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Motivation Outline

A short motivation

Topic. Non-additive measures

• A generalization of additive measures (probabilities)

• Non-additive measures also known as

◦ fuzzy measures (Sugeno, 1974),

◦ capacities (Choquet, 1954),

◦ monotone games (Aumann and Shapley, 1974),

◦ premeasures (Šipoš, 1979)
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Motivation Outline

A short motivation

Why are these measures studied?

• Mathematical interest

◦ Properties

⋆ Equalities and inequalities (e.g. Cauchy-Schwarz type inequalities)

⋆ Measures and distances (e.g. entropy/Hellinger)

◦ Constructions

⋆ Integrals with respect to these measures (e.g. Choquet integral)
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Motivation Outline

A short motivation

Why are these measures studied?

• Applications

◦ Some problems that cannot be solved with additive measures can

be solved with non-additive measures

⋆ Decision making

⋆ Subjective evaluation

⋆ Data fusion (e.g. computer vision)

→ a common theme:

to take into account interactions

→ a common advantage:

more expressive power than with the additive models
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Outline

Outline

1. Introduction

2. Some definitions

3. Distances (new definitions)

4. Properties

5. Applications

6. Summary
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Outline

Some definitions
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Definitions Outline

Definitions: measures

Additive measures.

• (X,A) a measurable space; then, a set function µ is an additive

measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞
(iii) for every countable sequence Ai (i ≥ 1) of A that is pairwise

disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j)

µ(
∞
⋃

i=1

Ai) =
∞
∑

i=1

µ(Ai)
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Definitions Outline

Definitions: measures

Additive measures.

• (X,A) a measurable space; then, a set function µ is an additive

measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞
(iii) for every countable sequence Ai (i ≥ 1) of A that is pairwise

disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j)

µ(
∞
⋃

i=1

Ai) =
∞
∑

i=1

µ(Ai)

Finite case: µ(A ∪B) = µ(A) + µ(B) for disjoint A, B
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Definitions Outline

Definitions: measures

Additive measures.

Example:

• Unique measure λ s.t. λ([a, b]) = b − a for every finite interval

[a, b]

→ the Lebesgue measure
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Definitions Outline

Definitions: measures

Additive measures.

Example:

• Unique measure λ s.t. λ([a, b]) = b − a for every finite interval

[a, b]

→ the Lebesgue measure

• Probability, if µ(X) = 1.
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Definitions Outline

Definitions: measures

Non-additive measures.

• (X,A) a measurable space, a non-additive (fuzzy) measure µ on

(X,A) is a set function µ : A → [0, 1] satisfying the following

axioms:

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted Lebesgue

• m : R
+ → R

+ a continuous and increasing function such that

m(0) = 0; λ be the Lebesgue measure.

The following set function µm is a non-additive (fuzzy) measure:

µm(A) = m(λ(A)) (1)
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted Lebesgue

• m : R
+ → R

+ a continuous and increasing function such that

m(0) = 0; λ be the Lebesgue measure.

The following set function µm is a non-additive (fuzzy) measure:

µm(A) = m(λ(A)) (1)

• If m(x) = x2, then µm(A) = (λ(A))2

• If m(x) = xp, then µm(A) = (λ(A))p

(a) (b) (c) (d)
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted probabilities

• m : R
+ → R

+ a continuous and increasing function such that

m(0) = 0; P be a probability.

The following set function µm is a non-additive (fuzzy) measure:

µm,P (A) = m(P (A)) (2)

DP

Unconstrained fuzzy measures
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Definitions Outline

Definitions: integrals

Choquet integral (Choquet, 1954):

• µ a non-additive measure, g a measurable function. The Choquet

integral of g w.r.t. µ, where µg(r) := µ({x|g(x) > r}):

(C)

∫

gdµ :=

∫ ∞

0

µg(r)dr. (3)
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Definitions Outline

Definitions: integrals

Choquet integral (Choquet, 1954):

• µ a non-additive measure, g a measurable function. The Choquet

integral of g w.r.t. µ, where µg(r) := µ({x|g(x) > r}):

(C)

∫

gdµ :=

∫ ∞

0

µg(r)dr. (3)

• When the measure is additive, this is the Lebesgue integral

bi

bi−1

ai

ai−1

bi

bi−1

x1 x1 x1xN xN

x {x|f(x) ≥ ai}{x|f(x) = bi}

(a) (b) (c)
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Definitions Outline

Definitions: integrals

Choquet integral. Discrete version

• µ a non-additive measure, f a measurable function. The Choquet

integral of f w.r.t. µ,

(C)

∫

fdµ =

N
∑

i=1

[f(xs(i))− f(xs(i−1))]µ(As(i)),

where f(xs(i)) indicates that the indices have been permuted so that

0 ≤ f(xs(1)) ≤ · · · ≤ f(xs(N)) ≤ 1, and where f(xs(0)) = 0 and

As(i) = {xs(i), . . . , xs(N)}.
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Definitions Outline

Definitions: measures

Choquet integral: Example:

• m : R+ → R
+ a continuous and increasing function s.t.

m(0) = 0, m(1) = 1; P a probability distribution.

