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Introduction

e Fuzzy measures.

— Application in information fusion / aggregation
— fuzzy integrals
— Used to represent background knowledge in fuzzy integrals
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Introduction

e Running example
— A toy example that provides a framework for application of
fuzzy measures and aggregation
e A few definitions

— Aggregation operators
— Fuzzy measures
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Introduction

e Running example (originally, from Grabisch):

— From marks on mathematics (M), physics (P) and literature (L)
calculate an overall mark (all marks on [0, 1]) for a set of students.

Student

Overall Mark

Nobita
Alfred
Ezequiel
Arare
Joan
Berta

M
0
0
1
1
1
1
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e [hen, we can rank the students or select the best.
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Introduction

Example

e Running example (originally, from Grabisch):

— From marks on mathematics (M), physics (P) and literature (L)
calculate an overall mark (all marks on [0, 1]) for a set of students.

— Standard approach:
x Compute an overall mark
— using an aggregation operator
(often, a parametric aggregation operator)
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Introduction

Example

e Running example (originally, from Grabisch):

— From marks on mathematics (M), physics (P) and literature (L)
calculate an overall mark (all marks on [0, 1]) for a set of students.
— Computation of the overall mark: aggregation
x Through the weighted mean
- We need to define the weights of the subjects
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Introduction

Example

e Running example (originally, from Grabisch):

— From marks on mathematics (M), physics (P) and literature (L)
calculate an overall mark (all marks on [0, 1]) for a set of students.
— Computation of the overall mark: aggregation
x Through the weighted mean
- We need to define the weights of the subjects

x Through a fuzzy integral
- We need to define the measure on the set of subjects
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Introduction

Example

e Running example (originally, from Grabisch):

— From marks on mathematics (M), physics (P) and literature (L)
calculate an overall mark (all marks on [0, 1]) for a set of students.
— Computation of the overall mark: aggregation
x Through the weighted mean
- We need to define the weights of the subjects
X ={P,M,L}, p: X — |0, 1] with some constraints on p

x Through a fuzzy integral
- We need to define the measure on the set of subjects
X ={P M,L}, p:2* — [0,1] with some constraints on
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Introduction

Example

e Running example: defining a fuzzy measure
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Introduction

Example

e Running example: defining a fuzzy measure

1. Boundary conditions:

If all marks zero, final mark equals zero;
If all maximum marks, final mark equals maximum mark.
2. Relative importance of scientific versus literary subjects:

The importance of mathematics and physics is greater than the importance of
literature.
3. Redudancy between mathematics and physics:

Mathematics and physics are similar subjects. The importance of the set containing

both should not be larger than their addition.
4. Support between literature and scientific subjects:

Mathematics and literature are complementary subjects.
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Introduction

Example

e Running example: defining a fuzzy measure

1. Boundary conditions:
u(0) = 0, p({M, P,L}) = 1
The importance of the empty set is 0.
The set consisting of all objects has maximum importance.
2. Relative importance of scientific versus literary subjects:
u({MY}) = p({P}) = 0.45, p({L}) = 0.3
The importance of mathematics and physics is greater than the importance of
literature.

3. Redudancy between mathematics and physics:
u({M, P}) = 0.5 < u({M}) + u({P})
Mathematics and physics are similar subjects. The importance of the set containing
both should not be larger than their addition.

4. Support between literature and scientific subjects:
u({M,L}) = pu({P,L}) =09 > u({P}) + n({L}) =045+ 0.3 =0.75
w({M,L}) = p({P,L}) = 0.9 > u({M}) + p({L}) = 0.45 4+ 0.3 = 0.75
Mathematics and literature are complementary subjects.
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Introduction

Example

e Running example: defining weights

1. Boundary conditions:
(always true for the weighted mean)
2. Relative importance of scientific versus literary subjects:
p({M}) = p({P}) = 0.45, p({L}) = 0.3
— p(M) =p(P) =0.45/1.2 = 0.375, p(L) =0.3/1.2 = 0.25
The importance of mathematics and physics is greater than the importance of
literature.
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Introduction

Definitions (1)

e Formalization of the aggregation process: aggregation operators
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Introduction

Definitions (1)

e Formalization of the aggregation process: aggregation operators

— Aggregation / fusion of f : X — [0, 1] where X is the information
source and f(x) is the data supplied by source .
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Introduction

