FSTA 2024

Fuzzy clustering and fuzzy measures in data privacy

Vicenç Torra

January, 2024

Dept. CS, Umeå University, Sweden

- 1. Preliminaries: Data privacy
- 2. Data protection: microaggregation
- 3. Information loss: clustering
- 4. Disclosure risk: Worst case scenario
- 5. Summary

Preliminaries

A context:

Data-driven machine learning/statistical models

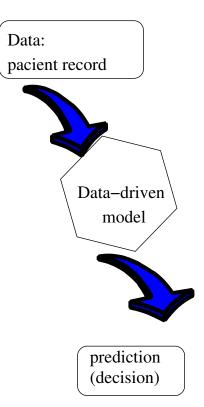
 Data is collected to be used (otherwise, better not to collect them¹)

¹Concept: Data minimization (see Privacy by Design and GDPR)

Vicenç Torra; FC + FM \in DP

Prediction using (machine learning/statistical) models

 Application of a model for decision making data ⇒ prediction/decision

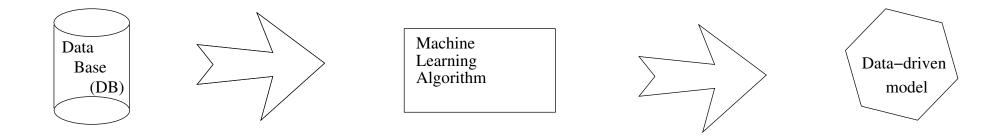


• Example: predict the length-of-stay at admission

Outline

Data-driven machine learning/statistical models

- From (huge) databases, build the "decision maker"
 - Use (logistic) regression, deep lerning, neural networks, . . . classification algorithms, decision trees, . . .



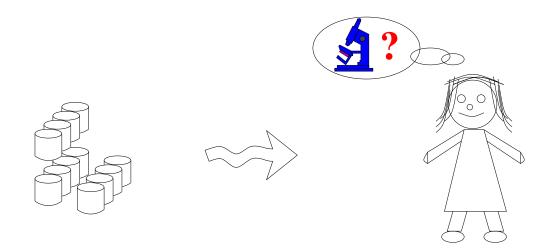
• Example: build a predictor from hospital historical data about length-of-stay at admission

Privacy for machine learning and statistics:

Data-driven machine learning/statistical models

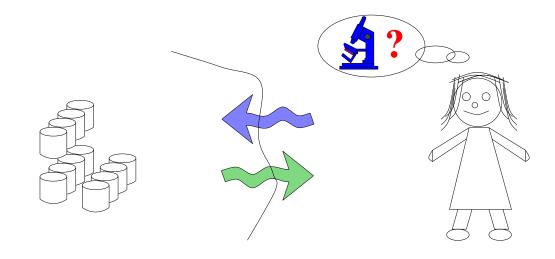
Data is sensitive

- Who/how is going to create this model (this "decision maker")?
- Case #1. Sharing (part of the data)



Data is sensitive

- Who/how is going to create this model (this "decision maker")?
- Case #2. Not sharing data, only querying data

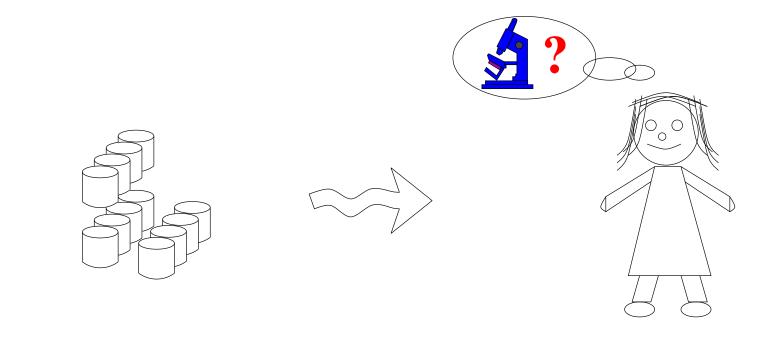


- Case #1. Sharing (part of the data)
- Q: How different children ages and diagnoses affect this length of stay? Average length of stay is decreasing in the last years due to new hospital policies?
- Data: Existing database with previous admissions (2010-2019). To avoid disclosure a view of the DB restricting records to children born before 2019 and only providing for these records year of birth, town, year of admission, illness, and length of stay.
 - Anna Božena, Liptovská Sielnica², illness-1, 120 days