µm, a non-additive (fuzzy) measure:

µm(A) = m(P (A)) (4)

• CIµm(f)

(a) → max, (b) → median, (c) → min, (d) → mean (expectation)

(a) (b) (c) (d)
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Definitions Outline

Definitions: properties

Properties: (X be a reference set)

• Comonotonicity. f and g are comonotonic if, for all xi, xj ∈ X,

f(xi) < f(xj) imply that g(xi) ≤ g(xj)

• I is comonotonic monotone if and only if, for comonotonic f and

g,

f ≤ g imply that I(f) ≤ I(g)
• I is comonotonic additive if and only if, for comonotonic f and g,

I(f + g) = I(f) + I(g)
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Definitions Outline

Definitions: properties

Choquet integral. Characterization

• Theorem (Schmeidler, 1986; Narukawa and Murofushi, 2003). Let

I : [0, 1]n → R+ be a functional with the following properties

◦ I is comonotonic monotone

◦ I is comonotonic additive

◦ I(1, . . . , 1) = 1

Then, there exists a non-additive measure µ such that I(f) is the

Choquet integral of f with respect to µ.

It is also true that a Choquet integral satisfies the conditions above.
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Definitions Outline

Definitions: properties

Choquet integral. Properties

• Proposition 1. If µ is submodular, then

(C)

∫

(f + g)dµ ≤ (C)

∫

fdµ+ (C)

∫

gdµ.

• Proposition 2. If µ is supermodular, then

(C)

∫

(f + g)dµ ≥ (C)

∫

fdµ+ (C)

∫

gdµ.

where

◦ submodular µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B)

When adding an element, the smaller the set, the larger the increase

◦ supermodular µ(A) + µ(B) ≤ µ(A ∪B) + µ(A ∩B)
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Definitions Outline

Definitions: properties

Choquet integral. Properties

• Cauchy-Schwarz inequality: If µ is a submodular non-additive

measure; then

((C)

∫

fgdµ)2 ≤ (C)

∫

f2dµ(C)

∫

g2dµ.

• Another inequality: If µ is a submodular non-additive measure; then

((C)

∫

(f + g)2dµ)
1
2 ≤ ((C)

∫

f2d)
1
2 + ((C)

∫

g2dµ)
1
2
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

• Concept: ν absolutely continuous w.r.t. µ (if µ(A) = 0 then ν(A) = 0)

• Theorem. µ and ν two additive measures on (Ω,F) and µ be

σ-finite. If ν << µ, then there exists a nonnegative measurable

function f on Ω such that

ν(A) =

∫

A

fdµ
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

• Concept: ν absolutely continuous w.r.t. µ (if µ(A) = 0 then ν(A) = 0)

• Theorem. µ and ν two additive measures on (Ω,F) and µ be

σ-finite. If ν << µ, then there exists a nonnegative measurable

function f on Ω such that

ν(A) =

∫

A

fdµ

→ this permits to define the Radon-Nikodym derivative:
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

• Concept: ν absolutely continuous w.r.t. µ (if µ(A) = 0 then ν(A) = 0)

• Theorem. µ and ν two additive measures on (Ω,F) and µ be

σ-finite. If ν << µ, then there exists a nonnegative measurable

function f on Ω such that

ν(A) =

∫

A

fdµ

→ this permits to define the Radon-Nikodym derivative:

→ The function f is called the Radon-Nikodym derivative of ν w.r.t.

µ, denoted

f =
dν

dµ
.
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

• Concept: ν absolutely continuous w.r.t. µ (if µ(A) = 0 then ν(A) = 0)

• Theorem. µ and ν two additive measures on (Ω,F) and µ be

σ-finite. If ν << µ, then there exists a nonnegative measurable

function f on Ω such that

ν(A) =

∫

A

fdµ

→ this permits to define the Radon-Nikodym derivative:

→ The function f is called the Radon-Nikodym derivative of ν w.r.t.

µ, denoted

f =
dν

dµ
.

• f may not be unique, but if f0 and f1 are both Radon-Nikodym

derivatives of ν, then f0 = f1 almost everywhere µ
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Definitions Outline

Derivatives w.r.t. non-additive measures

Derivative (Choquet integral): (non-additive measures)

• (Ω,F) a measurable space, ν, µ : F → R
+ non-additive measures.

→ ν is a Choquet integral of µ if there exists a measurable function

g : Ω → R
+ s.t. for all A ∈ F

ν(A) = (C)

∫

A

gdµ (5)
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Definitions Outline

Derivatives w.r.t. non-additive measures

Derivative (Choquet integral): (non-additive measures)

• (Ω,F) a measurable space, ν, µ : F → R
+ non-additive measures.

