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Motivation Outline

A short motivation

Topic. Non-additive measures

e A generalization of additive measures (probabilities)
e Non-additive measures also known as

o fuzzy measures (Sugeno, 1974),

o capacities (Choquet, 1954),

o monotone games (Aumann and Shapley, 1974),

o premeasures (Sipo¥, 1979)
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Motivation Outline

A short motivation

Why are these measures studied?

e Mathematical interest
o Properties
x Equalities and inequalities (e.g. Cauchy-Schwarz type inequalities)
x Measures and distances (e.g. entropy/Hellinger)
o Constructions
* Integrals with respect to these measures (e.g. Choquet integral)
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Motivation Outline

A short motivation

Why are these measures studied?

e Applications

o Some problems that cannot be solved with additive measures can
be solved with non-additive measures
* Decision making
* Subjective evaluation
x Data fusion (e.g. computer vision)
— a common theme:
to take into account interactions
— a common advantage:

more expressive power than with the additive models
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Outline

QOutline

. Introduction

. Some definitions

. Distances (new definitions)
. Properties

. Applications

. Summary
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Outline

Some definitions
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Definitions Outline

Definitions: measures

Additive measures.

e (X, A) a measurable space; then, a set function w is an additive
measure If it satisfies

(i) u(A) >0 forall A e A,

(i) p(X) < oo

(iii) for every countable sequence A; (i > 1) of A that is pairwise
disjoint (i.e,. A; N A; = () when i # j)

M(U A;) = ZM(Ai)

Vicenc Torra; Non-additive measures and integrals LiU 2014 6/ 70



Definitions Outline

Definitions: measures

Additive measures.

e (X, A) a measurable space; then, a set function w is an additive
measure If it satisfies

(i) u(A) >0 forall A e A,

(i) p(X) < oo

(iii) for every countable sequence A; (i > 1) of A that is pairwise
disjoint (i.e,. A; N A; = () when i # j)

M(U A;) = ZM(Ai)

Finite case: (AU B) = u(A) + u(B) for disjoint A, B
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Definitions Outline

Definitions: measures

Additive measures.

Example:

e Unique measure A\ s.t. A(|la,b]) = b — a for every finite interval
a, b]
— the Lebesgue measure
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Definitions Outline

Definitions: measures

Additive measures.

Example:

e Unique measure A\ s.t. A(|la,b]) = b — a for every finite interval
a, 0]
— the Lebesgue measure

e Probability, if u(X) = 1.
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Definitions Outline

Definitions: measures

Non-additive measures.

e (X, A) a measurable space, a non-additive (fuzzy) measure p on
(X, A) is a set function pu : A — |[0,1] satisfying the following
axioms:

(i) (D) =0, u(X) =1 (boundary conditions)

(i) A C B implies u(A) < u(B) (monotonicity)
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted Lebesgue

e m : R™ — RT™ a continuous and increasing function such that
m(0) = 0; X be the Lebesgue measure.
The following set function p.,, is a non-additive (fuzzy) measure:

pm(A) = m(A(A4)) (1)
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted Lebesgue

e m : R™ — RT™ a continuous and increasing function such that
m(0) = 0; X be the Lebesgue measure.

The following set function p.,, is a non-additive (fuzzy) measure:

pm(A) = m(A(A4)) (1)

o If m(z) = 22, then p,,(A) = (\(A))?
o If m(x) =P, then p,,(A) = (A(A))P

@ (b) (c) (d)
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Definitions Outline

Definitions: measures

Non-additive measures. Examples. Distorted probabilities

e m : R™ — RT™ a continuous and increasing function such that
m(0) = 0; P be a probability.
The following set function p.,, is a non-additive (fuzzy) measure:

pm,p(A) = m(P(A)) (2)
Unconstrained fuzzy measures
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Definitions Outline

Definitions: integrals

Choquet integral (Choquet, 1954):

e /. a non-additive measure, g a measurable function. The Choquet
integral of g w.r.t. u, where py(r) := pu({x|g(z) > r}):

(€) / gdp == /O ) pg(r)dr. (3)
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Definitions Outline

Definitions: integrals

Choquet integral (Choquet, 1954):

e /i a non-additive measure, g a measurable function. The Choquet
integral of g w.r.t. u, where u,(r) := p({x|g(z) > r}):

(€) / gdp == /O ) pg(r)dr. (3)

e When the measure is additive, this is the Lebesgue integral

(a) (b) ()

T p— N T

Vicenc Torra; Non-additive measures and integrals LiU 2014 11 /70



Definitions Outline

Definitions: integrals

Choquet integral. Discrete version

e /1, a non-additive measure, f a measurable function. The Choquet
integral of f w.r.t. u,