²Obyvatet'stvo: 604 (2022, wikipedia)

Context: Data privacy

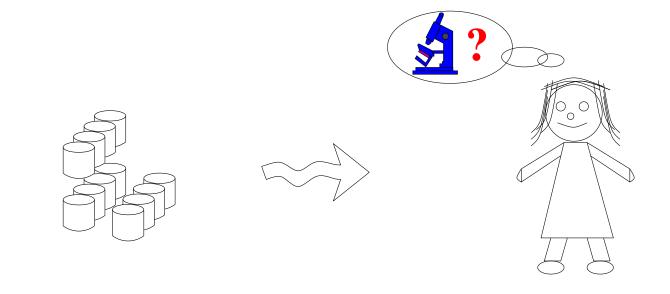
Data privacy in context. A researcher wants to analyze data



DB = {(Hana, Age = 40, Town=Liptovský Ján, salary=1800 EUR), ...}

Context: Data privacy

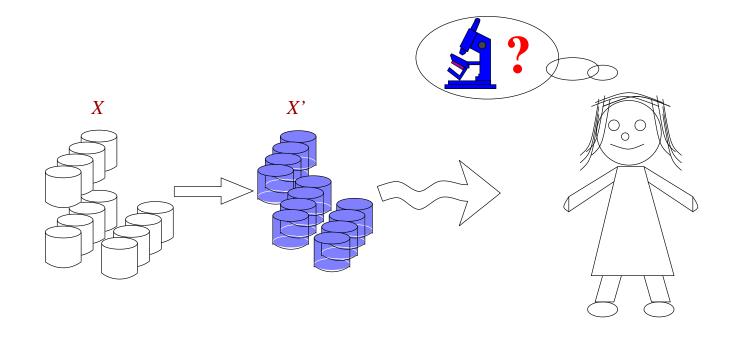
• Identity disclosure, find Hana in the database



DB = {(Hana, Age = 40, Town=Liptovský Ján, salary=1800 EUR), ...}

Context: Data privacy

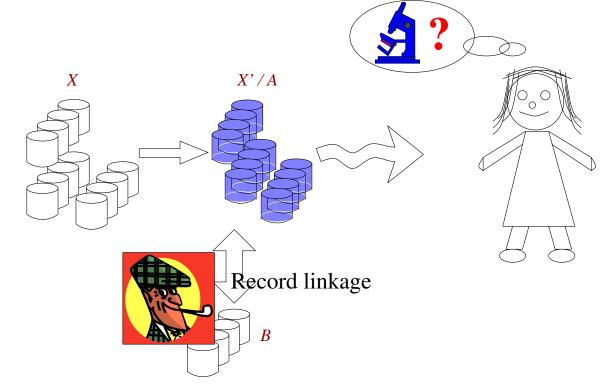
 To avoid disclosure, remove identifiers, anonymize records / modify records



DB = {(Hana, Age = 41, Town=Liptovský Mikuláš district, salary=1800 EUR), ...}

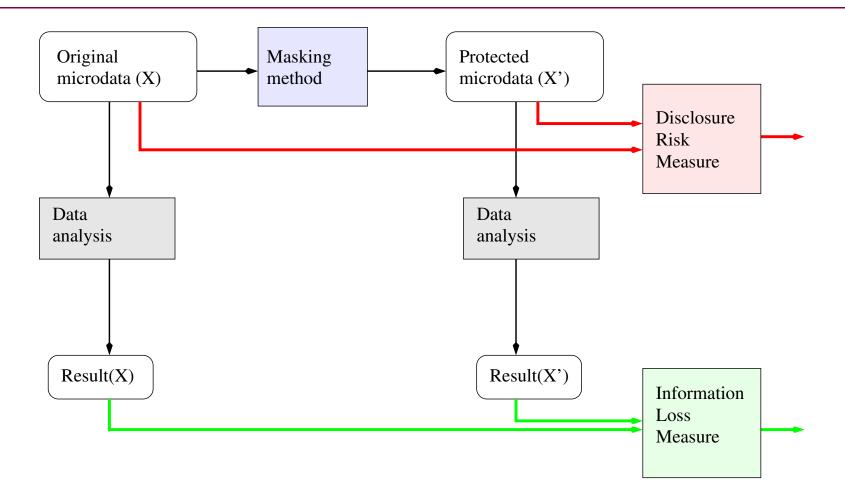
Context: Identity disclosure risk in data privacy