→ ν is a Choquet integral of µ if there exists a measurable function

g : Ω → R
+ s.t. for all A ∈ F

ν(A) = (C)

∫

A

gdµ (5)

• µ, ν two non-additive measures. If µ is a Choquet integral of ν, and

g is a function such that Equation 5 is satisfied, then

dν/dµ = g,

→ g is a derivative of ν with respect to µ.

→ Graf and Sugeno studied conditions of when this derivative exists.
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Definitions Outline

Derivatives w.r.t. non-additive measures

Derivative (Choquet integral): (Proposition 4 in (Sugeno, 2013))

• Let f(t) be a continuous and increasing function with f(0) = 0, let

µm be a distorted Lebesgue measure, then there exists an increasing

(non-decreasing) function g so that f(t) = (C)
∫

[0,t]
g(τ)dµm and

the following holds:

G(s) = F (s)/sM(s) (6)

g(t) = L−1[F (s)/sM(s)]. (7)

Here, F (s) is the Laplace transformation of f , M the Laplace

transformation of m, and G the Laplace transformation of g.
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Definitions Outline

Derivatives w.r.t. non-additive measures

Computation:

• It is possible to compute the Radon-Nikodym derivative

(for some examples)

• Computations use the Laplace transformation
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Definitions Outline

Derivatives w.r.t. non-additive measures

Computation (Example): Applying Proposition 4 (Sugeno, 2013), we

have

L[
dνp

dµm
] =

Np(s)

sM(s)
=

Γ(p+ 1)

2sp−1
.

Then using the inverse Laplace transform on this expression we obtain:

dνp

dµm
= L−1[

Γ(p+ 1)

2sp−1
] =

Γ(p+ 1)

2Γ(p− 1)
tp−2

=
p(p− 1)

2
tp−2.
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Outline

f-divergence for non-additive measures
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f-divergence Outline

f-Divergence

Given: P , Q two probabilities a.c. w.r.t. a prob. ν.

• f -divergence between P and Q w.r.t. ν

Df,ν(P,Q) =

∫

dQ

dν
f

(

dP/dν

dQ/dν

)

dν
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f-divergence Outline

f-Divergence and distances

Examples of f -divergence between P and Q w.r.t. ν

Df,ν(P,Q) =

∫

dQ

dν
f

(

dP/dν

dQ/dν

)

dν

Some particular distances

• Hellinger distance when f(x) = (1−√
x)2,

H(P,Q) =

√

√

√

√

1

2

∫

(
√

dP

dν
−
√

dQ

dν

)2

dν

Here dP/dν and dQ/dν are the Radon-Nikodym derivatives
• Variation distance when f(x) = |x− 1|,

δ(P,Q) =
1

2

∫
∣

∣

∣

∣

dP

dν
− dP

dν

∣

∣

∣

∣

dν

• Kullback-Leibler, Rényi distance, χ2-distance
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f-divergence Outline

f-Divergence: non-additive measures

Definition:

• µ1, µ2 two non-additive measures that are Choquet integrals of ν.

The f -divergence between µ1 and µ2 with respect to ν is defined as

Df,ν(µ1, µ2) = (C)

∫

dµ2

dν
f

(

dµ1/dν

dµ2/dν

)

dν

Here dµ1/dν and dµ2/dν are the derivatives of µ1 and µ2.
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f-divergence Outline

f-Divergence and Hellinger distance: non-additive

measures

Definition:

• µ1, µ2 two non-additive measures that are Choquet integrals of ν.

The Hellinger distance between µ1 and µ2 with respect to ν is defined

as

Hν(µ1, µ2) =

√

√

√

√

1

2
(C)

∫

(
√

dµ1

dν
−
√

dµ2

dν

)2

dν

Here dµ1/dν and dµ2/dν are the derivatives of µ1 and µ2.
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f-divergence Outline

f-Divergence and variation distance: non-additive

measures

Definition:

• µ1, µ2 two non-additive measures that are Choquet integrals of ν.

The Variation distance between µ1 and µ2 with respect to ν is defined

as

δν(µ1, µ2) =
1

2
(C)

∫
∣

∣

∣

∣

dµ1

dν
− dµ2

dν

∣

∣

∣

∣

dν

Here dµ1/dν and dµ2/dν are the derivatives of µ1 and µ2.
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Properties
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Distance Outline

Distances: properties

Properties:

• Proper generalization?
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Distance Outline

Distances: properties

Properties:

• Proper generalization?

• Yes: Let ν, µ1, µ2 be three additive measures such that µ1 and µ2

are absolutely continuous with respect to ν. Then, Df,ν(µ1, µ2) is

the standard f -divergence.
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Distance Outline

Distances: properties

Properties:

• Proper generalization?

• Yes: Let ν, µ1, µ2 be three additive measures such that µ1 and µ2

are absolutely continuous with respect to ν. Then, Df,ν(µ1, µ2) is

the standard f -divergence.

• Also, Hν(µ1, µ2) and δν(µ1, µ2) are the Hellinger distance and the

variation distance
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Distance Outline

Distances: properties

Properties:

• Proper generalization?