Definitions (1)

e Formalization of the aggregation process: aggregation operators

— Aggregation / fusion of f : X — [0, 1] where X is the information
source and f(x) is the data supplied by source .
— Weighted mean of a w.r.t. p (where p; = p(x;)) is

WMy, (ai,...,an) = Zivzl pia;
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Introduction

Definitions (1)

e Formalization of the aggregation process: aggregation operators

— Aggregation / fusion of f : X — [0, 1] where X is the information
source and f(x) is the data supplied by source .
— Weighted mean of a w.r.t. p (where p;, = p(x;)) is

WM, (ai,...,an) = Zilpz‘a_z‘
— Choquet mtegral of f w.r.t. 1 is

/fd:u Z f a(z a(i)) _ M(Aa(i—l))]
— Sugeno integral of f w.rt. uis

5) / fdp = max min(f(2a), u(Asm)

1=1,N

o a permutation of {1,..., N} s.it. as_1) = ay(;) for all i > 2, s a permutation

S. t. Asi—1) < As(i)s Aor) = {To(i)ld < k) As) = {Ts(i)]t > 1}
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Introduction

Example

e Running example:

— Weighted mean:

p(L) = 0.3/1.2 = 0.25, p(P) = 0.45/1.2 = 0.375, p(M) = 0.45/1.2 = 0.375

— Choquet integral:

u(@) =0 p({M,L}) = 0.9
p({M}) =045 p({P,L}) =09
u({P}) =045  p({M,P}) =05
p({L}) =03  p({M,PL})=1
— Overall mark:
Student | M P L | WM Cl
Nobita | O O 1| 0.25 | 0.3
Alfred 0 1 0]0.375|0.45
Ezequiel | 1 0 0] 0.375 | 0.45
Arare 1 1 0| 0.75 | 0.45
Joan 1 0 1]0625| 09
Berta 1 1 1 1.0 1.0
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Introduction

Definitions (11)

e Formalization of the aggregation process: fuzzy measures
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Introduction

Definitions (11)

e Formalization of the aggregation process: fuzzy measures

— p: 2% —[0,1] is a fuzzy measure:
(i) () =0, u(X) =1 (boundary conditions)
(i) A C B implies u(A) < u(B) (monotonicity)
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Introduction

Definitions (11)

e Formalization of the aggregation process: fuzzy measures

— p: 2% —[0,1] is a fuzzy measure:
(i) () =0, u(X) =1 (boundary conditions)
(i) A C B implies u(A) < u(B) (monotonicity)

— m is the Mobius transform of u (A C X):

mu(A) = > (-1)H-1Plu(B)

BCA
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Introduction

Definitions (1)

e Formalization of the aggregation process: fuzzy measures

— Unconstrained fuzzy measures require 2/X| — 2 parameters

e Families of fuzzy measures (with reduced complexity):

— Decomposable fuzzy measures:

(AU B) = u(A)Lu(B) for AN B =)
— k-additive fuzzy measures:

m(A) =0 for all |[A| >k

— m~symmetric fuzzy measures
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Introduction

Definitions (1V)

e Formalization of the aggregation process: fuzzy measures

e A key property of k-additive fuzzy measures.

— KAF My, x, the set of all kp-additive fuzzy measures.
— Then,

KAFMLX C KAFMQ,X C KAFM?)’X"' C KAFM|X\,X

— |t follows that:
1. KAF M, x equals the set of additive measures
2. KAF M, x| x equals the set of all fuzzy measures over X

(KAF M) x| x is the set of unconstrained fuzzy measures)
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Introduction

Definitions (1V)

e Formalization of the aggregation process: fuzzy measures

o A key property of k-additive fuzzy measures.

— KAF My, x, the set of all kg-additive fuzzy measures.
— Then,

KAFMLX C KAFMQ,X C KAFM?,’X”' C KAFM|X\,X

— |t follows that:
1. KAFM; x equals the set of additive measures
2. KAF M, x| x equals the set of all fuzzy measures over X

(KAFM,x| x is the set of unconstrained fuzzy measures)
e This family covers the whole set of fuzzy measures

e [he smaller kg, the less parameters are required

Vicenc Torra; Distorted Probabilities EUROFUSE 2007 24



Outline

e Introduction

e Distorted Probabilities

e Extension of Distorted Probabilities

e m-dimensional Distorted Probabilities

e Distorted Probabilities and OWA

e Conclusions

Vicenc Torra; Distorted Probabilities EUROFUSE 2007 25



Distorted Probabilities

e Representation of a fuzzy measure:

— f and P represent a fuzzy measure u, iff
w(A) = f(P(A)) for all A € 2%

f a real-valued function, P a probability measure on (X, 2%)

— f is strictly increasing w.r.t. a probability measure P iff P(A) <
P(B) implies f(P(A)) < f(P(B))

— f is nondecreasing w.r.t. a probability measure P iff P(A) < P(B)
implies f(P(A)) < f(P(B))
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Distorted Probabilities

e Representation of a fuzzy measure: distorted probability

— f and P represent a fuzzy measure u, iff
w(A) = f(P(A)) for all A € 2%

f a real-valued function, P a probability measure on (X, 2%)

— f is strictly increasing w.r.t. a probability measure P iff P(A) <
P(B) implies f(P(A)) < f(P(B))

— f is nondecreasing w.r.t. a probability measure P iff P(A) < P(B)
implies f(P(A)) < f(P(B))

— 1 is a distorted probability if @ is represented by a probability
distribution P and a function f nondecreasing w.r.t. a probability P.

Vicencg Torra; Distorted Probabilities EUROFUSE 2007 27



Distorted Probabilities

e Representation of a fuzzy measure: distorted probability?

— 1 is a distorted probability if @ is represented by a probability
distribution P and a function f nondecreasing w.r.t. a probability P

e S0, for a given reference set X we need:

— Probability distribution on X: p(z) for all z € X
— Distortion function f on the probability measure: f(P(A))
— as p is a measure: f(0) =0, f(1) =1

— f a nondecreasing fuzzy quantifier

'Suggested by Edwards (1953) in experimental psycology
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Distorted Probabilities

Application

e Given a distorted probability ...
. we can apply any fuzzy integral

o E g

— the Choquet integral
— the Sugeno integral
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Distorted Probabilities

Properties

e Distorted probability and Choquet integral:

— The WOWA operator can be represented by a Choquet integral with
a distorted probability.
x WOWA generalizes both the WM and the OWA,
using both WM weights and OWA weights.

— From the distorted probability perspective, in WOWA:
x the WM weights correspond to the probability distribution
x the OWA weights are used to build the distortion function

(the nondecreasing fuzzy quantifier)
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Distorted Probabilities

Properties

e Trying to find a characterization ...

— pre-distorted probability: If u(A) < u(B) < u(AUC) < u(BUC)
forevery ANC =0, BNC =0 A, B,C € 2%,

e Distorted probs. (with strictly increasing f) are pre-distorted probabilities
(similar result with nondecreasing f: u(A) < u(B) implies u(AUC) < u(BU ()

e However, the reversal is not true in general.
(it is true for | X| =3 and | X| = 4 when u(A) # u(B) for all A # B)
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Distorted Probabilities

Properties

e Not all fuzzy measures are distorted probabilities

e Nevertheless,

— all fuzzy measures are representable by a polynomial f and a
probability P as u= f o P.
(nondecreasingness of f can not be guaranteed)

— any fuzzy measure can be represented as the difference of two
distorted probabilities:

p=fToP—f oP

(f* and f~ are strictly increasing polynomials)
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Distorted Probabilities

Properties

e Some relationships with other measures.

e Distorted probabilities generalize

— | -decomposable fuzzy measures

— Sugeno A-measures
% if for some fixed A\ > —1, it holds for all AN B = ()

u(AU B) = p(A) + u(B) + Au(A)w(B)
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Distorted Probabilities

Properties

e Some distorted probabilities are not decomposable fuzzy measures.

e Some distorted probabilities cannot be represented easily with other
families of fuzzy measures.
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Distorted Probabilities

Properties

e Some distorted probabilities are not decomposable fuzzy measures.

e Some distorted probabilities cannot be represented easily with other
families of fuzzy measures.

e 1st. example (I):
— pon X ={a,b,c} with p(a) = 0.2, p(b) = 0.35, p(c) = 0.45, and

(0 if £ < 0.5

f(z) = < 0.2 if05<x<0.6
04 if0.6<xz<0.85

1.0 if0.85 <z <1.0

\
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Distorted Probabilities

Properties

e Some distorted probabilities are not decomposable fuzzy measures.

e Some distorted probabilities cannot be represented easily with other
families of fuzzy measures.

e 1st. example (Il):

