derivative (Choquet integral): (Proposition 4 in (Sugeno, 2013))

• Let f(t) be a continuous and increasing function with f(0) = 0, let μ_m be a distorted Lebesgue measure, then there exists an increasing (non-decreasing) function g so that $f(t) = (C) \int_{[0,t]} g(\tau) d\mu_m$ and the following holds:

$$G(s) = F(s)/sM(s)$$
(6)

$$g(t) = L^{-1}[F(s)/sM(s)].$$
 (7)

Here, F(s) is the Laplace transformation of f, M the Laplace transformation of m, and G the Laplace transformation of g.

Computation:

- It is possible to compute the Radon-Nikodym derivative (for some examples)
- Computations use the Laplace transformation

Computation (Example): Applying Proposition 4 (Sugeno, 2013), we have $du^{p} = N^{p}(e) = \Gamma(n+1)$

$$L[\frac{d\nu^{p}}{d\mu_{m}}] = \frac{N^{p}(s)}{sM(s)} = \frac{\Gamma(p+1)}{2s^{p-1}}.$$

Then using the inverse Laplace transform on this expression we obtain:

$$\frac{d\nu^{p}}{d\mu_{m}} = L^{-1}\left[\frac{\Gamma(p+1)}{2s^{p-1}}\right] = \frac{\Gamma(p+1)}{2\Gamma(p-1)}t^{p-2}$$
$$= \frac{p(p-1)}{2}t^{p-2}.$$

f-divergence for non-additive measures

Given: P, Q two probabilities a.c. w.r.t. a prob. ν .

 $\bullet~f\mbox{-divergence}$ between P and Q w.r.t. ν

$$D_{f,\nu}(P,Q) = \int \frac{dQ}{d\nu} f\left(\frac{dP/d\nu}{dQ/d\nu}\right) d\nu$$

f-Divergence and distances

Examples of *f*-divergence between *P* and *Q* w.r.t. ν

$$D_{f,\nu}(P,Q) = \int \frac{dQ}{d\nu} f\left(\frac{dP/d\nu}{dQ/d\nu}\right) d\nu$$

Some particular distances

• Hellinger distance when $f(x) = (1 - \sqrt{x})^2$,

$$H(P,Q) = \sqrt{\frac{1}{2} \int \left(\sqrt{\frac{dP}{d\nu}} - \sqrt{\frac{dQ}{d\nu}}\right)^2 d\nu}$$

Here $dP/d\nu$ and $dQ/d\nu$ are the Radon-Nikodym derivatives • Variation distance when f(x) = |x - 1|,

$$\delta(P,Q) = \frac{1}{2} \int \left| \frac{dP}{d\nu} - \frac{dP}{d\nu} \right| d\nu$$

• Kullback-Leibler, Rényi distance, χ^2 -distance

f-Divergence: non-additive measures

Definition:

• μ_1 , μ_2 two non-additive measures that are Choquet integrals of ν . The *f*-divergence between μ_1 and μ_2 with respect to ν is defined as

$$D_{f,\nu}(\mu_1,\mu_2) = (C) \int \frac{d\mu_2}{d\nu} f\left(\frac{d\mu_1/d\nu}{d\mu_2/d\nu}\right) d\nu$$

Here $d\mu_1/d\nu$ and $d\mu_2/d\nu$ are the derivatives of μ_1 and μ_2 .

f-Divergence and Hellinger distance: non-additive measures

Definition:

• μ_1 , μ_2 two non-additive measures that are Choquet integrals of ν . The Hellinger distance between μ_1 and μ_2 with respect to ν is defined as

$$H_{\nu}(\mu_1,\mu_2) = \sqrt{\frac{1}{2}(C) \int \left(\sqrt{\frac{d\mu_1}{d\nu}} - \sqrt{\frac{d\mu_2}{d\nu}}\right)^2 d\nu}$$

Here $d\mu_1/d\nu$ and $d\mu_2/d\nu$ are the derivatives of μ_1 and μ_2 .
f-Divergence and variation distance: non-additive measures

Definition:

• μ_1 , μ_2 two non-additive measures that are Choquet integrals of ν . The Variation distance between μ_1 and μ_2 with respect to ν is defined as

$$\delta_{\nu}(\mu_{1},\mu_{2}) = \frac{1}{2}(C) \int \left| \frac{d\mu_{1}}{d\nu} - \frac{d\mu_{2}}{d\nu} \right| d\nu$$

Here $d\mu_1/d\nu$ and $d\mu_2/d\nu$ are the derivatives of μ_1 and μ_2 .

Properties:

• Proper generalization?