• Yes: Let ν, µ1, µ2 be three additive measures such that µ1 and µ2

are absolutely continuous with respect to ν. Then, Df,ν(µ1, µ2) is

the standard f -divergence.

• Also, Hν(µ1, µ2) and δν(µ1, µ2) are the Hellinger distance and the

variation distance

• Df,ν(µ1, µ2) with appropriate f (i.e., f(x) = (1−√
x)2 and f(x) =

|x− 1|) correspond to Hellinger and variation distance. I.e.,
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Distance Outline

Distances: properties

Properties:

• Proper generalization?

• Yes: Let ν, µ1, µ2 be three additive measures such that µ1 and µ2

are absolutely continuous with respect to ν. Then, Df,ν(µ1, µ2) is

the standard f -divergence.

• Also, Hν(µ1, µ2) and δν(µ1, µ2) are the Hellinger distance and the

variation distance

• Df,ν(µ1, µ2) with appropriate f (i.e., f(x) = (1−√
x)2 and f(x) =

|x− 1|) correspond to Hellinger and variation distance. I.e.,

√

1

2
Df,ν(µ1, µ2) = Hν(µ1, µ2).

1

2
Df,ν(µ1, µ2) = δν(µ1, µ2).
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Distance Outline

Distances: properties

Properties:

• Distance?
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ f -divergence is not a distance for additive measures

(it is not symmetric, it does not no satisfy triangle inequality)
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ f -divergence is not a distance for additive measures

(it is not symmetric, it does not no satisfy triangle inequality)

◦ Hellinger distance, variation distance are distances.

(satisfy positiveness, symmetry, and triangular inequality)
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ f -divergence is not a distance for additive measures

(it is not symmetric, it does not no satisfy triangle inequality)

◦ Hellinger distance, variation distance are distances.

(satisfy positiveness, symmetry, and triangular inequality)

• So, we only consider distance for Hellinger and variation distance
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ Positiveness: Df,ν(µ1, µ2) = 0 if µ1 = µ2.

So, Hellinger and variation distance are positive
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ Positiveness: Df,ν(µ1, µ2) = 0 if µ1 = µ2.

So, Hellinger and variation distance are positive

◦ Symmetry: Hellinger and variation symmetric by definition
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ Positiveness: Df,ν(µ1, µ2) = 0 if µ1 = µ2.

So, Hellinger and variation distance are positive

◦ Symmetry: Hellinger and variation symmetric by definition

◦ Triangular inequality:

⋆ If ν is submodular, then we have

Hν(µ1, µ2) +Hν(µ2, µ3) ≥ Hν(µ1, µ3).
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ Positiveness: Df,ν(µ1, µ2) = 0 if µ1 = µ2.

So, Hellinger and variation distance are positive

◦ Symmetry: Hellinger and variation symmetric by definition

◦ Triangular inequality:

⋆ If ν is submodular, then we have

Hν(µ1, µ2) +Hν(µ2, µ3) ≥ Hν(µ1, µ3).

⋆ Also, if ν is submodular, then we have

δν(µ1, µ2) + δν(µ2, µ3) ≥ δν(µ1, µ3).

Vicenç Torra; Non-additive measures and integrals LiU 2014 32 / 70



Distance Outline

Distances: properties

Properties:

• Triangular inequality. Proof

◦ Proof of triangular inequality for Hellinger distance comes from

(seen above)

((C)

∫

(f + g)2dµ)
1
2 ≤ ((C)

∫

f2d)
1
2 + ((C)

∫

g2dµ)
1
2

◦ Proof of triangular inequality for variation distance comes from

(seen above)

(C)

∫

(f + g)dµ ≤ (C)

∫

fdµ+ (C)

∫

gdµ.
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Distance Outline

Distances: properties

Properties:

• Triangular inequality Hellinger distance. Proof

Hν(µ1, µ2) + Hν(µ2, µ3) = {
1

2
(C)

∫

(
√

dµ1

dν
−

√

dµ2

dν

)2

dν}
1/2

+ {
1

2
(C)

∫

(
√

dµ2

dν
−

√

dµ3

dν

)2

dν}
1/

≥ {
1

2
(C)

∫

(
√

dµ1

dν
−

√

dµ2

dν

)2

+

(
√

dµ2

dν
−

√

dµ3

dν

)2

dν}1/2

= {
1

2
(C)

∫

(
√

dµ1

dν
−

√

dµ2

dν

)2

+

(
√

dµ3

dν
−

√

dµ2

dν

)2

dν}1/2

≥ {
1

2
(C)

∫

(
√

dµ1

dν
−

√

dµ3

dν

)2

dν}
1/2

= Hν(µ1, µ3)
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Distance Outline

Distances: properties

Properties:

• Triangular inequality variation distance. Proof

δν(µ1, µ2) + δν(µ2, µ3) =
1

2
(C)

∫
∣

∣

∣

∣

dµ1

dν
−

dµ2

dν

∣

∣

∣

∣

dν +
1

2
(C)

∫
∣

∣

∣

∣

dµ2

dν
−

dµ3

dν

∣

∣

∣

∣

dν

≥
1

2
(C)

∫ (
∣

∣

∣

∣

dµ1

dν
−

dµ2

dν

∣

∣

∣

∣

+

∣

∣

∣

∣

dµ2

dν
−

dµ3

dν

∣

∣

∣

∣

)

dν

≥
1

2
(C)

∫
∣

∣

∣

∣

dµ1

dν
−

dµ3

dν

∣

∣

∣

∣

dν

= δν(µ1, µ3)
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Distance Outline

Distances: properties

Properties:

• Distance?
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Distance Outline

Distances: properties

Properties:

• Distance?

