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Vicenç Torra; Non-additive (fuzzy) measures LFSC 2013 4 / 60



Motivation > Why non-additive measures? Outline

A short motivation

Why these measures are studied?

• Mathematical interest

◦ Properties

Vicenç Torra; Non-additive (fuzzy) measures LFSC 2013 4 / 60



Motivation > Why non-additive measures? Outline

A short motivation

Why these measures are studied?

• Mathematical interest

◦ Properties

⋆ Equalities and Inequalities (e.g. Chebyshev type inequalities)

⋆ Measures and distances (e.g. entropy / Hellinger distance)
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Vicenç Torra; Non-additive (fuzzy) measures LFSC 2013 4 / 60



Motivation > Why non-additive measures? Outline

A short motivation

Why these measures are studied?

• Mathematical interest

◦ Properties

⋆ Equalities and Inequalities (e.g. Chebyshev type inequalities)

⋆ Measures and distances (e.g. entropy / Hellinger distance)

◦ Constructions

⋆ Integrals with respect to these measures (e.g. Choquet integrals)
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A short motivation

Why these measures are studied?

• Applications

◦ Some problems that cannot be solved with additive measures (i.e.,

probabilities) can be solved with non-additive measures.

⋆ Decision making

⋆ Subjective evaluation

⋆ Data fusion

⋆ Computer vision

⋆ Distances

→ a common theme:

to take into account interactions

→ a common advantage:

more expressive power than with additive models
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A short motivation

Why these measures are studied?

• Decision making

◦ Criteria to order our car preferences: price, quality, and confort

assign to each car ci ∈ Cars utility values up(ci), uq(ci), uc(ci)

assign importances to each criteria (or subset of criteria)

and combine values w.r.t. importances to find a global value (and

order)

• Data fusion

◦ Sensors give distances to the nearest object: s1, s2, s3
assign importances to sensors (or subsets of sensors)

and combine values w.r.t. importances to find a reliable value
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A short motivation

Why this talk focuses on distorted probabilities?

• Additive measures on X defined in terms of |X| values

We need a probability value for each x ∈ X

→ so, |X| values

• Non-additive measures on X defined in terms of 2|X| values

We need a value for each A ⊂ X

→ so, 2|X| values

→ distorted probabilities as a compact representation of (some) non-

additive measure

−→ useful for applications
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◦ Hierarchically decomposable fuzzy measures (⊕i + hierarchy of X)
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A short motivation

The only compact representation?

• No!!

→ there are other families of measures. E.g.,

◦ ⊥-decomposable fuzzy measures (µ(A ∪B) = µ(A)⊕ µ(B))

◦ Sugeno λ-measures (µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B))

◦ k-additive fuzzy measures (in terms of the Möbius transform)

◦ Hierarchically decomposable fuzzy measures (⊕i + hierarchy of X)

Common theme: Reduce the number of parameters

Distorted probability: simple
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Definitions

Additive measures: (X,A) a measurable space; then, a set function µ

is an additive measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞

(iii) µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) for every countable sequence Ai (i ≥ 1)

of A that is pairwise disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j).
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is an additive measure if it satisfies

(i) µ(A) ≥ 0 for all A ∈ A,

(ii) µ(X) ≤ ∞

(iii) µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) for every countable sequence Ai (i ≥ 1)

of A that is pairwise disjoint (i.e,. Ai ∩Aj = ∅ when i 6= j).

Finite case: µ(A ∪B) = µ(A) + µ(B) for disjoint A, B
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Introduction > Definition Outline

Definitions

Non-additive measures: (X,A) a measurable space, a non-additive

(fuzzy) measure µ on (X,A) is a set function µ : A → [0, 1] satisfying

the following axioms:

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)
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Non-additive measures vs. additive measures:

• In additive measures: µ(A) =
∑

x∈A px
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Vicenç Torra; Non-additive (fuzzy) measures LFSC 2013 14 / 60



Introduction > Differences Outline

Differences

Non-additive measures vs. additive measures:

• Is non-additivity useful ?

Yes
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Introduction > Differences Outline

Differences

Non-additive measures vs. additive measures:

• Is non-additivity useful ?