- Proper generalization?
- Yes: Let ν , μ_1 , μ_2 be three additive measures such that μ_1 and μ_2 are absolutely continuous with respect to ν . Then, $D_{f,\nu}(\mu_1, \mu_2)$ is the standard f-divergence.

- Proper generalization?
- Yes: Let ν , μ_1 , μ_2 be three additive measures such that μ_1 and μ_2 are absolutely continuous with respect to ν . Then, $D_{f,\nu}(\mu_1, \mu_2)$ is the standard f-divergence.
- Also, $H_{\nu}(\mu_1,\mu_2)$ and $\delta_{\nu}(\mu_1,\mu_2)$ are the Hellinger distance and the variation distance

- Proper generalization?
- Yes: Let ν , μ_1 , μ_2 be three additive measures such that μ_1 and μ_2 are absolutely continuous with respect to ν . Then, $D_{f,\nu}(\mu_1, \mu_2)$ is the standard f-divergence.
- Also, $H_{\nu}(\mu_1,\mu_2)$ and $\delta_{\nu}(\mu_1,\mu_2)$ are the Hellinger distance and the variation distance
- $D_{f,\nu}(\mu_1,\mu_2)$ with appropriate f (i.e., $f(x) = (1 \sqrt{x})^2$ and f(x) = |x 1|) correspond to Hellinger and variation distance. I.e.,

- Proper generalization?
- Yes: Let ν , μ_1 , μ_2 be three additive measures such that μ_1 and μ_2 are absolutely continuous with respect to ν . Then, $D_{f,\nu}(\mu_1, \mu_2)$ is the standard f-divergence.
- Also, $H_{\nu}(\mu_1,\mu_2)$ and $\delta_{\nu}(\mu_1,\mu_2)$ are the Hellinger distance and the variation distance
- $D_{f,\nu}(\mu_1,\mu_2)$ with appropriate f (i.e., $f(x) = (1 \sqrt{x})^2$ and f(x) = |x 1|) correspond to Hellinger and variation distance. I.e.,

$$\sqrt{\frac{1}{2}} D_{f,\nu}(\mu_1,\mu_2) = H_{\nu}(\mu_1,\mu_2).$$
$$\frac{1}{2} D_{f,\nu}(\mu_1,\mu_2) = \delta_{\nu}(\mu_1,\mu_2).$$

Properties:

• Distance?

- Distance?
 - *f*-divergence is not a distance for additive measures
 (it is not symmetric, it does not no satisfy triangle inequality)

- Distance?
 - *f*-divergence is not a distance for additive measures
 (it is not symmetric, it does not no satisfy triangle inequality)
 - Hellinger distance, variation distance are distances.
 (satisfy positiveness, symmetry, and triangular inequality)

- Distance?
 - *f*-divergence is not a distance for additive measures
 (it is not symmetric, it does not no satisfy triangle inequality)
 - Hellinger distance, variation distance are distances.
 (satisfy positiveness, symmetry, and triangular inequality)
- So, we only consider distance for Hellinger and variation distance

Properties:

- Distance?
 - Positiveness: $D_{f,\nu}(\mu_1,\mu_2) = 0$ if $\mu_1 = \mu_2$.

So, Hellinger and variation distance are positive

- Distance?
 - Positiveness: $D_{f,\nu}(\mu_1, \mu_2) = 0$ if $\mu_1 = \mu_2$. So, Hellinger and variation distance are positive
 - Symmetry: Hellinger and variation symmetric by definition

Properties:

- Distance?
 - Positiveness: $D_{f,\nu}(\mu_1,\mu_2) = 0$ if $\mu_1 = \mu_2$.
 - So, Hellinger and variation distance are positive
 - Symmetry: Hellinger and variation symmetric by definition
 - Triangular inequality:
 - \star If ν is submodular, then we have

 $H_{\nu}(\mu_1,\mu_2) + H_{\nu}(\mu_2,\mu_3) \ge H_{\nu}(\mu_1,\mu_3).$

Properties:

- Distance?
 - Positiveness: $D_{f,\nu}(\mu_1, \mu_2) = 0$ if $\mu_1 = \mu_2$. So, Hellinger and variation distance are positive
 - Symmetry: Hellinger and variation symmetric by definition
 - Triangular inequality:
 - \star If ν is submodular, then we have

$$H_{\nu}(\mu_1,\mu_2) + H_{\nu}(\mu_2,\mu_3) \ge H_{\nu}(\mu_1,\mu_3).$$

 \star Also, if ν is submodular, then we have

$$\delta_{\nu}(\mu_1, \mu_2) + \delta_{\nu}(\mu_2, \mu_3) \ge \delta_{\nu}(\mu_1, \mu_3).$$

Properties:

- Triangular inequality. Proof
 - Proof of triangular inequality for Hellinger distance comes from (seen above)

$$((C)\int (f+g)^2 d\mu)^{\frac{1}{2}} \le ((C)\int f^2 d)^{\frac{1}{2}} + ((C)\int g^2 d\mu)^{\frac{1}{2}}$$

 Proof of triangular inequality for variation distance comes from (seen above)

$$(C)\int (f+g)d\mu \le (C)\int fd\mu + (C)\int gd\mu.$$

Properties:

• Triangular inequality Hellinger distance. Proof

$$\begin{aligned} H_{\nu}(\mu_{1},\mu_{2}) + H_{\nu}(\mu_{2},\mu_{3}) &= \left\{ \frac{1}{2}(C) \int \left(\sqrt{\frac{d\mu_{1}}{d\nu}} - \sqrt{\frac{d\mu_{2}}{d\nu}} \right)^{2} d\nu \right\}^{1/2} + \left\{ \frac{1}{2}(C) \int \left(\sqrt{\frac{d\mu_{3}}{d\nu}} - \sqrt{\frac{d\mu_{3}}{d\nu}} \right)^{2} d\nu \right\}^{1/2} \\ &\geq \left\{ \frac{1}{2}(C) \int \left(\sqrt{\frac{d\mu_{1}}{d\nu}} - \sqrt{\frac{d\mu_{2}}{d\nu}} \right)^{2} + \left(\sqrt{\frac{d\mu_{3}}{d\nu}} - \sqrt{\frac{d\mu_{3}}{d\nu}} \right)^{2} d\nu \right\}^{1/2} \\ &= \left\{ \frac{1}{2}(C) \int \left(\sqrt{\frac{d\mu_{1}}{d\nu}} - \sqrt{\frac{d\mu_{3}}{d\nu}} \right)^{2} + \left(\sqrt{\frac{d\mu_{3}}{d\nu}} - \sqrt{\frac{d\mu_{2}}{d\nu}} \right)^{2} d\nu \right\}^{1/2} \\ &\geq \left\{ \frac{1}{2}(C) \int \left(\sqrt{\frac{d\mu_{1}}{d\nu}} - \sqrt{\frac{d\mu_{3}}{d\nu}} \right)^{2} d\nu \right\}^{1/2} \\ &= H_{\nu}(\mu_{1},\mu_{3}) \end{aligned}$$

Properties:

• Triangular inequality variation distance. Proof

$$\begin{split} \delta_{\nu}(\mu_{1},\mu_{2}) + \delta_{\nu}(\mu_{2},\mu_{3}) &= \frac{1}{2}(C) \int \left| \frac{d\mu_{1}}{d\nu} - \frac{d\mu_{2}}{d\nu} \right| d\nu + \frac{1}{2}(C) \int \left| \frac{d\mu_{2}}{d\nu} - \frac{d\mu_{3}}{d\nu} \right| d\nu \\ &\geq \frac{1}{2}(C) \int \left(\left| \frac{d\mu_{1}}{d\nu} - \frac{d\mu_{2}}{d\nu} \right| + \left| \frac{d\mu_{2}}{d\nu} - \frac{d\mu_{3}}{d\nu} \right| \right) d\nu \\ &\geq \frac{1}{2}(C) \int \left| \frac{d\mu_{1}}{d\nu} - \frac{d\mu_{3}}{d\nu} \right| d\nu \\ &= \delta_{\nu}(\mu_{1},\mu_{3}) \end{split}$$

Properties:

• Distance?

- Distance?
 - $\circ\,$ If ν is submodular, Hellinger distance is a distance.
 - $\circ\,$ If ν is submodular, Variation distance is a distance.

Example: Computation of a Hellinger distance between two distorted Lebesgue measures w.r.t. a third one

Example: Computation of a Hellinger distance between two distorted Lebesgue measures w.r.t. a third one

• Measures:

Example: Computation of a Hellinger distance between two distorted Lebesgue measures w.r.t. a third one

- Measures:
 - $\circ \ \mu_m$ be the distorted Lebesgue measure with $m(t)=t^2$,
 - ν^p be the distorted Lebesgue measure with $n^p(t) = t^p$ (i.e., $\nu^p(A) = (\lambda(A))^p$ for $p \ge 2$, and $\nu^p([0, t]) = t^p$)

Example: Computation of a Hellinger distance between two distorted Lebesgue measures w.r.t. a third one

- Measures:
 - $\circ \ \mu_m$ be the distorted Lebesgue measure with $m(t)=t^2$,
 - ν^p be the distorted Lebesgue measure with $n^p(t) = t^p$ (i.e., $\nu^p(A) = (\lambda(A))^p$ for $p \ge 2$, and $\nu^p([0,t]) = t^p$)
- Computation: Hellinger distance between ν^2 and ν^p w.r.t. μ_m .