◦ If ν is submodular, Hellinger distance is a distance.

◦ If ν is submodular, Variation distance is a distance.
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Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted

Lebesgue measures w.r.t. a third one
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Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted

Lebesgue measures w.r.t. a third one

• Measures:

Vicenç Torra; Non-additive measures and integrals LiU 2014 37 / 70



Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted

Lebesgue measures w.r.t. a third one

• Measures:

◦ µm be the distorted Lebesgue measure with m(t) = t2,

◦ νp be the distorted Lebesgue measure with np(t) = tp

(i.e., νp(A) = (λ(A))p for p ≥ 2, and νp([0, t]) = tp)
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Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted

Lebesgue measures w.r.t. a third one

• Measures:

◦ µm be the distorted Lebesgue measure with m(t) = t2,

◦ νp be the distorted Lebesgue measure with np(t) = tp

(i.e., νp(A) = (λ(A))p for p ≥ 2, and νp([0, t]) = tp)

• Computation: Hellinger distance between ν2 and νp w.r.t. µm.
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Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted

Lebesgue measures w.r.t. a third one

• Measures:

◦ µm be the distorted Lebesgue measure with m(t) = t2,

◦ νp be the distorted Lebesgue measure with np(t) = tp

(i.e., νp(A) = (λ(A))p for p ≥ 2, and νp([0, t]) = tp)

• Computation: Hellinger distance between ν2 and νp w.r.t. µm.

Hµm(ν
2, νp) =

√

√

√

√

√

1

2
(C)

∫ 1

0





√

dν2

µm
−
√

dνp

µm





2

dµm

(8)
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Hellinger Distance Outline

Hellinger distance: properties

Example (II): Hellinger distance between ν2 and νp w.r.t. µm where
distortions are np(t) = tp and m(t) = t2.

• Recall (from a previous example) that

dνp

dµm
=

p(p− 1)

2
tp−2
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Hellinger Distance Outline

Hellinger distance: properties

Example (II): Hellinger distance between ν2 and νp w.r.t. µm where
distortions are np(t) = tp and m(t) = t2.

• Recall (from a previous example) that

dνp

dµm
=

p(p− 1)

2
tp−2

• Computation (with more Choquet integral – and Laplace transforms):

Hµm(ν
2, νp) =

√

√

√

√

√

1

2
(C)

∫ 1

0





√

dν2

µm
−
√

dνp

µm





2

dµm

=

√

√

√

√

1

2
(C)

∫ 1

0

(

1−
√

p(p− 1)

2
t(p−2)/2

)2

dµm (9)

=

√

1− 4
√

2p(p− 1)

(p+ 2)p
(10)
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Hellinger Distance Outline

Hellinger distance: properties

Example 2:

• µm′ be the distorted Lebesgue measure with m′(t) = t.

• νp be the distorted Lebesgue measure with n(t) = tp

(i.e., νp(A) = (λ(A))p for p ≥ 2, and νp([0, t]) = tp)

• Compute the Hellinger distance between ν2 and νp w.r.t. µm′.

Only difference from Example 1 is µm′
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Hellinger Distance Outline

Hellinger distance: properties

Example 2: Hellinger distance between ν2 and νp w.r.t. µm where

distortions are np(t) = tp and m(t) = t.

• First,
dνp

dµm′
= ptp−1
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Hellinger Distance Outline

Hellinger distance: properties

Example 2: Hellinger distance between ν2 and νp w.r.t. µm where

distortions are np(t) = tp and m(t) = t.

• First,
dνp

dµm′
= ptp−1

• Computation (with more Choquet integral – and Laplace transforms):

Hµm′(ν
2, νp) =

√

√

√

√

√

1

2
(C)

∫ 1

0





√

dν2

µm
−
√

dνp

µm





2

dµm

=

√

1

2
(C)

∫ 1

0

(√
2t−

√

ptp−1
)2

dµm (11)

=

√

1− 2
√
2p

p+ 2
(12)
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Compare:

Hµm(ν
2, νp) =

√

1− 4
√

2p(p− 1)

(p+ 2)p

Hµm′(ν
2, νp) =

√

1− 2
√
2p

p+ 2
(13)

• The Hellinger distance depends on µm
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Compare:

Hµm(ν
2, νp) =

√

1− 4
√

2p(p− 1)

(p+ 2)p

Hµm′(ν
2, νp) =

√

1− 2
√
2p

p+ 2
(13)

• The Hellinger distance depends on µm

Different for additive measures: Hν(µ1, µ2) is independent of ν.
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Hellinger Distance Outline

Hellinger distance: properties

Properties related to the previous example:

When p → ∞,

Hµm(ν
2, νp) = 1 and Hµm′(ν

2, νp) = 1.