N

(C) / fdp = Z[f(fl?s(z‘)) - f(xs(z’—l))]:u(As(z’))a

1=1

where f(x4(;)) indicates that the indices have been permuted so that
0 < f(xs(l)) < - < f(xs(N)) < 1, and where f(xs(O)) = 0 and
Astiy = ATs(iys - Ts(N) -

Vicenc Torra; Non-additive measures and integrals LiU 2014 12 / 70



Definitions Outline

Definitions: measures

Choquet integral: Example:

e m: RT — R a continuous and increasing function s.t.
m(0) =0, m(1) = 1; P a probability distribution.
I, @ non-additive (fuzzy) measure:

pm(A) = m(P(A)) (4)

® C[Mm(f)
(a) = max, (b) — median, (¢) — min, (d) — mean (expectation)

@ (b) (©) (d)
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Definitions Outline

Definitions: properties

Properties: (X be a reference set)

e Comonotonicity. f and g are comonotonic if, for all z;, z; € X,

f(z:) < f(z;) imply that g(z;) < g(z;)
e 7 is comonotonic monotone if and only if, for comonotonic f and

g,

f < g imply that Z(f) < Z(g)
e 7 is comonotonic additive if and only if, for comonotonic f and g,

I(f +9)=Z(f) +Z(g)
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Definitions Outline

Definitions: properties

Choquet integral. Characterization

e Theorem (Schmeidler, 1986; Narukawa and Murofushi, 2003). Let
7 :|0,1]™ — Ry be a functional with the following properties
o Z is comonotonic monotone
o 7 is comonotonic additive

o I(1,...,1) =1
Then, there exists a non-additive measure p such that Z(f) is the

Choquet integral of f with respect to u.

It is also true that a Choquet integral satisfies the conditions above.
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Definitions Outline

Definitions: properties

Choquet integral. Properties

e Proposition 1. If 11 is submodular, then

©) [+ 9du©) [ fau+(C) [ gin

e Proposition 2. If 1 is supermodular, then

©) [+ 9)du=(©) [ fau+(C) [ gin

where
o submodular pu(A) + u(B) > u(AU B) + u(AN B)

When adding an element, the smaller the set, the larger the increase

o supermodular p(A) + u(B) < u(AU B) + u(AN B)
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Definitions Outline

Definitions: properties

Choquet integral. Properties

e Cauchy-Schwarz inequality: If p is a submodular non-additive
measure; then

0) [ fodn? < ©) [ £au(c) [ i

e Another inequality: If p is a submodular non-additive measure; then

((C )/(f+g2d,u% /fd% /deu)%
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

e Concept: v absolutely continuous w.r.t. p (if u(A4) = 0 then v(A) = 0)

e Theorem. 4 and v two additive measures on (€2, F) and u be
o-finite. If v << pu, then there exists a nonnegative measurable
function f on () such that

(4) = [ fa
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

e Concept: v absolutely continuous w.r.t. p (if u(A4) = 0 then v(A) = 0)

e Theorem. 4 and v two additive measures on (€2, F) and u be
o-finite. If v << pu, then there exists a nonnegative measurable
function f on () such that

(4) = [ fa

— this permits to define the Radon-Nikodym derivative:
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

e Concept: v absolutely continuous w.r.t. p (if u(A4) = 0 then v(A) = 0)

e Theorem. 4 and v two additive measures on (€2, F) and u be
o-finite. If v << pu, then there exists a nonnegative measurable
function f on () such that

(4) = [ fa

— this permits to define the Radon-Nikodym derivative:
— The function [ is called the Radon-Nikodym derivative of v w.r.t.

(4, denoted
B dv

f=a
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Definitions Outline

Definitions: Radon-Nikodym derivative

Radon-Nikodym derivative: (additive measures)

e Concept: v absolutely continuous w.r.t. p (if u(A4) =0 then v(A) = 0)

e Theorem. 4 and v two additive measures on (€2, F) and u be
o-finite. If v << u, then there exists a nonnegative measurable
function f on ) such that

(4) = [ fa

— this permits to define the Radon-Nikodym derivative:
— The function f is called the Radon-Nikodym derivative of v w.r.t.