- Q1: Protection: How to obtain X'?
- Q2: Identity disclosure risk by modeling an intruder attack
 - \circ How many records in B can be correctly linked to X'



• Q3: Is data useful? Information loss measures

Data-driven protection methods



Data protection

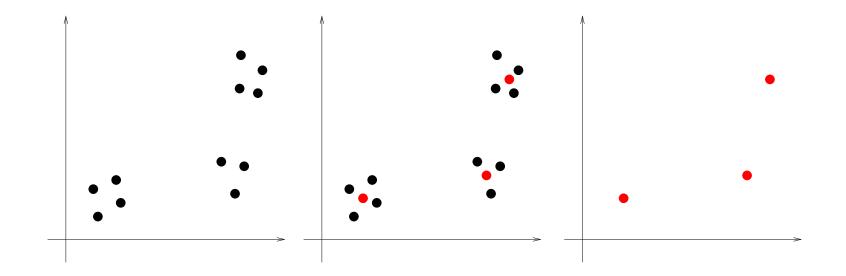
Microaggregation

• Informal definition. Small clusters are built for the data, and then each record is replaced by a representative.

- Informal definition. Small clusters are built for the data, and then each record is replaced by a representative.
- Disclosure risk and information loss
 - \circ Low disclosure is ensured requiring k records in each cluster
 - Low information loss is ensured as clusters are small

Microaggregation

• Graphical representation of the process.



- Formalization. u_{ij} to describe the partition of the records in X. That is, $u_{ij} = 1$ if record j is assigned to the *i*th cluster. v_i be the representative of the *i*th cluster.
- k is the minimum size of the cluster c = |X|/k (approx.)

$$\begin{array}{ll} \text{Minimize} & SSE = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} (d(x_j, v_i))^2 \\ \text{Subject to} & \sum_{i=1}^{c} u_{ij} = 1 \text{ for all } j = 1, \dots, n \\ & 2k \geq \sum_{j=1}^{n} u_{ij} \geq k \text{ for all } i = 1, \dots, c \\ & u_{ij} \in \{0, 1\} \end{array}$$

Discussion

- A good method in terms of the privacy-utility trade-off
- $\circ\,$ Similar as k means with a constraint on k
- \circ Small k: low privacy, low information loss
- \circ Large k: high privacy, large information loss

• Inconvenient:

- Easy to attack, given some information one can guess the cluster
- Independent microaggregation of variables + intersection attacks: it can lead to reidentification

• Goal

- Make membership to a cluster uncertain
- As a side effect, outliers weight to cluster centers will be reduced
- Provide a transparency-aware protection mechanism

- Introduce fuzziness in the clusters
 - Approach 1. Methods trying to keep the constraint on the number of records k. Recursive partitive methods. Partitioning large clusters into smaller ones, until an appropriate size is achieved.
 - Approach 2. Simple method based on fuzzy *c*-means.

• Introduce fuzziness in the clusters (FCM-like)

Minimize
$$SSE = \sum_{i=1}^{c} \sum_{j=1}^{n} (u_{ij})^m (d(x_j, v_i))^2$$

Subject to $\sum_{i=1}^{c} u_{ij} = 1$ for all $j = 1, \dots, n$
 $u_{ij} \in [0, 1]$

• Introduce fuzziness in the clusters (FCM-like)

$$\begin{array}{ll} \text{Minimize} & SSE = \sum_{i=1}^{c} \sum_{j=1}^{n} (u_{ij})^{m} (d(x_{j}, v_{i}))^{2} \\ \text{Subject to} & \sum_{i=1}^{c} u_{ij} = 1 \text{ for all } j = 1, \dots, n \\ & u_{ij} \in [0, 1] \end{array}$$

- \bullet *m* is the degree of fuzziness
 - $\circ m = 1$ crisp solution
 - $\circ m >> 1$ very much fuzzy solution