Example: Computation of a Hellinger distance between two distorted Lebesgue measures w.r.t. a third one

- Measures:
 - $\circ \ \mu_m$ be the distorted Lebesgue measure with $m(t)=t^2$,
 - ν^p be the distorted Lebesgue measure with $n^p(t) = t^p$ (i.e., $\nu^p(A) = (\lambda(A))^p$ for $p \ge 2$, and $\nu^p([0,t]) = t^p$)
- Computation: Hellinger distance between ν^2 and ν^p w.r.t. μ_m .

$$H_{\mu_m}(\nu^2, \nu^p) = \sqrt{\frac{1}{2}(C) \int_0^1 \left(\sqrt{\frac{d\nu^2}{\mu_m}} - \sqrt{\frac{d\nu^p}{\mu_m}}\right)^2 d\mu_m}$$

(8)

Example (II): Hellinger distance between ν^2 and ν^p w.r.t. μ_m where distortions are $n^p(t) = t^p$ and $m(t) = t^2$.

• Recall (from a previous example) that

$$\frac{d\nu^p}{d\mu_m} = \frac{p(p-1)}{2}t^{p-2}$$

Hellinger Distance

Hellinger distance: properties

Example (II): Hellinger distance between ν^2 and ν^p w.r.t. μ_m where distortions are $n^p(t) = t^p$ and $m(t) = t^2$.

• Recall (from a previous example) that

$$\frac{d\nu^p}{d\mu_m} = \frac{p(p-1)}{2}t^{p-2}$$

• Computation (with more Choquet integral – and Laplace transforms):

$$H_{\mu m}(\nu^{2},\nu^{p}) = \sqrt{\frac{1}{2}(C) \int_{0}^{1} \left(\sqrt{\frac{d\nu^{2}}{\mu_{m}}} - \sqrt{\frac{d\nu^{p}}{\mu_{m}}}\right)^{2} d\mu_{m}}$$
$$= \sqrt{\frac{1}{2}(C) \int_{0}^{1} \left(1 - \sqrt{\frac{p(p-1)}{2}} t^{(p-2)/2}\right)^{2} d\mu_{m}} \qquad (9)$$
$$= \sqrt{1 - \frac{4\sqrt{2p(p-1)}}{(p+2)p}} \qquad (10)$$

Example 2:

- $\mu_{m'}$ be the distorted Lebesgue measure with m'(t) = t.
- ν^p be the distorted Lebesgue measure with $n(t) = t^p$ (i.e., $\nu^p(A) = (\lambda(A))^p$ for $p \ge 2$, and $\nu^p([0,t]) = t^p$)
- Compute the Hellinger distance between ν^2 and ν^p w.r.t. $\mu_{m'}$. Only difference from Example 1 is $\mu_{m'}$

Example 2: Hellinger distance between ν^2 and ν^p w.r.t. μ_m where distortions are $n^p(t) = t^p$ and m(t) = t.

• First,

$$\frac{d\nu^p}{d\mu_{m'}} = pt^{p-1}$$

Example 2: Hellinger distance between ν^2 and ν^p w.r.t. μ_m where distortions are $n^p(t) = t^p$ and m(t) = t.

• First,

$$\frac{d\nu^p}{d\mu_{m'}} = pt^{p-1}$$

• Computation (with more Choquet integral – and Laplace transforms):

$$H_{\mu_{m'}}(\nu^{2},\nu^{p}) = \sqrt{\frac{1}{2}(C) \int_{0}^{1} \left(\sqrt{\frac{d\nu^{2}}{\mu_{m}}} - \sqrt{\frac{d\nu^{p}}{\mu_{m}}}\right)^{2} d\mu_{m}}$$
$$= \sqrt{\frac{1}{2}(C) \int_{0}^{1} \left(\sqrt{2t} - \sqrt{pt^{p-1}}\right)^{2} d\mu_{m}} \quad (11)$$
$$= \sqrt{1 - \frac{2\sqrt{2p}}{p+2}} \quad (12)$$

Properties:

• Compare:

$$H_{\mu_m}(\nu^2, \nu^p) = \sqrt{1 - \frac{4\sqrt{2p(p-1)}}{(p+2)p}}$$
$$H_{\mu_{m'}}(\nu^2, \nu^p) = \sqrt{1 - \frac{2\sqrt{2p}}{p+2}}$$
(13)

• The Hellinger distance depends on μ_m

Properties:

• Compare:

$$H_{\mu_m}(\nu^2, \nu^p) = \sqrt{1 - \frac{4\sqrt{2p(p-1)}}{(p+2)p}}$$
$$H_{\mu_{m'}}(\nu^2, \nu^p) = \sqrt{1 - \frac{2\sqrt{2p}}{p+2}}$$
(13)

• The Hellinger distance depends on μ_m Different for additive measures: $H_{\nu}(\mu_1, \mu_2)$ is independent of ν .