Both Hµm(ν
2, νp) and Hµm′(ν

2, νp) are increasing w.r.t. p > 2, and the

following holds

• Hµm(ν
2, νp) ∈ [0, 1] for all p ≥ 2,

• Hµm′(ν
2, νp) ∈ [0, 1] for all p ≥ 2.
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ Recall that conjugate of a measure: µc(A) = 1− µm(X \A)
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Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?
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Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ First question, which conjugate in Hν(µ1, µ2)?
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ First question, which conjugate in Hν(µ1, µ2)?

⋆ Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2)

⋆ Hν(µ1, µ2) = (?)Hνc(µ
c
1, µ

c
2)

where µc(A) = 1− µ(X \A)
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ First question, which conjugate in Hν(µ1, µ2)?

⋆ Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2)

⋆ Hν(µ1, µ2) = (?)Hνc(µ
c
1, µ

c
2)

where µc(A) = 1− µ(X \A)

• Partial answers:
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ First question, which conjugate in Hν(µ1, µ2)?

⋆ Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2)

⋆ Hν(µ1, µ2) = (?)Hνc(µ
c
1, µ

c
2)

where µc(A) = 1− µ(X \A)

• Partial answers:

◦ Dual of Distorted Lebesgue is Distorted Lebesgue

µc(A) = 1− µm(X \ A) = 1−m(1− x)
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ First question, which conjugate in Hν(µ1, µ2)?

⋆ Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2)

⋆ Hν(µ1, µ2) = (?)Hνc(µ
c
1, µ

c
2)

where µc(A) = 1− µ(X \A)

• Partial answers:

◦ Dual of Distorted Lebesgue is Distorted Lebesgue

µc(A) = 1− µm(X \ A) = 1−m(1− x)

◦ If ν is submodular, νc is supermodular

So, Hν(µ1, µ2) is a distance but Hνc(µ
c
1, µ

c
2) is not
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ First question, which conjugate in Hν(µ1, µ2)?

⋆ Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2)

⋆ Hν(µ1, µ2) = (?)Hνc(µ
c
1, µ

c
2)

where µc(A) = 1− µ(X \A)

• Partial answers:

◦ Dual of Distorted Lebesgue is Distorted Lebesgue

µc(A) = 1− µm(X \ A) = 1−m(1− x)

◦ If ν is submodular, νc is supermodular

So, Hν(µ1, µ2) is a distance but Hνc(µ
c
1, µ

c
2) is not

Therefore, only Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2) makes sense
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

• Conjugate of the measure, same distance ?

◦ First question, which conjugate in Hν(µ1, µ2)?

⋆ Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2)

⋆ Hν(µ1, µ2) = (?)Hνc(µ
c
1, µ

c
2)

where µc(A) = 1− µ(X \A)

• Partial answers:

◦ Dual of Distorted Lebesgue is Distorted Lebesgue

µc(A) = 1− µm(X \ A) = 1−m(1− x)

◦ If ν is submodular, νc is supermodular

So, Hν(µ1, µ2) is a distance but Hνc(µ
c
1, µ

c
2) is not

Therefore, only Hν(µ1, µ2) = (?)Hν(µ
c
1, µ

c
2) makes sense

◦ This case, difficult (work in progress)

E.g., if m(x) = x2, then mc(x) = 2x− x2.
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Definitions Outline

Definitions: integrals

Sugeno integral (Sugeno, 1974):

• µ a non-additive measure, g a measurable function. The Sugeno

integral of g w.r.t. µ, where µg(r) := µ({x|g(x) > r}):

(S)

∫

gdµ := sup
r∈[0,1]

[r ∧ µg(r)]. (14)

f(x

s(i)

)

�(A

s(i)

)

(S)

R

fd�

�(A

s(i)

)

f(x

s(i)

)

�(A)

f(x)

f(x)

(b)(a) (
)
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Definitions Outline

Definitions: integrals

Sugeno integral. Discrete version

• µ a non-additive measure, f a measurable function. The Sugeno

integral of f w.r.t. µ,

(S)

∫

fdµ = max
i=1,N

min(f(xs(i)), µ(As(i))),

where f(xs(i)) indicates that the indices have been permuted so that

0 ≤ f(xs(1)) ≤ ... ≤ f(xs(N)) ≤ 1 and As(i) = {xs(i), ..., xs(N)}.
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Definitions Outline

Definitions: properties

Properties: (X a reference set, a a value in [0, 1])