• Introduce fuzziness in the clusters (FCM-like)

$$\begin{array}{ll} \text{Minimize} & SSE = \sum_{i=1}^{c} \sum_{j=1}^{n} (u_{ij})^{m} (d(x_{j}, v_{i}))^{2} \\ \text{Subject to} & \sum_{i=1}^{c} u_{ij} = 1 \text{ for all } j = 1, \dots, n \\ & u_{ij} \in [0, 1] \end{array}$$

- $\bullet\ m$ is the degree of fuzziness
 - $\circ m = 1$ crisp solution
 - $\circ m >> 1$ very much fuzzy solution
- Solved using (iterative) alternate optimization: (1) u_{ij} , (2) v_i

- Introduce fuzziness in the clusters (FCM-like)
- $\bullet\ m$ is the degree of fuzziness
- When computing the solution:
 - m = 1 crisp solution, clusters are clearly disjoint, data only affects the nearest cluster centroid
 m >> 1 all clusters are overlapping all data affects all cluster centroids (and, thus, v_i = v_j = X̄)

- Introduce fuzziness in the clusters (FCM-like)
- m is the degree of fuzziness
- When using the solution as classification rule:

• m = 1 crisp solution, a point is only classified to a single class • m >> 1 a point assigned to all classes with membership $u_{ij} = 1/c$

• i.e., classification rule:

$$u_i(x) = \left(\left(\sum_{r=1}^c \frac{||x - v_i||^2}{||x - v_r||^2} \right)^{\frac{1}{m-1}} \right)^{-1}$$

- Introduce fuzziness in the clusters (FCM-like)
- $\bullet\ m$ is the degree of fuzziness
- We decouple m in clustering with m in membership computation
 - $\circ m_1$ for computing clusters and cluster centers $\circ m_2$ for membership assignment

- Algorithm
 - \circ Apply FCM with m_1
 - \circ Recompute membership of points to clusters with m_2
 - Assign points to clusters probabilistically (using membership functions)
 - Replace original data by cluster centers $(X' = \rho(X))$

- Properties
 - \circ Maximum utility, no protection. $m_1 = 1$, $m_2 = 1$, c = |X|
 - \circ The larger the m_1 , the larger the protection, larger info. loss $X'=\bar{X}$
 - The larger the m_2 , the larger the protection, larger info. loss x_j can be assigned to any cluster (same probability 1/c). *k*-anonymity is probabilistically satisfied
 - \circ The smaller the c, the larger the protection, larger info. loss
 - Isolated points can cause problems, fuzzy cluster robust to outliers
 - \circ Experiments: $m_1 = 1.1$, $m_2 = 1.2$ were quite good

Fuzzy microaggregation and constraints

Fuzzy microaggregation with constraints

- Properties
 - Constraints on the data

net + tax = gross

- Protection needs to satisfy constraints $X = \rho(X)$
- $\circ\,$ Even if data does not satisfy constraints, protected data should
- Several approaches for different type of protection mechanisms
 - Noise addition
 - \circ Approach based on functional equations 3
 - Microaggregation (FCM-based) with constraints

³VT (2008) Constrained Microaggregation: Adding Constraints for Data Editing, Trans. Data Privacy

• New optimization problem

Minimize
$$SSE = \sum_{i=1}^{c} \sum_{j=1}^{n} (u_{ij})^m (d(x_j, v_i))^2$$

Subject to $\sum_{i=1}^{c} u_{ij} = 1$ for all $j = 1, ..., n$
 $\alpha \cdot v_i = A$ for all $i = 1, ..., c$
 $u_{ij} \in [0, 1]$

• New optimization problem

$$\begin{array}{lll} \text{Minimize} & SSE = \sum_{i=1}^{c} \sum_{j=1}^{n} (u_{ij})^{m} (d(x_{j}, v_{i}))^{2} \\ \text{Subject to} & \sum_{i=1}^{c} u_{ij} = 1 \text{ for all } j = 1, \dots, n \\ & \alpha \cdot v_{i} = A \text{ for all } i = 1, \dots, c \\ & u_{ij} \in [0, 1] \end{array}$$

- $\bullet\ m$ is the degree of fuzziness
- α are the coefficients of the constraints $\alpha \cdot v_i = A$