Properties related to the previous example:

When
$$p \to \infty$$
,
 $H_{\mu_m}(\nu^2, \nu^p) = 1$ and $H_{\mu_{m'}}(\nu^2, \nu^p) = 1$.

Both $H_{\mu_m}(\nu^2, \nu^p)$ and $H_{\mu_{m'}}(\nu^2, \nu^p)$ are increasing w.r.t. p>2, and the following holds

- $H_{\mu_m}(\nu^2, \nu^p) \in [0, 1]$ for all $p \ge 2$,
- $H_{\mu_{m'}}(\nu^2, \nu^p) \in [0, 1]$ for all $p \ge 2$.

Properties:

• Conjugate of the measure, same distance ?

- Conjugate of the measure, same distance ?
 - \circ Recall that conjugate of a measure: $\mu^c(A) = 1 \mu_m(X \setminus A)$

Properties:

• Conjugate of the measure, same distance ?
- Conjugate of the measure, same distance ?
 - First question, which conjugate in $H_{\nu}(\mu_1, \mu_2)$?

Properties:

• Conjugate of the measure, same distance ?

• First question, which conjugate in $H_{\nu}(\mu_1, \mu_2)$?

*
$$H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu}(\mu_1^c, \mu_2^c)$$

* $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu^c}(\mu_1^c, \mu_2^c)$
where $\mu^c(A) = 1 - \mu(X \setminus A)$

Properties:

- Conjugate of the measure, same distance ?
 - First question, which conjugate in $H_{\nu}(\mu_1, \mu_2)$?

$$H_{\nu}(\mu_{1},\mu_{2}) = (?)H_{\nu}(\mu_{1}^{c},\mu_{2}^{c})$$

$$H_{\nu}(\mu_{1},\mu_{2}) = (?)H_{\nu^{c}}(\mu_{1}^{c},\mu_{2}^{c})$$

$$\text{where } \mu^{c}(A) = 1 - \mu(X \setminus A)$$

• Partial answers:

- Conjugate of the measure, same distance ?
 - First question, which conjugate in $H_{\nu}(\mu_1, \mu_2)$?
 - * $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu}(\mu_1^c, \mu_2^c)$ * $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu^c}(\mu_1^c, \mu_2^c)$ where $\mu^c(A) = 1 - \mu(X \setminus A)$
- Partial answers:
 - $\circ\,$ Dual of Distorted Lebesgue is Distorted Lebesgue $\mu^c(A) = 1 \mu_m(X \setminus A) = 1 m(1-x)$

- Conjugate of the measure, same distance ?
 - First question, which conjugate in $H_{\nu}(\mu_1, \mu_2)$?
 - * $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu}(\mu_1^c, \mu_2^c)$ * $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu^c}(\mu_1^c, \mu_2^c)$ where $\mu^c(A) = 1 - \mu(X \setminus A)$
- Partial answers:
 - $\circ\,$ Dual of Distorted Lebesgue is Distorted Lebesgue $\mu^c(A) = 1 \mu_m(X \setminus A) = 1 m(1-x)$
 - If ν is submodular, ν^c is supermodular So, $H_{\nu}(\mu_1, \mu_2)$ is a distance but $H_{\nu^c}(\mu_1^c, \mu_2^c)$ is not

- Conjugate of the measure, same distance ?
 - First question, which conjugate in $H_{\nu}(\mu_1, \mu_2)$?
 - * $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu}(\mu_1^c, \mu_2^c)$ * $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu^c}(\mu_1^c, \mu_2^c)$ where $\mu^c(A) = 1 - \mu(X \setminus A)$
- Partial answers:
 - \circ Dual of Distorted Lebesgue is Distorted Lebesgue $\mu^c(A) = 1 \mu_m(X \setminus A) = 1 m(1-x)$
 - If ν is submodular, ν^c is supermodular So, $H_{\nu}(\mu_1, \mu_2)$ is a distance but $H_{\nu^c}(\mu_1^c, \mu_2^c)$ is not Therefore, only $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu}(\mu_1^c, \mu_2^c)$ makes sense

Outline

Hellinger distance: properties

Properties:

- Conjugate of the measure, same distance ?
 - First question, which conjugate in $H_{\nu}(\mu_1, \mu_2)$?

$$H_{\nu}(\mu_{1}, \mu_{2}) = (?)H_{\nu}(\mu_{1}^{c}, \mu_{2}^{c})$$

$$H_{\nu}(\mu_{1}, \mu_{2}) = (?)H_{\nu^{c}}(\mu_{1}^{c}, \mu_{2}^{c})$$
where $\mu^{c}(A) = 1 - \mu(X \setminus A)$