Yes

• Why?

some cases represent interactions

◦ µ(A) =
∑

x∈A px (no interaction)

◦ µ(A) <
∑

x∈A px (negative interaction)

◦ µ(A) >
∑

x∈A px (positive interaction)
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Number of parameters

Non-additive measures vs. additive measures:

• How to define an additive measure on X?
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Number of parameters

Non-additive measures vs. additive measures:

• How to define an additive measure on X?

One probability value for each element

→ |X| values

• How to define a non-additive measure?

One value for each set

→ 2|X| values
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What can we do with a measure?

Non-additive measures and additive measures:

• Integrate a function f with respect to a measure:

◦ Integral w.r.t. additive measure p
→ expectation

∑

pxf(x)

−→ Lebesgue integral (continuous case:
∫

fdp)
◦ Integral w.r.t. non-additive measure µ
→ expectation like

N
∑

i=1

f(xσ(i))[µ(Aσ(i))− µ(Aσ(i−1))]

−→ Choquet integral (continuous case: (C)
∫

fdµ)

The Choquet integral is a Lebesgue integral when the measure is additive
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Example

Decision making:

Ellsberg paradox (Ellsberg, 1961), an urn, 90 balls ...

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100

• Usual (most people’s) preferences

◦ fB ≺ fR
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Applications > Decision Making Outline

Example

Decision making:

Ellsberg paradox (Ellsberg, 1961), an urn, 90 balls ...

Color of balls Red Black Yellow

Number of balls 30 60

fR $ 100 0 0

fB $ 0 $ 100 0

fRY $ 100 0 $ 100

fBY $ 0 $ 100 $ 100

• Usual (most people’s) preferences

◦ fB ≺ fR
◦ fRY ≺ fBY

• No solution exist with additive measures,

but can be solved with non-additive ones
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Applications

Subjective Evaluation:

Subjective evaluation and application field for non-additive (fuzzy)

measures from the beginning.

(Sugeno, 1974, p.2):

“The purposes of this dissertation are to propose the concept of

fuzzy measures and integrals [11,12] as a way for expressing human

subjectivity and to discuss their applications.”
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Applications

Definition of Subjective Evaluation: (Dubois and Prade, 1997)

“Formally speaking, the subjective evaluation problem can be

viewed as the synthesis, the identification of a function which maps

the attribute values describing the situation to evaluate into a

discrete domain (classification), or a continuous one (absolute

evaluation). More generally, we may look for the degree of

membership of the situation to a category, or have a function

yielding a fuzzy evaluation. This function is in general not

available as such, but is implicitly, and partially, described in

terms of criteria, or by means of expert rules, or through some

fuzzy algorithm. It may also happen that the function is only

partially known by exemplification through prototypical examples

of situations for which the evaluation is available.”

Vicenç Torra; Non-additive (fuzzy) measures LFSC 2013 20 / 60



Applications > Subjective Evaluation Outline

Example

Example: (Grabish, 1995) Evaluation of students

• students (A, B, C) on three subjects (M, P, L)

Ada, Byron, Countess; maths, physics, literature

• Marks:
Student M P L

Ada fA 18 16 10

Byron fB 10 12 18

Countess fC 14 15 15
• Preferences:

◦ Assign the same weight to mathematics and physics, and more

weight to this subjects than to literature.

◦ Represent the following preference on the students:

B ≺ A ≺ C.
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Applications > Subjective Evaluation Outline

Example

Example: (Grabish, 1995)

• No solution with additive measures

We can use non-additive measures (with the Choquet integral)
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Distorted Probabilities: introduction

An open question:

Non-additive measures vs. additive measures:

How to define a non-additive measure?

One value for each set

→ 2|X| values

A possible solution:

Distorted Probabilities.

• Compact representation of non-additive measures:

◦ Only |X| values (a probability) and a function (distorting function)
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Distorted Probabilities: Definition

• Representation of a fuzzy measure:

◦ f and P represent a fuzzy measure µ, iff

µ(A) = f(P (A)) for all A ∈ 2X

f a real-valued function, P a probability measure on (X, 2X)

◦ f is strictly increasing w.r.t. a probability measure P iff P (A) <

P (B) implies f(P (A)) < f(P (B))

◦ f is nondecreasing w.r.t. a probability measure P iff P (A) < P (B)

implies f(P (A)) ≤ f(P (B))
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Distorted Probabilities > Definition Outline

Distorted Probabilities: Definition

• Representation of a fuzzy measure: distorted probability

◦ f and P represent a fuzzy measure µ, iff

µ(A) = f(P (A)) for all A ∈ 2X

f a real-valued function, P a probability measure on (X, 2X)