- Optimization problem, to be solved using an alternate optimization algorithm
 - \circ Mimizing w.r.t. u_{ij}

$$u_{ij} = \left(\left(\sum_{r=1}^{c} \frac{||x_j - v_i||^2}{||x_j - v_r||^2} \right)^{\frac{1}{m-1}} \right)^{-1}$$

• Minimizing w.r.t. v_{is} (s is the sth position in vector v_i)

$$v_{is} = \frac{\sum_{k=1}^{n} (u_{ik})^m x_{ks} - \alpha_s \frac{\sum_{k=1}^{n} (u_{ik})^m [\alpha^T x_k - A]}{\alpha^T \alpha}}{\sum_{k=1}^{n} (u_{ik})^m}$$

- Properties
 - \circ When $\alpha_s=0,$ the Equation reduces to FCM case for s
 - When data already satisfies linear constraints, the Equation reduces to FCM case

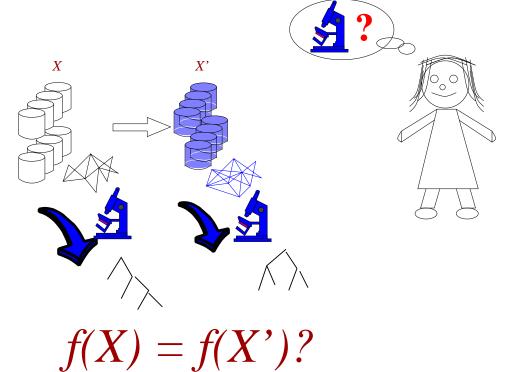
• Properties (similar as before)

- \circ Maximum utility, no protection. $m_1 = 1$, $m_2 = 1$, c = |X|
- $\circ\,$ The larger the m_1 , the larger the protection, larger info. loss $X'=\bar{X}$
- The larger the m_2 , the larger the protection, larger info. loss x_j can be assigned to any cluster (same probability 1/c). *k*-anonymity is probabilistically satisfied
- \circ The smaller the c, the larger the protection

• Applied the same approach for Entropy-based Fuzzy *c*-Means

Information loss

- Fuzziness in Information loss.
 - Compare X and X' w.r.t. analysis (f) $IL_f(X, X') = divergence(f(X), f(X'))$



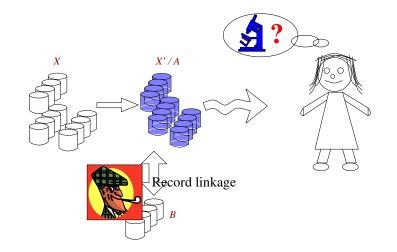
- \circ *f* is fuzzy clustering.
- Difficulty: How to compare fuzzy clusters? (fuzzy clust. suboptimal)

Outline

- Fuzziness in Information loss.
 - Compare X and X' w.r.t. analysis (f)⁴
 X = {(Hana, Age = 40, Town=Liptovský Ján, salary=1800 EUR), ...}
 X' = {(Hana, Age = 41, Town=Liptovský Mikuláš district, ...}
 - $\circ IL_{FCM}(X, X') = divergence(fuzzy clustering(X), fuzzy clustering(X'))$

⁴V Torra, Y Endo, S Miyamoto (2009) On the Comparison of Some Fuzzy Clustering Methods for Privacy Preserving Data Mining: Towards the Development of Specific Information Loss Measures, Kybernetika 45:3 548-560