(4, denoted
_dv

| = i
e f may not be unique, but if fy and f; are both Radon-Nikodym
derivatives of v, then fy = f1 almost everywhere u

Vicenc Torra; Non-additive measures and integrals LiU 2014 18 / 70



Definitions Outline

Derivatives w.r.t. non-additive measures

Derivative (Choquet integral): (non-additive measures)

e (2, F) a measurable space, v, u : F — R non-additive measures.
— v is a Choquet integral of 1 if there exists a measurable function

g:Q— Rt st forall Ae F

v(A) = (C) / g (5)

A
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Definitions Outline

Derivatives w.r.t. non-additive measures

Derivative (Choquet integral): (non-additive measures)

e (2, F) a measurable space, v, u : F — R non-additive measures.
— v is a Choquet integral of 1 if there exists a measurable function
g:Q — Rt st forall Aec F

V(4) = () / g (5)

A

e /i, v two non-additive measures. If pis a Choquet integral of v, and
g i1s a function such that Equation 5 is satisfied, then

dv/du = g,

— ¢ is a derivative of v with respect to p.
— Graf and Sugeno studied conditions of when this derivative exists.
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Definitions Outline

Derivatives w.r.t. non-additive measures

Derivative (Choquet integral): (Proposition 4 in (Sugeno, 2013))

e Let f(¢) be a continuous and increasing function with f(0) = 0, let
L, be a distorted Lebesgue measure, then there exists an increasing
(non-decreasing) function g so that f(t) = (C) f[07t]g(7)d,um and
the following holds:

G(s)
g(t)

F(s)/sM(s) (6)
L™F(s)/sM(s)]. (7)

Here, F'(s) is the Laplace transformation of f, M the Laplace
transformation of m, and G the Laplace transformation of g.
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Definitions Outline

Derivatives w.r.t. non-additive measures

Computation:

e It is possible to compute the Radon-Nikodym derivative
(for some examples)
e Computations use the Laplace transformation
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Definitions Outline

Derivatives w.r.t. non-additive measures

Computation (Example): Applying Proposition 4 (Sugeno, 2013), we

have
dvP . NP(s) T(p+1)

d,um] - sM(s)  2sp1
Then using the inverse Laplace transform on this expression we obtain:

L|

diP _ L_l[r(p + 1)] _ F(p =+ 1) tp—2
dfbm 2sP—1 2I'(p — 1)
_ p(p o 1)tp—2.

2
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Outline

f-divergence for non-additive measures
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f-divergence Outline

f-Divergence

Given: P, () two probabilities a.c. w.r.t. a prob. v.

e f-divergence between P and Q) w.r.t. v

~[dQ , (dP/dv
Dy (P, Q) = /Ef (dQ/du) dv
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f-divergence

f-Divergence and distances

Outline

Examples of f-divergence between P and () w.r.t. v

~[dQ , (dP/dv
Dy, (P,Q) = /Ef (dQ/dy) dv

Some particular distances
e Hellinger distance when f(z) = (1 — /7)?,

H(P,Q):\;/ <\/§\/Z?>2dy

Here dP/dv and d@)/dv are the Radon-Nikodym derivatives
e \ariation distance when f(z) = |x — 1

5(P.Q) =3 [

e Kullback-Leibler, Rényi distance, y?-distance

dP dP

d
dv dv g
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f-divergence Outline

f-Divergence: non-additive measures

Definition:

® /i1, [1o two non-additive measures that are Choquet integrals of v.
The f-divergence between 111 and po with respect to v is defined as

d s duy /dv
Dy (pa, pr2) = (O)/d_j (dulédl) dv

Here dyi1/dv and dus/dr are the derivatives of iy and ps.
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f-divergence Outline

f-Divergence and Hellinger distance: non-additive
measures

Definition:

® /i1, [o two non-additive measures that are Choquet integrals of v.
The Hellinger distance between 141 and po with respect to v is defined

Hy(p1, p2) = \ %(C)/ (\/% - \/%)26@

Here dy1/dv and dus/dvr are the derivatives of g and ps.
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f-divergence Outline

f-Divergence and variation distance: non-additive
measures

Definition:

® /i1, [o two non-additive measures that are Choquet integrals of v.
The Variation distance between 11 and o with respect to v is defined

as
. dpy  dps

Here dy1/dv and dus/dv are the derivatives of iy and ps.

dv
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Outline

Properties
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Distance Outline

Distances: properties

Properties:

e Proper generalization?
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Distance Outline

Distances: properties

Properties:

e Proper generalization?

e Yes: Let v, u1, po be three additive measures such that pq and o
are absolutely continuous with respect to v. Then, Dy, (11, p2) is
the standard f-divergence.
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Distance Outline

Distances: properties

Properties:

e Proper generalization?
e Yes: Let v, u1, po be three additive measures such that pq and o

are absolutely continuous with respect to v. Then, Dy, (11, p2) is

the standard f-divergence.
e Also, H,(u1,p2) and 9, (w1, o) are the Hellinger distance and the

variation distance
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Distance Outline

Distances: properties

Properties:

e Proper generalization?
e Yes: Let v, u1, po be three additive measures such that pq and o

are absolutely continuous with respect to v. Then, Dy, (11, p2) is
the standard f-divergence.

e Also, H,(u1,p2) and 9, (w1, o) are the Hellinger distance and the
variation distance

e D¢, (u1,p2) with appropriate f (i.e., f(x) = (1 —+/z)? and f(x) =
|z — 1|) correspond to Hellinger and variation distance. l.e.,
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Distance Outline