◦ f is strictly increasing w.r.t. a probability measure P iff P (A) <

P (B) implies f(P (A)) < f(P (B))

◦ f is nondecreasing w.r.t. a probability measure P iff P (A) < P (B)

implies f(P (A)) ≤ f(P (B))

◦ µ is a distorted probability if µ is represented by a probability

distribution P and a function f nondecreasing w.r.t. a probability P .
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Distorted Probabilities > Definition Outline

Distorted Probabilities: Definition

• Representation of a fuzzy measure: distorted probability

◦ µ is a distorted probability if µ is represented by a probability

distribution P and a function f nondecreasing w.r.t. a probability P .

• So, for a given reference set X we need:

◦ Probability distribution on X: p(x) for all x ∈ X

◦ Distortion function f on the probability measure: f(P (A))
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Distorted Probabilities: Application

• Given a distorted probability ...

... we can apply any fuzzy integral

• E.g.

◦ the Choquet integral

◦ the Sugeno integral
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Distorted Probabilities > Application Outline

Distorted Probabilities: Application

• Distorted probability and Choquet integral:

◦ The WOWA operator can be represented as a Choquet integral with

a distorted probability.

⋆ WOWA generalizes both the WM and the OWA,

using both WM weights and OWA weights.

◦ From the distorted probability perspective, in WOWA:

⋆ the WM weights correspond to the probability distribution

⋆ the OWA weights are used to the construct the distortion function
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Distorted Probabilities: Properties

• Some distorted probabilities are not decomposable fuzzy measures.

• Some distorted probabilities cannot be represented easily with other

families of fuzzy measures → they really belong to another family.
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Distorted Probabilities: Properties

• Some distorted probabilities are not decomposable fuzzy measures.

• Some distorted probabilities cannot be represented easily with other

families of fuzzy measures → they really belong to another family.

• 1st. example (I):

◦ µ on X = {a, b, c} with p(a) = 0.2, p(b) = 0.35, p(c) = 0.45, and

f(x) =















0 if x < 0.5
0.2 if 0.5 ≤ x < 0.6
0.4 if 0.6 ≤ x < 0.85
1.0 if 0.85 ≤ x ≤ 1.0
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Distorted Probabilities > Properties Outline

Distorted Probabilities: Properties

• Some distorted probabilities are not decomposable fuzzy measures.

• Some distorted probabilities cannot be represented easily with other

families of fuzzy measures.

• 1st. example (II):

◦ µ(∅) = 0, µ({a}) = 0, µ({b}) = 0, µ({c}) = 0,

µ({a, b}) = 0.2, µ({a, c}) = 0.4, µ({b, c}) = 0.4, µ({a, b, c}) = 1

◦ µ is a DP but not a ⊥-decomposable fuzzy measure

because, there is no t-conorm s.t. ⊥(0, 0) 6= 0

→ as µ({a, b}) = 0.2 when µ({a}) = 0 and µ({b}) = 0,

we would require 0.2 = µ({a, b}) = ⊥(µ({a}), µ({b})) = ⊥(0, 0).
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Distorted Probabilities: Properties

• Some distorted probabilities are not decomposable fuzzy measures.

• Some distorted probabilities cannot be represented easily with other

families of fuzzy measures.

• 2nd. example (I):

◦ µp,w over X = {x1, x2, x3, x4, x5} from (probability distribution)

p = (0.2, 0.3, 0.1, 0.2, 0.1), and function (from w = (0.1, 0.2, 0.4, 0.2,

0.1)):

Vicenç Torra; Non-additive (fuzzy) measures LFSC 2013 32 / 60



Distorted Probabilities > Properties Outline

Distorted Probabilities: Properties

• Some distorted probabilities are not decomposable fuzzy measures.

• Some distorted probabilities cannot be represented easily with other

families of fuzzy measures.

• 2nd. example (II):

◦ µp,w is a 5-additive fuzzy measure because m(A) 6= 0 for all A.

◦ E.g.,

m({x1, x2, x3, x4, x5}) = 0.50746528,

m({x1, x2, x3, x4}) = −0.2537326.

There is no k-additive fuzzy measure equivalent to µp,w for k < 5.
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m-dimensional Distorted Probabilities

LFSC 2013 34 / 60



m-Dimensional Distorted Probabilities > Definition Outline

m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?
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m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?