• f, g functions f, g : X → [0, 1]. Then,

◦ I is minimum homogeneous if and only if, for comonotonic f and

g,

I(a ∧ f) = a ∧ I(f)
◦ I is comonotonic maxitive if and only if, for comonotonic f and g,

I(f ∨ g) = I(f) ∨ I(g)
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Definitions Outline

Definitions: properties

Characterization of the Sugeno integral

• Theorem (Ralescu and Sugeno, 1996; Marichal, 2000; Benvenuti

and Mesiar, 2000). Let I : [0, 1]n → R+ be a functional with the

following properties

◦ I is comonotonic monotone

◦ I is comonotonic maxitive

◦ I is minimum homogeneous

◦ I(1, . . . , 1) = 1

Then, there exists a fuzzy measure µ such that I(f) is the Sugeno

integral of f with respect to µ.
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Applications
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Applications Outline

Aggregation operators

Independence.

• Choquet integral and Mahalanobis distance

◦ Mahalanobis: covariance matrix

◦ Choquet integral: fuzzy measure

• In a single framework: Mahalanobis and Choquet distance

Matrix

Mahalanobis
Distance

Choquet 
Integral

Weighted
Mean

Additive
measure

Diagonal
Matrix

Fuzzy measure

Covariance 
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Applications Outline

Aggregation operators

Independence.

• Choquet integral and Mahalanobis distance

◦ Mahalanobis: covariance matrix

◦ Choquet integral: fuzzy measure

• A generalization: Choquet-Mahalanobis distance/distribution
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Applications Outline

Record Linkage

Record Linkage:

(protected / public)

identifiersquasi-
identifiers

quasi-
identifiersconfidential

r1

ra

s1

sb
a1 an

a1 an i1, i2, ...

B (intruder)A
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Applications Outline

Record Linkage

Record Linkage:

Minimize
N
∑

i=1

Ki (15)

Subject to :

CIµ(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−
− CIµ(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0 ∀i∀j

(16)

Ki ∈ {0, 1} (17)

µ(A) ∈ [0, 1] (18)

µ(A) ≤ µ(B) ∀A,B s.t. A ⊆ B ⊆ X (19)
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Applications Outline

Decision

Decision:

• Different alternatives

• Users have preferences (an order on the alternatives ≺)

• GOAL: We want to model these preferences (to model ≺)
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Applications Outline

Decision under certainty

Decision under certainty. Multicriteria decision making

• Alternatives expressed in terms of utility functions

• Select best alternative by:

Step 1. Aggregate utilities: Choquet integral for non-independence

Step 2. Rank according to aggregated utilities

Rankingalt altConsensusalt

Criteria
Satisfaction on:

Price Quality Comfort

FordT

206

0.2 0.8 0.3

0.7 0.7 0.8

FordT

206 FordT
2060.35

0.72

0.72
0.35

... ... ... ... ... ...
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Applications Outline

Decision under uncertainty

Decision under uncertainty.

• Decision theory based on probability and utility functions to model

lack of knowledge (Savage, 1954; Ramsey and von Neumann):

◦ classical/subjective expected utility
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Applications Outline

Decision under uncertainty

Decision under uncertainty.

• Decision theory based on probability and utility functions to model

lack of knowledge (Savage, 1954; Ramsey and von Neumann):

◦ classical/subjective expected utility

• Ellsberg paradox: people behave differently than the model!!

◦ Ellsberg paradox violates the postulates of the theory

◦ Alternative model based on non-additive (fuzzy) measures
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Applications Outline

Decision under uncertainty: Ellsberg paradox

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? (fR, fB, ...)

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100
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Applications Outline

Decision under uncertainty: Ellsberg paradox

• How we model ≺ with classical expected utility ?

◦ a (finite) state space S (options = the balls)

◦ a (finite) set of outcomes X (benefits = the money)

Vicenç Torra; Non-additive measures and integrals LiU 2014 59 / 70



Applications Outline

Decision under uncertainty: Ellsberg paradox

• How we model ≺ with classical expected utility ?

◦ a (finite) state space S (options = the balls)

◦ a (finite) set of outcomes X (benefits = the money)

◦ P be a probability measure on (X,A, P ) (P on the balls)

◦ u : X → R
+ be a utility function (utility of the money)
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Decision under uncertainty: Ellsberg paradox

• How we model ≺ with classical expected utility ?

◦ a (finite) state space S (options = the balls)

◦ a (finite) set of outcomes X (benefits = the money)

◦ P be a probability measure on (X,A, P ) (P on the balls)

◦ u : X → R
+ be a utility function (utility of the money)

◦ a function from S to X (an act), F the set of acts (the alternatives).

◦ User preferences on F = {f |f : S → X} denoted by ≺
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Applications Outline

Decision under uncertainty: Ellsberg paradox

• How we model ≺ with classical expected utility ?

◦ a (finite) state space S (options = the balls)

◦ a (finite) set of outcomes X (benefits = the money)

◦ P be a probability measure on (X,A, P ) (P on the balls)

◦ u : X → R
+ be a utility function (utility of the money)

◦ a function from S to X (an act), F the set of acts (the alternatives).