Distances: properties

Properties:

e Proper generalization?
e Yes: Let v, u1, po be three additive measures such that pq and o

are absolutely continuous with respect to v. Then, Dy, (11, p2) is
the standard f-divergence.

e Also, H,(u1,p2) and 9, (w1, o) are the Hellinger distance and the
variation distance

e D¢, (u1,p2) with appropriate f (i.e., f(x) = (1 —+/z)? and f(x) =
|z — 1|) correspond to Hellinger and variation distance. l.e.,

1
\/§Df,u(,u17 /’LQ) — HV(,LLla /’LQ)
1

5D rwps p2) = 0u(pr, p2).
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Distance Outline

Distances: properties

Properties:

e Distance?
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Distance Outline

Distances: properties

Properties:

e Distance?
o f-divergence is not a distance for additive measures
(it is not symmetric, it does not no satisfy triangle inequality)
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Distance Outline

Distances: properties

Properties:

e Distance?
o f-divergence is not a distance for additive measures
(it is not symmetric, it does not no satisfy triangle inequality)
o Hellinger distance, variation distance are distances.
(satisfy positiveness, symmetry, and triangular inequality)
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Distance Outline

Distances: properties

Properties:

e Distance?
o f-divergence is not a distance for additive measures
(it is not symmetric, it does not no satisfy triangle inequality)
o Hellinger distance, variation distance are distances.
(satisfy positiveness, symmetry, and triangular inequality)
e 50, we only consider distance for Hellinger and variation distance

Vicenc Torra; Non-additive measures and integrals LiU 2014 31 /70



Distance Outline

Distances: properties

Properties:

e Distance?
o Positiveness: Dy, (1, p2) = 0 if p1 = po.
So, Hellinger and variation distance are positive
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Distance Outline

Distances: properties

Properties:

e Distance?
o Positiveness: Dy, (1, p2) = 0 if p1 = po.
So, Hellinger and variation distance are positive
o Symmetry: Hellinger and variation symmetric by definition
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Distance Outline

Distances: properties

Properties:

e Distance?
o Positiveness: Dy, (1, p2) = 0 if p1 = po.
So, Hellinger and variation distance are positive
o Symmetry: Hellinger and variation symmetric by definition
o Triangular inequality:
* If v i1s submodular, then we have

Hy(pa, p2) + Hy(po, pis) > Hy (g1, p13).
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Distance Outline

Distances: properties

Properties:

e Distance?
o Positiveness: Dy, (1, p2) = 0 if p1 = po.
So, Hellinger and variation distance are positive
o Symmetry: Hellinger and variation symmetric by definition
o Triangular inequality:
* If v i1s submodular, then we have

Hy(pa, p2) + Hy(po, pis) > Hy (g1, p13).

* Also, if v i1s submodular, then we have

5V(M17 :u2) -+ 51/(:““27 :UJS) > 51/(lula /Lg)
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Distance Outline

Distances: properties

Properties:

e Triangular inequality. Proof
o Proof of triangular inequality for Hellinger distance comes from

(seen above)

((C )/(f+g)d,u% /fd% /g2d,u)%

o Proof of triangular inequality for variation distance comes from

(seen above)

©) [+ 9)du<©) [ fiu+(C) [ gin
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Distance Outline

Distances: properties

Properties:
e Triangular inequality Hellinger distance. Proof

Hy(p1, p2) + Hu(pg, p3) = {%(C)/ (\/%— \/%)Qdu}lme{%(C)/ 0/%— @)2@}1/
=1 “V(@‘@) (@—@)2@}1&
=1 <C>/<¢@—F> (@—@YW”
o] ()

= Hy(p1, 13)

1/2
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Distance Outline

Distances: properties

Properties:

e Triangular inequality variation distance. Proof

dv

dpz  dpg
d—i—(C)/‘ -

) av

1 dpy  dpsg
Su(p1, o) + du(pe, u3) = —(0)/‘ ”

dpy  dpe
- (C)/Gdy  dv *

dpz  dys
dv dv
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Distance Outline

Distances: properties

Properties:

e Distance?
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Distance Outline

Distances: properties

Properties:

e Distance?
o If v is submodular, Hellinger distance is a distance.
o If v is submodular, Variation distance is a distance.
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Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted
Lebesgue measures w.r.t. a third one
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Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted
Lebesgue measures w.r.t. a third one

e Measures:
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Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted
Lebesgue measures w.r.t. a third one

e Measures:
o i, be the distorted Lebesgue measure with m(t) = ¢2,

o VP be the distorted Lebesgue measure with nP(t) =t
(i.e., vP(A) = (A(A))P for p > 2, and vP(|0,1]) = tP)
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Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted
Lebesgue measures w.r.t. a third one

e Measures:
o i, be the distorted Lebesgue measure with m(t) = ¢2,
o VP be the distorted Lebesgue measure with nP(t) = tP
(i.e., vP(A) = (A(A))P for p > 2, and vP(|0,1]) = tP)
e Computation: Hellinger distance between v and v? w.r.t. (.
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Hellinger Distance Outline