The number of distorted probabilities.

Observe the following

• For X = {1, 2, 3}, 2/8 of distorted probabilities.

• For larger sets X ...

... the proportion of distorted probabilities decreases rapidly
• For µ({1}) ≤ µ({2}) ≤ . . .

|X | Number of possible orderings for Number of possible orderings for
Distorted Probabilities Fuzzy Measures

1 1 1
2 1 1
3 2 8
4 14 70016
5 546 O(1012)
6 215470 –
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m-Dimensional Distorted Probabilities

Justification: Why any extension of distorted probabilities?

The number of distorted probabilities.

Goal:

• To cover a larger region of the space of fuzzy measures

DP

Unconstrained fuzzy measures

→ (similar to the property of k-additive fuzzy measures)

DP1,X ⊂ DP2,X ⊂ DP3,X · · · ⊂ DP|X|,X
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m-Dimensional Distorted Probabilities

• In distorted probabilities:

◦ One probability distribution

◦ One function f to distort the probabilities

• Extension to:

◦ m probability distributions

◦ One function f to distort/combine the probabilities
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m-Dimensional Distorted Probabilities

• In distorted probabilities:

◦ One probability distribution

◦ One function f to distort the probabilities

• Extension to:

◦ m probability distributions Pi

⋆ Each Pi defined on Xi

⋆ Each Xi is a partition element of X (a dimension)

◦ One function f to distort/combine the probabilities
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m-Dimensional Distorted Probabilities: Example

• Running example:

◦ A fuzzy measure that is not a distorted probability:
µ(∅) = 0 µ({M,L}) = 0.9
µ({M}) = 0.45 µ({P,L}) = 0.9
µ({P}) = 0.45 µ({M,P}) = 0.5
µ({L}) = 0.3 µ({M,P,L}) = 1

◦ Partition on X:

⋆ X1 = {L} (Literary subjects)

⋆ X2 = {M,P} (Scientific Subjects)
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m-Dimensional Distorted Probabilities: Definition

• m-dimensional distorted probabilities.

◦ µ is an at most m dimensional distorted probability if

µ(A) = f(P1(A ∩X1), P2(A ∩X2), · · · , Pm(A ∩Xm))

where,

{X1,X2, · · · ,Xm} is a partition of X,

Pi are probabilities on (Xi, 2
Xi),

f is a function on R
m strictly increasing with respect to the i-th

axis for all i = 1, 2, . . . ,m.

• µ is an m-dimensional distorted probability if it is an at most m

dimensional distorted probability but it is not an at most m − 1

dimensional.
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m-Dimensional Distorted Probabilities: Example

• Running example: a two dimensional distorted probability

µ(A) = f(P1(A ∩ {L}), P2(A ∩ {M,P}))

◦ with partition on X = {M,L, P}
1. Literary subject {L}
2. Science subjects {M,P},

◦ probabilities
1. P1({L}) = 1
2. P2({M}) = P2({P}) = 0.5,

◦ and distortion function f defined by

1 {L} 0.3 0.9 1.0

0 ∅ 0 0.45 0.5

sets ∅ {M}, {P} {M,P}
f ∅ 0.5 1
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Distorted Probabilities and Multisets

an approach to define (simple) fuzzy measures on
multisets
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Distorted Probabilities and Multisets

Multisets: elements can appear more than once

• Defined in terms of countM : X → {0} ∪ N

e.g. when X = {a, b, c, d} and M = {a, a, b, b, c, c, c},

countM(a) = 2, countM(b) = 3, countM(c) = 3, countM(d) = 0.

• A and B multisets on X, then

◦ A ⊆ B if and only if countA(x) ≤ countB(x) for all x in X

(used to define submultiset).

◦ A ∪B:

countA∪B(x) = max(countA(x), countB(x)) for all x in X.

◦ A ∩B:

countA∩B(x) = min(countA(x), countB(x)) for all x in X.
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Distorted Probabilities and Multisets

Fuzzy measure on multiset: X a reference set, M a multiset on X s.t.

M 6= ∅; then, the function µ from (M,P(M)) to [0, 1] is a fuzzy

measure if the following holds:

• µ(∅) = 0 and µ(M) = 1

• µ(A) ≤ µ(B) when A ⊆ B and B ⊆ M .
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Distorted Probabilities and Multisets

Fuzzy measure on multiset: X a reference set, M a multiset on X s.t.