- p(0) =0, p({a}) =0, u({b}) =0, p({c}) =0,
p({a,b}) = 0.2, p({a,c}) = 0.4, p({d, c}) = 0.4, u({a, b,c}) =1
— 1 is a DP but not a 1 -decomposable fuzzy measure
because, there is no t-conorm s.t. 1(0,0) # 0
— as u({a,b}) = 0.2 when p({a}) =0 and u({b}) =0,
we would require 0.2 = u({a,b}) = L(u({a}), u({b})) = L(0,0).
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Distorted Probabilities

Properties

e Some distorted probabilities are not decomposable fuzzy measures.

e Some distorted probabilities cannot be represented easily with other
families of fuzzy measures.

e 2nd. example (I):

— Upw over X = {x1, w9, x3, x4, x5} from (probability distribution)
p = (0.2, 0.3, 0.1, 0.2, 0.1), and function (from w = (0.1, 0.2, 0.4, 0.2,

0.1)):

lllll
IIIII

Vicenc Torra; Distorted Probabilities EUROFUSE 2007 37



Distorted Probabilities

Properties

e Some distorted probabilities are not decomposable fuzzy measures.

e Some distorted probabilities cannot be represented easily with other
families of fuzzy measures.

e 2nd. example (Il):

— Up.w IS @ b-additive fuzzy measure because m(A) # 0 for all A.
- E.g.,
m({z1, T2, T3, T4, T5}) = 0.50746528,
m({x1,x2,x3,x4}) = —0.2537326.
There is no k-additive fuzzy measure equivalent to pp w for k < 5.
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Extension of Distorted Probabilities: Why?

e Question:
How many fuzzy measures can be represented by a distorted probability?
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Extension of Distorted Probabilities

Motivation

e Counting the number of distorted probabilities.

— Assume X ={1,2,3}.
— Assume p with p({1}) < p({2}) < u({3}).
— Possible distorted probabilities:

p(0) < p({1}) < p({2}) < p({3}) < wp({1,2}) < p({1,3}) < p({2,3}) < p(X)
p(0) < p({1}) < p({2}) < p({1,2}) < p({3}) < p({1,3}) < p({2,3}) < pu(X)
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Extension of Distorted Probabilities

Motivation

e Counting the number of distorted probabilities.

— Assume X ={1,2,3}.

— Assume p with p({1}) < p({2}) < u({3}).
— Possible distorted probabilities:

p(0) < p({1}) < p({2}) < p({3}) < wp({1,2}) < p({1,3}) < p({2,3}) < p(X)
p(0) < p({1}) < p({2}) < p({1,2}) < p({3}) < p({1,3}) < p({2,3}) < pu(X)

e Constraints for measures u(A) < u(B) if ACB

e Constraints due to probabilities:
p(1) < p(2) < p(3) implies p(1) + p(3) < p(1) + p(2)
therefore, u({1,3}) < u({1,2})
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Extension of Distorted Probabilities

Motivation

e Counting the number of distorted probabilities.

— Assume X ={1,2,3}.

— Assume p with p({1}) < p({2}) < u({3}).
— Possible unconstrained fuzzy measures:

0 < p({1}) <p({2}) <wu({3}) < p({1,2}) < p({1,
0 < p({1}) <p(2}) < w({1,2}) < p({3}) < p({1,
0 < p({1}) < p({2}) < p({3}) < p({1,3}) < p({l,
0 <p({1}) <p({2}) < p({3}) < p({l1,3})) < u(2,
0 <p({1}) <p({2}) < p({1,2}) < p({3}) < p({2,
0 <p({1}) <p(2}) < p({3}) < p({l1,2}) < p(2,
0 <p({1}) <p({2}) < p({3}) <p({2,3}) < p({l,
0 <p({1}) <p({2}) < p({3}) < p({2,3}) < p(l,

OO l\D OJ CO CJO l\D OO V)
M M
S— e N N N N e
ANNNN NN AN
TEETE T T T T T T
NS NSNS NSNS, N N T
e P P P P A A e
O o T =S S S NO N NO I N
DO QO W W N W W W
M
N— N N e N N e

AANANANANANAANA
RS SIS IS S IS
skelelsks ko Rals
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Extension of Distorted Probabilities

Motivation

e Counting the number of distorted probabilities.

— For X ={1,2,3}, 2/8 of distorted probabilities.
— For larger sets X ...