Hellinger distance: properties

Example: Computation of a Hellinger distance between two distorted
Lebesgue measures w.r.t. a third one

e Measures:
o i, be the distorted Lebesgue measure with m(t) = ¢2,
o VP be the distorted Lebesgue measure with nP(t) = tP
(i.e., vP(A) = (A(A))P for p > 2, and vP(|0,t]) = tP)

e Computation: Hellinger distance between v and v? w.r.t. (.

> o |1 ! dv?  [dvP 2
H,, (3, 07) = \2<0>/0 o =[5 )
(8)
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Hellinger Distance Outline

Hellinger distance: properties

Example (I1): Hellinger distance between v and v? w.rt. pu,, where
distortions are nP(t) =t and m(t) = t.

e Recall (from a previous example) that

dv? p(p o 1)tp—2
dibm 2
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Hellinger Distance Outline

Hellinger distance: properties

Example (I1): Hellinger distance between v and v? w.rt. p,, where
distortions are nP(t) = t? and m(t) = t.

e Recall (from a previous example) that

dv? p(p_ 1)tp—2
d by, 2

e Computation (with more Choquet integral — and Laplace transforms):

H, (207) — \;(c) /01 \E_\E djinm
- \%(C) /01 (1—\/p(p2_1)t(”)/2> djim, (9)

_ \/1 4y/2p(p—1) (10)
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Hellinger Distance Outline

Hellinger distance: properties

Example 2:

® (i, be the distorted Lebesgue measure with m/(t) = t.

e P be the distorted Lebesgue measure with n(t) = tP
(i.e., vP(A) = (A(A))P for p > 2, and vP(|0,t]) = tP)

e Compute the Hellinger distance between v? and vP w.r.t. p,,.
Only difference from Example 1 is p,,
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Hellinger Distance Outline

Hellinger distance: properties

2

Example 2: Hellinger distance between v“ and v? w.r.t. pu,, where

distortions are n”(t) = tP and m(t) = t.

o First,
dyp :ptp_l
d:um’
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Hellinger Distance Outline

Hellinger distance: properties

Example 2: Hellinger distance between v* and v? w.rt. p,, where
distortions are n”(t) = tP and m(t) = t.

e First,
p— ptp_]'

d:um’
e Computation (with more Choquet integral — and Laplace transforms):

dv? d p
HM /(V27Vp) — L_ -
m fom L

\
- \/; \/Q_—W)Qdum (11)

(12)

_m
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Hellinger Distance

Hellinger distance: properties

Outline

Properties:

e Compare:

H,u (V2 Vp) _ \/1 o 4\/2]?(]? o 1)

(p+2)p

(12, 0P) = \/I@

H, ,

p+ 2

e [he Hellinger distance depends on i,

(13)
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

e Compare:

H,u (V2 Vp) _ \/1 o 4\/2]?(]? o 1)

(p+2)p

(v, VP) = \/I@ (13)

p+ 2

Hy,

m/

e [he Hellinger distance depends on i,
Different for additive measures: H, (1, 42) is independent of v.
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Hellinger Distance Outline

Hellinger distance: properties

Properties related to the previous example:

When p — o0,

H,, (v*,vP)=1and H, ,(v*vP)=1.

m

Both H,, (v*,v?) and H, ,(v* vP) are increasing w.r.t. p > 2, and the
following holds

e H, (v? vP)el0,1] forall p>2,
e H, ,(v*,vP)e]0,1] forall p>2.
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

e Conjugate of the measure, same distance ?
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

e Conjugate of the measure, same distance ?
o Recall that conjugate of a measure: pu(A) =1 — pup(X \ A)
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Hellinger distance: properties

Properties:

e Conjugate of the measure, same distance ?
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e Conjugate of the measure, same distance ?
o First question, which conjugate in Hy (11, t2)?