M 6= ∅; then, the function µ from (M,P(M)) to [0, 1] is a fuzzy

measure if the following holds:

• µ(∅) = 0 and µ(M) = 1

• µ(A) ≤ µ(B) when A ⊆ B and B ⊆ M .

How to define fuzzy measures?:

• Even more parameters
∏

x∈X countM(x) !!

We present two alternative (but related) approaches
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Distorted Probabilities and Multisets

1st approach: Definition based on a pseudoadditive integral:
Nondecreasing function-based fuzzy measures

• X a reference set, M a multiset on X and µ a ⊕-decomposable fuzzy measure
on X . Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0 and
f(m(M)) = 1. Then, we define a fuzzy measure ν on P(M) by

νf(A) = f(m(A))

where m is the multiset function m : P(M) → [0,∞) defined by

m(A) = (D)

∫

countAdµ.
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Distorted Probabilities and Multisets

1st approach: Definition based on a pseudoadditive integral:
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• X a reference set, M a multiset on X and µ a ⊕-decomposable fuzzy measure
on X . Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0 and
f(m(M)) = 1. Then, we define a fuzzy measure ν on P(M) by

νf(A) = f(m(A))

where m is the multiset function m : P(M) → [0,∞) defined by

m(A) = (D)

∫

countAdµ.

• Rationale of the definition: (C)
∫

χAdµ = µ(A)
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Distorted Probabilities and Multisets

1st approach: Definition based on a pseudoadditive integral:
Nondecreasing function-based fuzzy measures

• X a reference set, M a multiset on X and µ a ⊕-decomposable fuzzy measure
on X . Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0 and
f(m(M)) = 1. Then, we define a fuzzy measure ν on P(M) by

νf(A) = f(m(A))

where m is the multiset function m : P(M) → [0,∞) defined by

m(A) = (D)

∫

countAdµ.

• Rationale of the definition: (C)
∫

χAdµ = µ(A)

• Properties:

if A ⊆ B by the monotonicity of the integral m(A) ≤ m(B)

→ monotonicity condition of the fuzzy measure fulfilled
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Distorted Probabilities and Multisets

2nd approach: Definition based on prime numbers1:

• Define
n(A) :=

∏

x∈X

φ(x)countA(x),

where φ is an injective function from X to the prime numbers, and let h be a
non-decreasing function from N to [0, 1] satisfying h(1) = 0 and h(n(M)) = 1.
We define the prime number-based fuzzy measure

νφ,h(A) = h(n(A)).

1and using the unique factorization of integers into prime numbers
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Distorted Probabilities and Multisets

2nd approach: Definition based on prime numbers1:

• Define
n(A) :=

∏

x∈X

φ(x)countA(x),

where φ is an injective function from X to the prime numbers, and let h be a
non-decreasing function from N to [0, 1] satisfying h(1) = 0 and h(n(M)) = 1.
We define the prime number-based fuzzy measure

νφ,h(A) = h(n(A)).

Properties:

if A 6= B by the unique factorization n(A) 6= n(B)

if A ⊆ B by the factorization n(A) < n(B)

→ monotonicity condition of the fuzzy measure fulfilled

1and using the unique factorization of integers into prime numbers
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Distorted Probabilities and Multisets

Properties:

• Fuzzy measures based on prime-number are a particular case of the

1st approach

LFSC 2013 47 / 60



DP and Multisets > Fuzzy Measure Outline

Distorted Probabilities and Multisets

Properties:

• Fuzzy measures based on prime-number are a particular case of the

1st approach

• Neither the 1st nor the 2nd approach represent all possible fuzzy

measures
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Distorted Probabilities and Multisets

Properties:

• Fuzzy measures based on prime-number are a particular case of the

1st approach

• Neither the 1st nor the 2nd approach represent all possible fuzzy

measures

• It seems that there is some parallelism between prime-number based

fuzzy measures and distorted probabilities

◦ f and the distortion

◦ φ and the probability distribution
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Distorted Probabilities and Multisets

Properties:

• Fuzzy measures based on prime-number are a particular case of the

1st approach

• Neither the 1st nor the 2nd approach represent all possible fuzzy

measures

• It seems that there is some parallelism between prime-number based

fuzzy measures and distorted probabilities

◦ f and the distortion

◦ φ and the probability distribution

• Can we establish a relationship??
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Results

Properties:

• ν a fuzzy measure according to Approach 1 on a proper finite set

(M,P(M)) = (X, 2X). Then ν is a distorted probability on (X, 2X).
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Results

Properties:

• ν a fuzzy measure according to Approach 1 on a proper finite set

(M,P(M)) = (X, 2X). Then ν is a distorted probability on (X, 2X).