Disclosure risk assessment

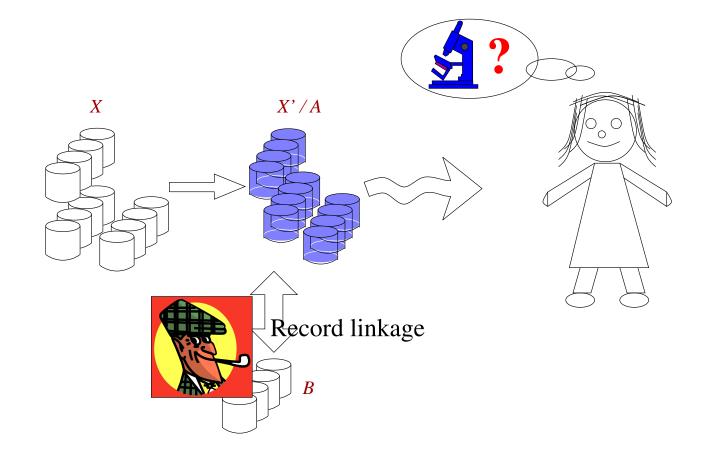


- Identity disclosure risk measure
 - Worst case scenario = the most conservative estimation of risk
 - Worst case scenario / maximum knowledge:
 - \triangleright Best information B = X
 - ▷ Best knowledge on the protection process: transparency attacks
 - ▷ Best record linkage algorithm:
 - Best record linkage algorithm: distance-based record linkage
 - Best parameters: distance
 - Best means: the most possible number of reidentifications
 The more the better (for an intruder)

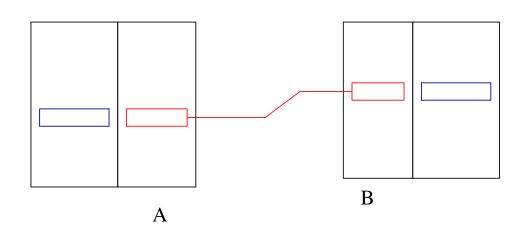
- Can we do better than with the Euclidean distance?
- Other options:
 - \circ Weighted Euclidean distance (weights w) d_w
 - $\circ\,$ Mahalanobis distance (using covariance matrix Q)
- But also
 - \circ Choquet integral (measure μ) d_{μ}
 - Bilinear forms (using positive definite matrix Q) d_Q

- Can we do better than with the Euclidean distance?
- Other options:
 - \circ Weighted Euclidean distance (weights w) d_w
 - $\circ\,$ Mahalanobis distance (using covariance matrix Q)
- But also
 - \circ Choquet integral (measure μ) d_{μ}
 - Bilinear forms (using positive definite matrix Q) d_Q
- Num. Reidentifications $d_{\mu} \geq$ Num. Reid. $d_{w} \geq d$

- How to find these parameters (μ and Q)?
- For risk analysis of a protected file X', we know both X and A = X'
- So, find best parameters using optimization (and B = X)



• Distance based record linkage: $d(A_i, B_i)$

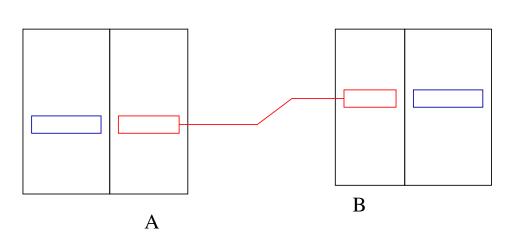


- Find the *nearest* record (*nearest* in terms of a distance)
- Formally, 2 sets of vectors

 A_i = (a₁,..., a_N),
 (a_i protected version of b_i)
 B_i = (b₁,..., b_N)

 V_k(a_i): kth variable, ith record
- Distance $d(V_k(a_i), V_k(b_j))$ for all pairs (a_i, b_j) .

• Distance based record linkage: $d(A_i, B_i)$



- Find the *nearest* record (*nearest* in terms of a distance)
- Formally, 2 sets of vectors $A_i = (a_1, \dots, a_N),$ $(a_i \text{ protected version of } b_i)$ $B_i = (b_1, \dots, b_N)$
- $V_k(a_i)$: kth variable, *i*th record
- Distance $d(V_k(a_i), V_k(b_j))$ for all pairs (a_i, b_j) .
- Distance based on aggregation functions \mathbb{C} E.g., $\mathbb{C} = CI$ (Choquet integral)
- Worst-case scenario: learn weights/fuzzy measure
 - \rightarrow Optimization problem

- Distance based record linkage: $d(A_i, B_i)$
 - \circ Main constraint: for a given *i*, for all *j*

$$\sum_{k=1}^{N} p_i d(V_k(A_i), V_k(B_j)) > \sum_{k=1}^{N} p_i d(V_k(A_i), V_k(B_i))$$

For aligned files A and B (i.e., A_i corresponds to B_i)

• As this is sometimes impossible to satisfy for all i, introduce K_i which means $K_i = 1$ incorrect linkage, and then