... the proportion of distorted probabilities decreases rapidly
— For u({1}) < n({2}) < ...

|X| Number of possible orderings for Number of possible orderings for
Distorted Probabilities Fuzzy Measures

1 1 1

2 1 1

3 2 8

4 14 70016

5 546 O(1012)

6 215470 —
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Extension of Distorted Probabilities

Motivation

e Goal:
— Cover a larger region of the space of fuzzy measures

Unconstrained fuzzy measures
4 I
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Extension of Distorted Probabilities

Motivation

e Goal:
— Cover a larger region of the space of fuzzy measures

Unconstrained fuzzy measures
/ )

— Similar to the property of k-additive fuzzy measures:

KAFM, x C KAFMy x C KAFMs x--- C KAFM x| x
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m-dimensional Distorted Probabilities

e In distorted probabilities:

— One probability distribution

— One function f to distort the probabilities
e Extension to:

— m probability distributions
— One function f to distort/combine the probabilities
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m-dimensional Distorted Probabilities

e In distorted probabilities:

— One probability distribution
— One function f to distort the probabilities

e Extension to:

— m probability distributions F;

x Each P; defined on X;

x Each Xj; is a partition element of X (a dimension)
— One function f to distort/combine the probabilities
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m-dimensional Distorted Probabilities

Example

e Running example:

— Reconsidering the fuzzy measure:

(@) =0 p({M,L}) = 0.9
p({M}) =045 p({P,L}) =0.9
pu({P}) =045 pu({M,P}) =05
p({L}) =03  p({M,P L})=1
— Partition on X:
* X1 ={L} (Literary subjects)

* Xo ={M, P} (Scientific Subjects)

Vicencg Torra; Distorted Probabilities
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m-dimensional Distorted Probabilities

Definition

e m-dimensional distorted probabilities.

— 11 Is an at most m dimensional distorted probability if

where,

{X1,Xs,---, X} is a partition of X,

P; are probabilities on (X, 2%),

f is a function on R™ strictly increasing with respect to the i-th
axis forall:=1,2,...,m.

e 11 is an m-dimensional distorted probability if it is an at most m
dimensional distorted probability but it is not an at most m — 1
dimensional.
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m-dimensional Distorted Probabilities

Example

e Running example: a two dimensional distorted probability
u(A) = f(PL(AN{L}), P2(AN{M, P}))

— with partition on X ={M, L, P}
1. Literary subject {L}
2. Science subjects {M, P},
— probabilities
1. A{L}) =1
2. B,({M}) = P,({P}) =0.5,
— and distortion function f defined by

1|{L} |03 0.9 1.0

0| 0 0 0.45 0.5

sets | 0 {M}, {P} {M,P}
0 0.5
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Distorted Probabilities and OWA

e OWA operators and Choquet integrals:

— OWA equivalent to a Choquet integral w.r.t. a symmetric
e /i, Is symmetric when (informally, only cardinality is important)
u(A) = p(B), if |A| = |B]

e Miranda et al. introduced m-symmetric fuzzy measures.
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Distorted Probabilities and OWA

m-symmetric fuzzy measures

e m-symmetric fuzzy measures (Miranda et al., 2002):

— A C X is a set of indifference iff (informally, only cardinality is important)
VB, B2 C A, |Bi1| = |Bal,

VOCCX \A puBLUC)=u(Bul)
— 2-symmetric fuzzy measure p iff:
* there exists a partition of {X7, X5} (X1,Xs #0) s. t. both X,
and Xo are sets of indifference.
x and X is not a set of indifference (one set is not enough).
— m-symmetric fuzzy measure p iff:
* there exists a partition of the universal set {X;,..., X,,}, with
X1,..., X, #0s. t. Xq,...X,, are sets of indifference (and there

is no partition with m — 1 sets of indifference).
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Distorted Probabilities and OWA

m-symmetric fuzzy measures: properties

e Properties (Miranda et al., 2002):
— 2-symmetric fuzzy measure: u(A) = M(|AN X4, |AN Xs|)

2 1
1 ({14 T1p}, {T2c})
0 0
cardinality | 0 1 2 3 4
— 1, @ m-symmetric measure w.r.t. the partition {X1,..., X, }.