Vicenc Torra; Non-additive measures and integrals LiU 2014 44 / 70



Hellinger Distance Outline

Hellinger distance: properties

Properties:

e Conjugate of the measure, same distance ?
o First question, which conjugate in Hy (11, t2)?
* Hy(pas p2) = (0)Hy(p5, p3)

* Hy(p1, p2) = (7)Hye(pf, p3)
where p(A) =1 — u(X \ A)
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Hellinger Distance Outline

Hellinger distance: properties

Properties:

e Conjugate of the measure, same distance ?
o First question, which conjugate in Hy (11, t2)?
* HI/(II’L17II’L2) — (7)HV(Mc1:”u§)
* Hy(p1, po) = (7)Hye(pg, p13)
where p(A) =1 — u(X \ A)
e Partial answers:
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Hellinger Distance

Hellinger distance: properties

Outline

Properties:

e Conjugate of the measure, same distance ?
o First question, which conjugate in Hy (11, t2)?
* HI/(II’L17II’L2) — (?)Hl/(:uclznug)
* Hy(p1, po) = (7)Hye(pg, p13)
where p(A) =1 — u(X \ A)
e Partial answers:

o Dual of Distorted Lebesgue is Distorted Lebesgue
pe(A) =1 = pm(X\ A) =1—=m(l —z)
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Hellinger Distance

Hellinger distance: properties

Outline

Properties:

e Conjugate of the measure, same distance ?
o First question, which conjugate in Hy (11, t2)?
* HI/(II’L17II’L2) — (?)Hl/(:uclznug)
* Hy(p1, po) = (7)Hye(pg, p13)
where p(A) =1 — u(X \ A)
e Partial answers:
o Dual of Distorted Lebesgue is Distorted Lebesgue
p(A) =1 = pp( X\ A) =1 —m(l — )
o If v is submodular, ¢ is supermodular
So, H, (1, p42) is a distance but Hyc(pu§, 15) is not
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Hellinger Distance

Hellinger distance: properties

Outline

Properties:

e Conjugate of the measure, same distance ?
o First question, which conjugate in Hy (11, t2)?

* HI/(II’L17II’L2) — (7)HV(Mc1:”u§)
* Hy(pr, p2) = (7) Hye(pg, p5)
where p(A) =1 — u(X \ A)
e Partial answers:

o Dual of Distorted Lebesgue is Distorted Lebesgue
p(A) =1 = pp( X\ A) =1 —m(l — )

o If v is submodular, ¢ is supermodular
So, H, (1, p42) is a distance but Hyc(pu§, 15) is not
Therefore, only H,, (11, o) = (7)H, (1S, 15) makes sense
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Hellinger Distance

Hellinger distance: properties

Outline

Properties:

e Conjugate of the measure, same distance 7
o First question, which conjugate in Hy (11, tt2)?

* Hz/(:ulmu2) — (7)HI/(/'L(1:7/'L§)
* Hy(p, p2) = (7)Hye(pf, p3)
where p(A) =1 — u(X \ A)
e Partial answers:
o Dual of Distorted Lebesgue is Distorted Lebesgue
pe(A) = 1= (X \ A) = 1 —m(1 - 2)
o If v is submodular, ¢ is supermodular
So, H, (1, p42) is a distance but Hpe(u§, 15) is not
Therefore, only H, (11, o) = (7)H, (1§, 15) makes sense
o This case, difficult (work in progress)
E.g., if m(z) = 2%, then m®(z) = 2z — 22,
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Some definitions (I1): The Sugeno integral

LiU 2014 45 / 70



Definitions

Outline

Definitions: integrals

Sugeno integral (Sugeno, 1974):

e /1 a non-additive measure, g a measurable function. The Sugeno
integral of g w.r.t. p, where py(r) := pu({x|g(z) > r}):

S) [ gdu =

| Fxsay)

sup 7 A pg(r)]. (14)

f(2)
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Definitions Outline

Definitions: integrals

Sugeno integral. Discrete version

e /1, a non-additive measure, f a measurable function. The Sugeno
integral of f w.r.t. u,

() / Fdu = max min(f(zsa), 1(Ase)),

i=1,N

where f(xs(;)) indicates that the indices have been permuted so that
0 < fzsn)) < oo < flagvy) < 1and Agy = {Ts(i)s - Ts(N) }-
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Definitions Outline

Definitions: properties

Properties: (X a reference set, a a value in |0, 1])

e f,g functions f,g: X — [0,1]. Then,
o Z is minimum homogeneous if and only if, for comonotonic f and

g,
L(a N f) =aNI(f)

o I is comonotonic maxitive if and only if, for comonotonic f and g,
Z(f v g) =1(f) VLi(g)
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Definitions Outline

Definitions: properties

Characterization of the Sugeno integral

e Theorem (Ralescu and Sugeno, 1996; Marichal, 2000; Benvenuti
and Mesiar, 2000). Let Z : [0,1]" — Ry be a functional with the
following properties
o I is comonotonic monotone
o Z Is comonotonic maxitive
o Z i1s minimum homogeneous
oZ(1,...,1)=1
Then, there exists a fuzzy measure p such that Z(f) is the Sugeno
integral of f with respect to L.
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Applications
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Applications Outline

Aggregation operators

Independence.