◦ User preferences on F = {f |f : S → X} denoted by ≺
◦ ≺ is represented by P and u when (user preference model)

E(u(f)) < E(u(g)) if and only if f ≺ g

where
E(u(f)) =

∑

s∈S

u(f(s))P ({s}) =
∑

x∈X

u(x)P (f−1(x)).
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Applications Outline

Decision under uncertainty: Ellsberg paradox

• Computation of the expected utility for a particular act (alternative)

◦ S = {Red,Black, Y ellow}
◦ fRY = (0 for a Black, $ 100 for Red, and $ for Yellow)

E(u(fRY )) = u(0)P (f−1(0)) + u(100)P (f−1(100))

= u(0)P ({B}) + u(100)P ({Y,R})
= u(0)P ({B}) + u(100)P ({Y }) + u(100)P ({R})

◦ Problem. Given a player, and preferences ≺, determine P and u

◦ E.g., P (x) = 1/3 and u(x) = x.
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Applications Outline

Decision under uncertainty: Ellsberg paradox

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? (fR, fB, ...)

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100
• Most people prefer

◦ fB ≺ fR
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Decision under uncertainty: Ellsberg paradox

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? (fR, fB, ...)

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100
• Most people prefer

◦ fB ≺ fR
◦ fRY ≺ fBY
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Applications Outline

Decision under uncertainty: Ellsberg paradox

Decision making: (Ellsberg, 1961) 90 balls in an urn

• A player and different games, which prefer? (fR, fB, ...)

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100
• Most people prefer

◦ fB ≺ fR
◦ fRY ≺ fBY

• No solution exist with probabilities (additive measures),

but can be solved with non-additive (fuzzy) measures
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Applications Outline

Decision under uncertainty: Ellsberg paradox

• Choquet expected utility model (Schmeidler, 1989)

◦ Choquet integral (CI), utility u, non-additive (fuzzy) measure µ

E(u(fRY )) = u(0)µ({B}) + u(100)µ({Y,R})
6= u(0)µ({B}) + u(100)µ({Y }) + u(100)µ({R})

◦ User preferences on F denoted by ≺
◦ ≺ is represented by P and u when (user preference model)

E(u(f)) = CIu,µ(f) < E(u(g)) = CIu,µ(g) if and only if f ≺ g

where

E(u(f)) = CIu,µ(f) =
∑

xσ(i)∈X

(u(xσ(i))− u(xσ(i−1)))µ(f
−1(x)).
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Summary
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Hellinger Distance Outline

Hellinger distance: properties

Summary:

• Review of non-additive measures

• Extension of the Hellinger distance to non-additive measures

• Some properties

• Some applications
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Thank you
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Introduction Outline

Choquet expected utility model

• Why classical expected utility cannot represent Ellsberg paradox ?

◦ to representation ≺ in terms of u and P , we need

E(u(f)) ≤ E(u(g)) for all f ≺ g.
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Introduction Outline

Choquet expected utility model

• Why classical expected utility cannot represent Ellsberg paradox ?

◦ From fRY ≺ fBY ,

E(u(fRY )) = u(0)P (B) + u(100)P (Y ) + u(100)P (R)

< u(100)P (B) + u(100)P (Y ) + u(0)P (R) = E(u(fBY ))

so, u(0)P (B) + u(100)P (R) < u(100)P (B) + u(0)P (R)
◦ From fB ≺ fR,

E(u(fB)) = u(100)P (B) + u(0)P (Y ) + u(0)P (R)

< u(0)P (B) + u(0)P (Y ) + u(100)P (R) = E(u(fR))

so, u(100)P (B) + u(0)P (R) < u(0)P (B) + u(100)P (R).

Inequalities 1 and 2 are in contradiction: no u and P exist
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Choquet expected utility model

• How Choquet expected utility represents Ellsberg paradox ?

Using:

◦ µ(∅) = 0

◦ µ({R}) = 1/3, µ({B}) = µ({Y }) = 2/9

◦ µ({R,Y }) = 5/9, µ({B,Y }) = µ({R,B}) = 2/3

◦ µ({R,B, Y }) = 1
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Introduction Outline

Choquet expected utility model

• How Choquet expected utility represents Ellsberg paradox ?

◦ From fRY ≺ fBY we have

CIµ(u(fRY )) = u(0)µ({B}) + u(100)µ({Y,R})
< u(100)µ({B,Y }) + u(0)µ({R}) = CIµ(u(fBY ))

so, 0 · 2/9 + 100 · 5/9 < 100 · 2/3 + 0 · 1/3.
◦ From fB ≺ fR,

CIµ(u(fB)) = u(100)µ({B}) + u(0)µ({Y,R})
< CIµ(u(fR)) = u(0)µ({B,Y }) + u(100)µ({R})

so, 100 · 2/9 + 0 · 5/9 < 0 · 2/3 + 100 · 1/3.
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