Then, the number of values needed to determine p is:
(X +1) - (| Xom| +1)] — 2

— 1 can be represented by a (| X1|+ 1) - (| X,| + 1) matrix M

— all fuzzy measures are at most N-symmetric f. m. for N = | X|.
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Distorted Probabilities and OWA

Example: 2-symmetric

e Running example: it is a 2-symmetric f.m.

u(A) = M(JAN{L}], [AN{M, P}|)

— with partition (2 sets of indifference)
1. Literary subject {L}
2. Science subjects {M, P},

— probabilities only depend on cardinality (they can be ignored)

1. PA{L}) =1
2. B,({M}) = P,({P}) =0.5,
— and distortion function f defined by

1 i o3 09 1.0

0 0 0 0.45 0.5
cardinality sets O {M}, {P} {M,P}

M cardinality | O 1 2
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Distorted Probabilities and OWA

Example: 2-dimensional distorted probabilities

e Running example: a variation that is a two dimensional d. p.
u(A) = fF(PL(AN{L}), B(AN{M, P}))

— with partition on X ={M, L, P}

1. Literary subject {L}

2. Science subjects {M, P},
— probabilities

1. PA{L}) =1

2. B({M}) = 2/3, Po({P}) = 1/3,
— and distortion function f defined by

1 (L} |03 09 095 10
0 ) 0 045 0.5 0.5

probability sets o {P} {M} {M,P}
f probability | ¢ 1/3 2/3 1
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Distorted Probabilities and OWA

m-symmetric and m-dimensional DP

e Properties:

— Symmetric fuzzy measures are a special case of distorted probabilities:
— All  m-symmetric fuzzy measures are m-dimensional distorted
probabilities.

— If uis a DP with P(A) = |A|/|X|; then, u is a 1-symmetric f.m.
— If ;1 is an m-dimensional DP with p;(x;) = p;(x) for all x;, 2 € X;
and for all 2 =1,...,m; then, p is a m-symmetric f.m.
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Distorted Probabilities and OWA

OWAs

e OWA extensions:
— OWA is equivalent to

a Choquet integral w.r.t. to a symmetric f. m.

— m-~dimensional OWA is defined by
the Choquet integral w.r.t. to a m-symmetric f. m.
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Distorted Probabilities and OWA

WOWASs

e WOWA extensions:
— WOWA is equivalent to
a Choquet integral w.r.t. to a distorted probability

— m-dimensional WOWA is defined by
the Choquet integral w.r.t. to a m-dimensional distorted probability
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Distorted Probabilities and OWA

OWAs and WOWAs

e Properties:

— OWA is a particular case of WOWA

e m-dimensional OWA, a particular case of m-dimensional WOWA
(it follows from: Choquet integrals w.r.t. m-symmetric fuzzy measures, particular

cases of Choquet integrals w.r.t. m-dimensional distorted probabilities

Vicenc Torra; Distorted Probabilities EUROFUSE 2007 62



Outline

e Introduction

e Distorted Probabilities

e Extension of Distorted Probabilities

e m-dimensional Distorted Probabilities

e Distorted Probabilities and OWA

e Conclusions and future work
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Conclusions and Summary

e Review of distorted probabilities
e and of m-dimensional distorted probabilities

e and a few relationships with other fuzzy measures
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Future work

e Counting the number of 2-dimensional distorted probabilities.

— Assume X ={1,2,3}.

— Assume p with p({1}) < p({2}) < p({3}).
— Possible 2-dimensional distorted probabilities:

D <p({1}) <p({2}) <p({3}) <p({l,2}) < p({l,3}) < p({2,3}) < pu(X)
0 <p({1}) <p({2}) <p({1,2}) < p({3}) < p({l,3}) < p({2,3}) < pu(X)
With X5, = {1,2} — (1 <2=> 13 < 23)

0 <p({1}) <p({2}) <p({3}) <p({1,3}) <p({l,2}) < p({2,3}) < pX)
0 <p({1}) <p({2}) <p({3}) <p(1,3}) <p({2,3}) <p({1,2}) < p(X)
With Xo = {1,3} — (1 <3 => 12 < 23)

0 <p({1}) <p({2}) <p({1,2}) < p({3}) <p({2,3}) < p({l,3}) < p(X)
0 <p({1}) <p({2}) <p({3}) <p(1,2}) <p({2,3}) <p({l,3}) < p(X)
With X5 = {2,3} - (2 <3 => 12 < 13)

f) < l/{d({l}) < n({2}) < p({3}) < p({2,3}) < p({1,2}) < p({1,3}) < p(X)

0 <p({1}) < p({2}) < p({3}) < n({2,3}) < pn({1,3}) < p({1,2}) < pu(X)
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Future work

e Learning fuzzy measures from examples (case with Choquet integral)

— Simple for k-additive f.m., for a given k
— optimal solution can be found
— Relatively simple for distorted probabilities
— no optimal solution
— Not easy for m-dimensional distorted probabilities
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Thank-you
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