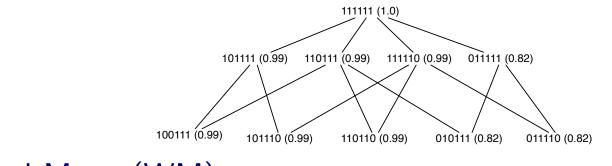
$$\sum_{k=1}^{N} p_i(d(V_k(A_i), V_k(B_j)) - d(V_k(A_i), V_k(B_i))) + CK_i > 0$$

• Case $\mathbb{C} = WM$:

$$\begin{aligned} Minimise & \sum_{i=1}^{N} K_i \\ Subject \ to: & \\ & \sum_{k=1}^{N} p_i(d(V_k(a_i), V_k(b_j)) - d(V_k(a_i), V_k(b_i))) + CK_i > 0 \\ & K_i \in \{0, 1\} \\ & \sum_{i=1}^{N} p_i = 1 \\ & p_i \ge 0 \end{aligned}$$

- Similar with $\mathbb{C} = CI$ (Choquet integral) and μ
- Extensive work comparing different scenarios and $\mathbb{C}.$

- Results give:
 - number reidentifications in the worst-case scenario
 - Importance of weights (or sets of weights in fuzzy measures)
- Examples:
 - Choquet integral



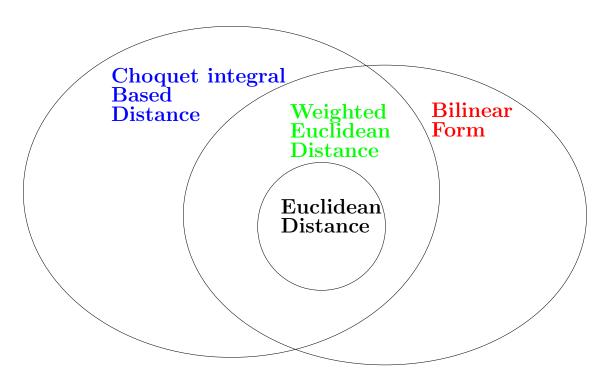
○ Weighted Mean (WM):
 ▷ V₁ 0.016809573957189, V₂ 0.00198841786482128, V₃ 0.00452923777074791
 ▷ V₄ 0.138812880222131, V₅ 0.835523953314578, V₆ 0.00233593687053289

- Privacy from re-identification. Worst-case scenario.
 - \circ ML for DBRL parameters: Distances considered $\mathbb C$
 - ▷ Weighted mean.
 - Weights: importance to the attributes
 - Parameter: weighting vector n = # attributes

- Privacy from re-identification. Worst-case scenario.
 - \circ ML for DBRL parameters: Distances considered $\mathbb C$
 - ▷ Weighted mean.
 - Weights: importance to the attributes
 - Parameter: weighting vector n = # attributes
 - OWA linear combination of order statistics (weighted):
 Weights: to discard lower or larger distances
 Parameter: weighting vector n =# attributes
 - Bilinear form generalization of Mahalanobis distance
 Weights: interactions between pairs of attributes
 Parameter: square matrix: n × n (n =# attributes)
 - ▷ Choquet integral.

Weights: interactions of sets of attributes $(\mu : 2^X \rightarrow [0, 1])$ Parameter: non-additive measure: $2^n - 2$ (n = # attributes) Distances used in record linkage based on aggregation operators

• Graphically



Bilinear form. Quadratic form that generalizes Mahalanobis distance. Choquet integral. A fuzzy integral w.r.t. a fuzzy measure (nonadditive measure). CI generalizes Lebesgue integral. Interactions.

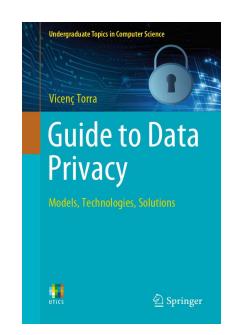
Summary

• Results presented

- Fuzzy clustering for data protection (microaggregation)
- Information loss using fuzzy clustering
- Distance for fuzzy measures (reidentification, disclosure risk)

References

- V. Torra, G. Navarro-Arribas (2020) Fuzzy meets privacy: a short overview, Proc. INFUS 2020.
- V. Torra (2022) Guide to Data Privacy, Springer.



Thank you