• Same for Approach 2 (primer-number definition)

• This is easy to prove (consists on defining the probability distribution)

• So, Approach 1 and Approach 2 equal to or more general than

distorted probabilities
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Results

Properties:

• Can we prove something else? much more general? almost the same?

exactly the same?
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Results

Properties:

• Can we prove something else? much more general? almost the same?

exactly the same?

Not so surprising theorem: Fuzzy measures based on prime
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→ probabilities and prime numbers play the same role

→
∑

x∈A px and
∏

x∈A φ(x) play the same role
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Results
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→
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Results

Properties:

• Can we prove something else? much more general? almost the same?

exactly the same?

Not so surprising theorem: Fuzzy measures based on prime

numbers on proper sets are equivalent to distorted probabilities

→ probabilities and prime numbers play the same role

→
∑

x∈A px and
∏

x∈A φ(x) play the same role

Much more surprising theorem: Fuzzy measures based on

Approach 1 on proper sets are equivalent to distorted probabilities

Surprising corollary: Approach 1 and approach 2 are equivalent.

Proof based on some results on number theory about the existence

of k prime numbers in certain intervals (Bertrand’s postulate).
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Results

An example to satisfy curiosity:

• µ distorted probability p = (0.05, 0.1, 0.2, 0.3, 0.35), g(x) = x2.
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Results

An example to satisfy curiosity:

• µ distorted probability p = (0.05, 0.1, 0.2, 0.3, 0.35), g(x) = x2.

• Representation with prime numbers and appropriate function

φ(x1) = 17 ∈ [16.0, 32.0001]

φ(x2) = 367 ∈ [362.041, 724.081]

φ(x3) = 185369 ∈ [185366.0, 370732.0]

φ(x4) = 94907801 ∈ [9.49078× 107, 1.89816 × 108]

φ(x5) = 2147524151 ∈ [2.14752× 109, 4.29505 × 109]
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m-Dimensional DP for multisets

How to solve the problem that not all fuzzy measures for multisets are

distorted probabilities ?

• Same approach as before: m-dimensional prime number-based fuzzy

measure

DP

Unconstrained fuzzy measures
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m-Dimensional DP for multisets

m-dimensional prime number-based fuzzy measure

• µ is an at most m-dimensional prime number-based fuzzy measure if

µ(A) = f(n1(A ∩X1), . . . , nm(A ∩Xm))

where,

{X1,X2, · · · ,Xm} is a partition of X,

ni(A) =
∏

x∈Xi
φ(x)countA(x) with φi injective functions from Xi

to the prime numbers

f is a strictly increasing function with respect to the i-th axis for all

i = 1, 2, . . . ,m.

µ is an m-dimensional prime number-based fuzzy measure if it is an at

most m dimensional distorted probability but it is not an at most m−1

dimensional.
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m-Dimensional DP for multisets

Properties:

• All fuzzy measures are at most |X|-dimensional prime number-based

fuzzy measures.
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Integral
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Integral

Definition

• Boundary measures:

◦ µ+(A) = A ·M for all A ⊆ X

◦ µ−(A) = A ∩M for all A ⊆ X

• They satisfy:

µ−(A) ≤ µ+(A)

and, therefore,

(C)

∫

fdµ− < (C)

∫

fdµ+
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Finally an application
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Record Linkage

Record Linkage:

(protected / public)

identifiersquasi-
identifiers

quasi-
identifiersconfidential

r1

ra

s1

sb
a1 an

a1 an i1, i2, ...

B (intruder)A
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Record Linkage

Record Linkage:

Minimize

N
∑

i=1

Ki (1)

Subject to :

N
∑

i=1

N
∑

j=1

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−

− C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0 (2)

Ki ∈ {0, 1} (3)

Additional constraints according to C (4)
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Summary

Summary:

• Brief justification of the use of non-additive (fuzzy) measures

• Introduction to distorted probabilities

• Extensions

◦ m-dimensional distorted probabilities

◦ Fuzzy measures for multisets
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