e Choquet integral and Mahalanobis distance
o Mahalanobis: covariance matrix
o Choquet integral: fuzzy measure
e In a single framework: Mahalanobis and Choquet distance

Mahalanobis
Distance

Choquet
Integral

Covariance
M atrix

Weighted
Mean

Additive
measure
Diagonal
Matrix

Fuzzy measure
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Applications Outline

Aggregation operators

Independence.

e Choquet integral and Mahalanobis distance
o Mahalanobis: covariance matrix
o Choquet integral: fuzzy measure
e A generalization: Choquet-Mahalanobis distance/distribution

M RGL device 1 [Focus]
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Applications Outline

Record Linkage

Record Linkage:

A (protected / public) B (intruder)

(8]

S1
— W/
. \(_
u Sp
— . quasi- a c
: . 1 Ap 11, 12, -
confidential identifiers
quasi- identifiers
identifiers
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Applications

Outline

Record Linkage

Record Linkage:

N
Minimize Z K; (15)

Subject to :

1=1

CL(d(Vi(as), Vi(bs)), - - -, d(Va(as), Vi(b;)))—

(16)
K; € 40,1} (17)
u(A) €10, 1] (18)
uw(A) < u(B) VA,Bst. ACBCX (19)
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Applications Outline

Decision

Decision:

e Different alternatives
e Users have preferences (an order on the alternatives <)
e GOAL: We want to model these preferences (to model <)
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Applications Outline

Decision under certainty

Decision under certainty. Multicriteria decision making

e Alternatives expressed in terms of utility functions

e Select best alternative by:
Step 1. Aggregate utilities: Choquet integral for non-independence
Step 2. Rank according to aggregated utilities

Criteria
Satisfaction on:
at | Price Quality Comfort alt | Consensus at | Ranking
FordT | 0.2 0.8 0.3 FordT 0.35 206 0.72
206 | 07 07 0.8 206 0.72 FordT | 0.35
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Applications Outline

Decision under uncertainty

Decision under uncertainty.

e Decision theory based on probability and utility functions to model
lack of knowledge (Savage, 1954; Ramsey and von Neumann):
o classical/subjective expected utility
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Applications Outline

Decision under uncertainty

Decision under uncertainty.

e Decision theory based on probability and utility functions to model
lack of knowledge (Savage, 1954; Ramsey and von Neumann):
o classical/subjective expected utility
e Ellsberg paradox: people behave differently than the model!!
o Ellsberg paradox violates the postulates of the theory
o Alternative model based on non-additive (fuzzy) measures
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Applications Outline

Decision under uncertainty: Ellsberg paradox

Decision making: (Ellsberg, 1961) 90 balls in an urn
e A player and different games, which prefer? (fr, fB,...)

Color of balls Red | Black | Yellow
Number of balls | 30 60
fr $ 100 0 0
/B $0 |$100] O
fry $ 100 0 $ 100
By $0 [$100| $ 100
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Applications Outline

Decision under uncertainty: Ellsberg paradox

e How we model < with classical expected utility 7

o a (finite) state space S (options = the balls)
o a (finite) set of outcomes X (benefits = the money)
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Applications Outline

Decision under uncertainty: Ellsberg paradox

e How we model < with classical expected utility 7

o a (finite) state space S (options = the balls)

o a (finite) set of outcomes X (benefits = the money)

o P be a probability measure on (X, A, P) (P on the balls)
o u: X — RT be a utility function (utility of the money)
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Applications Outline

Decision under uncertainty: Ellsberg paradox

e How we model < with classical expected utility 7

o a (finite) state space S (options = the balls)

o a (finite) set of outcomes X (benefits = the money)

o P be a probability measure on (X, A, P) (P on the balls)

o u: X — RT be a utility function (utility of the money)

o a function from S to X (an act), F the set of acts (the alternatives).
o User preferences on F = {f|f :S — X} denoted by <
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Applications Outline

Decision under uncertainty: Ellsberg paradox

e How we model < with classical expected utility 7

o a (finite) state space S (options = the balls)

o a (finite) set of outcomes X (benefits = the money)

o P be a probability measure on (X, A, P) (P on the balls)

o u: X — RT be a utility function (utility of the money)

o a function from S to X (an act), F the set of acts (the alternatives).
O
©)

User preferences on F = {f|f : S — X} denoted by <
< is represented by P and u when (user preference model)

E(u(f)) < E(u(g)) if and only if f < g
where

sES reX
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Applications

Outline

Decision under uncertainty: Ellsberg paradox

e Computation of the expected utility for a particular act (alternative)

o S = {Red, Black,Yellow}
o fry = (0 for a Black, $ 100 for Red, and $ for Yellow)

E(u(fry))

u(0)P(f7(0)) + u(100)P(f~(100))
w(0)P({B}) + u(100)P({Y, R})
w(0)P({B}) + u(100)P({Y'}) + u(100) P({R})

o Problem. Given a player, and preferences <, determine P and u
o E.g., P(x) =1/3 and u(x) = .
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Applications Outline

Decision under uncertainty: Ellsberg paradox

Decision making: (Ellsberg, 1961) 90 balls in an urn
e A player and different games, which prefer? (fr, fB,...)