- Partial answers:
 - \circ Dual of Distorted Lebesgue is Distorted Lebesgue $\mu^c(A) = 1 \mu_m(X \setminus A) = 1 m(1 x)$
 - $\circ\,$ If ν is submodular, ν^c is supermodular
 - So, $H_{
 u}(\mu_1,\mu_2)$ is a distance but $H_{
 u^c}(\mu_1^c,\mu_2^c)$ is not

Therefore, only $H_{\nu}(\mu_1, \mu_2) = (?)H_{\nu}(\mu_1^c, \mu_2^c)$ makes sense

- This case, difficult (work in progress)
 - E.g., if $m(x) = x^2$, then $m^c(x) = 2x x^2$.

Some definitions (II): The Sugeno integral

Definitions: integrals

Sugeno integral (Sugeno, 1974):

• μ a non-additive measure, g a measurable function. The Sugeno integral of g w.r.t. μ , where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$(S) \int g d\mu := \sup_{r \in [0,1]} [r \wedge \mu_g(r)].$$
 (14)

Definitions: integrals

Sugeno integral. Discrete version

• μ a non-additive measure, f a measurable function. The Sugeno integral of f w.r.t. $\mu,$

$$(S) \int f d\mu = \max_{i=1,N} \min(f(x_{s(i)}), \mu(A_{s(i)})),$$

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0 \le f(x_{s(1)}) \le ... \le f(x_{s(N)}) \le 1$ and $A_{s(i)} = \{x_{s(i)}, ..., x_{s(N)}\}.$

Properties: (X a reference set, a a value in [0, 1])

- f, g functions $f, g: X \to [0, 1]$. Then,
 - $\circ \ \mathcal{I}$ is minimum homogeneous if and only if, for comonotonic f and g,

$$\mathcal{I}(a \wedge f) = a \wedge \mathcal{I}(f)$$

 $\circ~\mathcal{I}$ is comonotonic maxitive if and only if, for comonotonic f and g, $\mathcal{I}(f\vee g)=\mathcal{I}(f)\vee\mathcal{I}(g)$

Characterization of the Sugeno integral

- Theorem (Ralescu and Sugeno, 1996; Marichal, 2000; Benvenuti and Mesiar, 2000). Let $\mathcal{I}: [0,1]^n \to \mathbb{R}_+$ be a functional with the following properties
 - $\circ~\mathcal{I}$ is comonotonic monotone
 - $\circ~\mathcal{I}$ is comonotonic maxitive
 - $\circ~\mathcal{I}$ is minimum homogeneous
 - $\circ \ \mathcal{I}(1,\ldots,1) = 1$

Then, there exists a fuzzy measure μ such that $\mathcal{I}(f)$ is the Sugeno integral of f with respect to μ .

Applications

Aggregation operators

Independence.

- Choquet integral and Mahalanobis distance
 - Mahalanobis: covariance matrix
 - Choquet integral: fuzzy measure
- In a single framework: Mahalanobis and Choquet *distance*

Aggregation operators

Independence.

- Choquet integral and Mahalanobis distance
 - Mahalanobis: covariance matrix
 - Choquet integral: fuzzy measure
- A generalization: Choquet-Mahalanobis distance/distribution

Record Linkage

Record Linkage:

Record Linkage

Record Linkage:

$Minimize \sum_{i=1}^{N} K_i$	(15)
Subject to:	
$CI_{\mu}(d(V_1(a_i), V_1(b_j)), \dots, d(V_n(a_i), V_n(b_j))) -$	
$-CI_{\mu}(d(V_1(a_i), V_1(b_i)), \dots, d(V_n(a_i), V_n(b_i))) + CK_i > 0$	orall i orall j (16)
$K_i \in \{0, 1\}$	(17)
$\mu(A) \in [0,1]$	(18)
$\mu(A) \leq \mu(B) \forall A, B \ s.t. \ A \subseteq B \subseteq X$	(19)

Decision:

- Different alternatives
- Users have preferences (an order on the alternatives \prec)
- GOAL: We want to model these preferences (to model \prec)

Decision under certainty

Decision under certainty. Multicriteria decision making

- Alternatives expressed in terms of utility functions
- Select best alternative by:

Step 1. Aggregate utilities: Choquet integral for non-independenceStep 2. Rank according to aggregated utilities

Decision under uncertainty

Decision under uncertainty.

 Decision theory based on probability and utility functions to model lack of knowledge (Savage, 1954; Ramsey and von Neumann):
 classical/subjective expected utility

Decision under uncertainty

Decision under uncertainty.