Color of balls Red | Black | Yellow
Number of balls | 30 60
fr $ 100 0 0
/B $0 |$100] O
frY $ 100 0 $ 100
By $0 [$100| $ 100

e Most people prefer
o B = fr
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Applications Outline

Decision under uncertainty: Ellsberg paradox

Decision making: (Ellsberg, 1961) 90 balls in an urn
e A player and different games, which prefer? (fr, fB,...)

Color of balls Red | Black | Yellow
Number of balls | 30 60
fr $ 100 0 0
/B $0 |$100] O
frY $ 100 0 $ 100
By $0 [$100| $ 100
e Most people prefer
o fp < fr

o fry < fBY

Vicenc Torra; Non-additive measures and integrals LiU 2014 61 / 70



Applications

Decision under uncertainty: Ellsberg paradox

Outline

Decision making: (Ellsberg, 1961) 90 balls in an urn

e A player and different games, which prefer? (fr, fB, ...

Color of balls Red | Black | Yellow
Number of balls | 30 60
fr $ 100 0 0
/B $0 |$100 0
JRrY $100| 0 | $100
/BY $0 | $100| $ 100
e Most people prefer
o fp < fr
o fry < JBY

e No solution exist with probabilities (additive measures),
but can be solved with non-additive (fuzzy) measures

Vicenc Torra; Non-additive measures and integrals
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Applications Outline

Decision under uncertainty: Ellsberg paradox

e Choquet expected utility model (Schmeidler, 1989)
o Choquet integral (Cl), utility u, non-additive (fuzzy) measure

E(u(fry)) = u(0)p({B}) + u(100)u({Y, R})
7 u(0)p({B}) + u(100)u({Y'}) + u(100)u({12})

o User preferences on F denoted by <
o < is represented by P and u when (user preference model)

E(u(f)) = CL.,.(f) < E(u(g)) = CL,,(g) if and only if f < g

where

E(u(f) = Cluu(f) = ) (w(oq) = u(zoi—1))p(f (),

-)EX

Lo (i
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Summary

LiU 2014 63 / 70



Hellinger Distance Outline

Hellinger distance: properties

Summary:

e Review of non-additive measures

e Extension of the Hellinger distance to non-additive measures
e Some properties

e Some applications
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Outline

Thank you
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Introduction Outline

Choquet expected utility model

e \Why classical expected utility cannot represent Ellsberg paradox 7

o to representation < in terms of uv and P, we need

E(u(f)) < E(u(g)) forall f<g.
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Introduction Outline

Choquet expected utility model

e \Why classical expected utility cannot represent Ellsberg paradox 7

o From fry < fBy,

E(u(fry)) = w(0)P(B)+u(100)P(Y) + u(100)P(R)
< u(100)P(B) + u(100)P(Y) + u(0)P(R) = E(u(fpy))

S

s0, u(0)P(B) + u(100)P(R) < u(100)P(B) + u(0)P(R)
o From fp < fR,

E(u(fp)) = u(100)P(B)+u(0)P(Y) + u(0)P(R)
< u(0)P(B) + u(0)P(Y) +u(100)P(R) = E(u(fr))

so, u(100)P(B) + u(0)P(R) < u(0)P(B) + u(100) P(R).
Inequalities 1 and 2 are in contradiction: no u and P exist
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Introduction Outline

Choquet expected utility model

e How Choquet expected utility represents Ellsberg paradox 7
Using:

o () =0

o p({R}) =1/3, u({B}) = p({Y'}) = 2/9

© M({R7 Y}) — 5/91 :LL({Ba Y}) — :LL({Ra B}) — 2/3
o u{R,B,Y}) =1

LiU 2014 69 / 70



Introduction Outline

Choquet expected utility model

e How Choquet expected utility represents Ellsberg paradox 7

o From fRY = fo we have

CL(u(fry)) = u(0)p({B})+u(100)u({Y, R})
< u(100)u({B,Y'}) + u(0)u({R}) = CL(u(fBy))

50, 0-2/9+100-5/9 < 100 -2/3 +0-1/3.
o From fp < fg,

CL(u(fB)) = u(100)u({B}) + u(0)u({Y, R})
< CLu(u(fr)) = w(0)u({B,Y}) + u(100)u({ R})

s0, 100-2/9+0-5/9 < 0-2/3+100-1/3.
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