- Decision theory based on probability and utility functions to model lack of knowledge (Savage, 1954; Ramsey and von Neumann):
 classical/subjective expected utility
- Ellsberg paradox: people behave differently than the model!!
 - $\circ\,$ Ellsberg paradox violates the postulates of the theory
 - Alternative model based on non-additive (fuzzy) measures

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? $(f_R, f_B, ...)$

Color of balls	Red	Black	Yellow
Number of balls	30	60	
f_R	\$ 100	0	0
f_B	\$ 0	\$ 100	0
f_{RY}	\$ 100	0	\$ 100
f_{BY}	\$ 0	\$ 100	\$ 100

- How we model ≺ with classical expected utility ?
 - \circ a (finite) state space S (options = the balls)
 - \circ a (finite) set of outcomes X (*benefits* = the money)

- How we model ≺ with classical expected utility ?
 - \circ a (finite) state space S (options = the balls)
 - \circ a (finite) set of outcomes X (*benefits* = the money)
 - \circ P be a probability measure on (X, \mathcal{A}, P) (P on the balls)
 - $\circ u: X \to \mathbb{R}^+$ be a utility function (utility of the money)

- How we model ≺ with classical expected utility ?
 - \circ a (finite) state space S (options = the balls)
 - \circ a (finite) set of outcomes X (*benefits* = the money)
 - P be a probability measure on (X, \mathcal{A}, P) (P on the balls)
 - $\circ u: X \to \mathbb{R}^+$ be a utility function (utility of the money)
 - \circ a function from S to X (an act), \mathcal{F} the set of acts (the alternatives).
 - \circ User preferences on $\mathcal{F} = \{f | f: S \rightarrow X\}$ denoted by \prec

- How we model ≺ with classical expected utility ?
 - \circ a (finite) state space S (options = the balls)
 - \circ a (finite) set of outcomes X (*benefits* = the money)
 - \circ P be a probability measure on (X, \mathcal{A}, P) (P on the balls)
 - $\circ u: X \to \mathbb{R}^+$ be a utility function (utility of the money)
 - \circ a function from S to X (an act), \mathcal{F} the set of acts (the alternatives).
 - \circ User preferences on $\mathcal{F} = \{f | f : S \to X\}$ denoted by \prec
 - $\circ \prec$ is represented by P and u when (user preference model)

E(u(f)) < E(u(g)) if and only if $f \prec g$

where

$$E(u(f)) = \sum_{s \in S} u(f(s))P(\{s\}) = \sum_{x \in X} u(x)P(f^{-1}(x)).$$

- Computation of the expected utility for a particular act (alternative)
 - $S = \{Red, Black, Yellow\}$ • $f_{RY} = (0 \text{ for a Black, } 100 \text{ for Red, and } for Yellow)$

$$E(u(f_{RY})) = u(0)P(f^{-1}(0)) + u(100)P(f^{-1}(100))$$

= $u(0)P(\{B\}) + u(100)P(\{Y,R\})$
= $u(0)P(\{B\}) + u(100)P(\{Y\}) + u(100)P(\{R\})$

• Problem. Given a player, and preferences \prec , determine *P* and *u* • E.g., *P*(*x*) = 1/3 and *u*(*x*) = *x*.

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? $(f_R, f_B, ...)$

Color of balls	Red	Black	Yellow
Number of balls	30	60	
f_R	\$ 100	0	0
f_B	\$ 0	\$ 100	0
f_{RY}	\$ 100	0	\$ 100
f_{BY}	\$ 0	\$ 100	\$ 100

Most people prefer

$$\circ f_B \prec f_R$$

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? $(f_R, f_B, ...)$

Color of balls	Red	Black	Yellow
Number of balls	30	60	
f_R	\$ 100	0	0
f_B	\$ 0	\$ 100	0
f_{RY}	\$ 100	0	\$ 100
f_{BY}	\$ 0	\$ 100	\$ 100

- Most people prefer
 - $\circ f_B \prec f_R$ $\circ f_{RY} \prec f_{BY}$

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? $(f_R, f_B, ...)$

Color of balls	Red	Black	Yellow
Number of balls	30	60	
f_R	\$ 100	0	0
f_B	\$ 0	\$ 100	0
f_{RY}	\$ 100	0	\$ 100
f_{BY}	\$ 0	\$ 100	\$ 100

- Most people prefer
 - $\circ f_B \prec f_R$
 - $\circ f_{RY} \prec f_{BY}$
- No solution exist with probabilities (additive measures), but can be solved with non-additive (fuzzy) measures

- Choquet expected utility model (Schmeidler, 1989)
 - \circ Choquet integral (CI), utility u, non-additive (fuzzy) measure μ

 $E(u(f_{RY})) = u(0)\mu(\{B\}) + u(100)\mu(\{Y,R\})$ $\neq u(0)\mu(\{B\}) + u(100)\mu(\{Y\}) + u(100)\mu(\{R\})$

• User preferences on \mathcal{F} denoted by \prec • \prec is represented by P and u when (user preference model)

$$E(u(f)) = CI_{u,\mu}(f) < E(u(g)) = CI_{u,\mu}(g)$$
 if and only if $f \prec g$

where

$$E(u(f)) = CI_{u,\mu}(f) = \sum_{x_{\sigma(i)} \in X} (u(x_{\sigma(i)}) - u(x_{\sigma(i-1)}))\mu(f^{-1}(x)).$$

Summary

Summary:

- Review of non-additive measures
- Extension of the Hellinger distance to non-additive measures
- Some properties
- Some applications

Thank you

References

References.

- Denneberg, D. (1994) Non Additive Measure and Integral, Kluwer Academic Publishers.
- Graf, S. (1980) A Radon-Nikodym theorem for capacities, Journal für die reine und angewandte Mathematik, 1980 192-214.
- Narukawa, Y., Murofushi, T. (2008) Choquet Stieltjes integral as a tool for decision modeling, Int. J. of Intel. Syst. 23 115-127.
- Nguyen, H. T. (2006) An Introduction to Random Sets, Chapman and Hall, CRC Press.
- Schmeidler, D. (1986) Integral representation without additivity, Proceedings of the American Mathematical Society, 97 253-261.
- Sugeno, M. (2013) A note on derivatives of functions with respect to fuzzy measures, Fuzzy Sets and Systems 222 1-17.
- Torra, V., Narukawa, Y. (2007) Modeling Decisions: Information Fusion and Aggregation Operators, Springer.
- Torra, V., Narukawa, Y., Sugeno, M., Carlson, M. (2014) On the f-divergence for non-additive measures, submitted.
- Torra, V., Narukawa, Y., Sugeno, M. (eds) (2014) Non-additive measures: Theory and applications, Springer.

Choquet expected utility model

- Why classical expected utility cannot represent Ellsberg paradox ?
 - \circ to representation \prec in terms of u and P, we need

 $E(u(f)) \le E(u(g))$ for all $f \prec g$.
Choquet expected utility model

• Why classical expected utility cannot represent Ellsberg paradox ? \circ From $f_{RY} \prec f_{BY}$,

> $E(u(f_{RY})) = u(0)P(B) + u(100)P(Y) + u(100)P(R)$ < $u(100)P(B) + u(100)P(Y) + u(0)P(R) = E(u(f_{BY}))$

so, u(0)P(B)+u(100)P(R) < u(100)P(B)+u(0)P(R) \circ From $f_B \prec f_R$,

 $E(u(f_B)) = u(100)P(B) + u(0)P(Y) + u(0)P(R)$ < $u(0)P(B) + u(0)P(Y) + u(100)P(R) = E(u(f_R))$

so, u(100)P(B) + u(0)P(R) < u(0)P(B) + u(100)P(R). Inequalities 1 and 2 are in contradiction: no u and P exist

Choquet expected utility model

 How Choquet expected utility represents Ellsberg paradox ? Using:

$$\begin{array}{l} \circ \ \mu(\emptyset) = 0 \\ \circ \ \mu(\{R\}) = 1/3, \ \mu(\{B\}) = \mu(\{Y\}) = 2/9 \\ \circ \ \mu(\{R,Y\}) = 5/9, \ \mu(\{B,Y\}) = \mu(\{R,B\}) = 2/3 \\ \circ \ \mu(\{R,B,Y\}) = 1 \end{array}$$

Choquet expected utility model

- How Choquet expected utility represents Ellsberg paradox ?
 - \circ From $f_{RY} \prec f_{BY}$ we have

 $CI_{\mu}(u(f_{RY})) = u(0)\mu(\{B\}) + u(100)\mu(\{Y,R\})$ < $u(100)\mu(\{B,Y\}) + u(0)\mu(\{R\}) = CI_{\mu}(u(f_{BY}))$

so, $0 \cdot 2/9 + 100 \cdot 5/9 < 100 \cdot 2/3 + 0 \cdot 1/3$. \circ From $f_B \prec f_R$,

> $CI_{\mu}(u(f_B)) = u(100)\mu(\{B\}) + u(0)\mu(\{Y,R\})$ < $CI_{\mu}(u(f_R)) = u(0)\mu(\{B,Y\}) + u(100)\mu(\{R\})$

so, $100 \cdot 2/9 + 0 \cdot 5/9 < 0 \cdot 2/3 + 100 \cdot 1/3$.